merged
authorhuffman
Wed, 10 Aug 2011 00:31:51 -0700
changeset 44130 f046f5794f2a
parent 44129 286bd57858b9 (diff)
parent 44108 476a239d3e0e (current diff)
child 44131 5fc334b94e00
merged
--- a/src/HOL/Complex.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Complex.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -340,16 +340,10 @@
 subsection {* Completeness of the Complexes *}
 
 interpretation Re: bounded_linear "Re"
-apply (unfold_locales, simp, simp)
-apply (rule_tac x=1 in exI)
-apply (simp add: complex_norm_def)
-done
+  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
 
 interpretation Im: bounded_linear "Im"
-apply (unfold_locales, simp, simp)
-apply (rule_tac x=1 in exI)
-apply (simp add: complex_norm_def)
-done
+  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
 
 lemma tendsto_Complex [tendsto_intros]:
   assumes "(f ---> a) net" and "(g ---> b) net"
@@ -518,11 +512,8 @@
 by (simp add: norm_mult power2_eq_square)
 
 interpretation cnj: bounded_linear "cnj"
-apply (unfold_locales)
-apply (rule complex_cnj_add)
-apply (rule complex_cnj_scaleR)
-apply (rule_tac x=1 in exI, simp)
-done
+  using complex_cnj_add complex_cnj_scaleR
+  by (rule bounded_linear_intro [where K=1], simp)
 
 
 subsection{*The Functions @{term sgn} and @{term arg}*}
--- a/src/HOL/Library/FrechetDeriv.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Library/FrechetDeriv.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -28,29 +28,17 @@
 lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
 by (simp add: fderiv_def)
 
-lemma bounded_linear_zero:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
-proof
-  show "(0::'b) = 0 + 0" by simp
-  fix r show "(0::'b) = scaleR r 0" by simp
-  have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
-  thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
-qed
+lemma bounded_linear_zero: "bounded_linear (\<lambda>x. 0)"
+  by (rule bounded_linear_intro [where K=0], simp_all)
 
 lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
-by (simp add: fderiv_def bounded_linear_zero)
+  by (simp add: fderiv_def bounded_linear_zero)
 
-lemma bounded_linear_ident:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
-proof
-  fix x y :: 'a show "x + y = x + y" by simp
-  fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
-  have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
-  thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
-qed
+lemma bounded_linear_ident: "bounded_linear (\<lambda>x. x)"
+  by (rule bounded_linear_intro [where K=1], simp_all)
 
 lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
-by (simp add: fderiv_def bounded_linear_ident)
+  by (simp add: fderiv_def bounded_linear_ident)
 
 subsection {* Addition *}
 
--- a/src/HOL/Library/Inner_Product.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Library/Inner_Product.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -123,8 +123,7 @@
         unfolding power2_sum power2_norm_eq_inner
         by (simp add: inner_add inner_commute)
       show "0 \<le> norm x + norm y"
-        unfolding norm_eq_sqrt_inner
-        by (simp add: add_nonneg_nonneg)
+        unfolding norm_eq_sqrt_inner by simp
     qed
   have "sqrt (a\<twosuperior> * inner x x) = \<bar>a\<bar> * sqrt (inner x x)"
     by (simp add: real_sqrt_mult_distrib)
@@ -217,7 +216,7 @@
   show "inner (scaleR r x) y = r * inner x y"
     unfolding inner_complex_def by (simp add: right_distrib)
   show "0 \<le> inner x x"
-    unfolding inner_complex_def by (simp add: add_nonneg_nonneg)
+    unfolding inner_complex_def by simp
   show "inner x x = 0 \<longleftrightarrow> x = 0"
     unfolding inner_complex_def
     by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff)
--- a/src/HOL/Library/Product_Vector.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Library/Product_Vector.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -435,27 +435,21 @@
 subsection {* Pair operations are linear *}
 
 interpretation fst: bounded_linear fst
-  apply (unfold_locales)
-  apply (rule fst_add)
-  apply (rule fst_scaleR)
-  apply (rule_tac x="1" in exI, simp add: norm_Pair)
-  done
+  using fst_add fst_scaleR
+  by (rule bounded_linear_intro [where K=1], simp add: norm_prod_def)
 
 interpretation snd: bounded_linear snd
-  apply (unfold_locales)
-  apply (rule snd_add)
-  apply (rule snd_scaleR)
-  apply (rule_tac x="1" in exI, simp add: norm_Pair)
-  done
+  using snd_add snd_scaleR
+  by (rule bounded_linear_intro [where K=1], simp add: norm_prod_def)
 
 text {* TODO: move to NthRoot *}
 lemma sqrt_add_le_add_sqrt:
   assumes x: "0 \<le> x" and y: "0 \<le> y"
   shows "sqrt (x + y) \<le> sqrt x + sqrt y"
 apply (rule power2_le_imp_le)
-apply (simp add: real_sum_squared_expand add_nonneg_nonneg x y)
+apply (simp add: real_sum_squared_expand x y)
 apply (simp add: mult_nonneg_nonneg x y)
-apply (simp add: add_nonneg_nonneg x y)
+apply (simp add: x y)
 done
 
 lemma bounded_linear_Pair:
--- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -355,9 +355,11 @@
 lemma \<pi>_inj_on: "inj_on (\<pi>::nat\<Rightarrow>'n::finite) {..<CARD('n)}"
   using bij_betw_pi[where 'n='n] by (simp add: bij_betw_def)
 
-instantiation cart :: (real_basis,finite) real_basis
+instantiation cart :: (euclidean_space, finite) euclidean_space
 begin
 
+definition "dimension (t :: ('a ^ 'b) itself) = CARD('b) * DIM('a)"
+
 definition "(basis i::'a^'b) =
   (if i < (CARD('b) * DIM('a))
   then (\<chi> j::'b. if j = \<pi>(i div DIM('a)) then basis (i mod DIM('a)) else 0)
@@ -417,133 +419,84 @@
   finally show ?thesis by simp
 qed
 
-instance
-proof
-  let ?b = "basis :: nat \<Rightarrow> 'a^'b"
-  let ?b' = "basis :: nat \<Rightarrow> 'a"
+lemma DIM_cart[simp]: "DIM('a^'b) = CARD('b) * DIM('a)"
+  by (rule dimension_cart_def)
 
-  have setsum_basis:
-    "\<And>f. (\<Sum>x\<in>range basis. f (x::'a)) = f 0 + (\<Sum>i<DIM('a). f (basis i))"
-    unfolding range_basis apply (subst setsum.insert)
-    by (auto simp: basis_eq_0_iff setsum.insert setsum_reindex[OF basis_inj])
+lemma all_less_DIM_cart:
+  fixes m n :: nat
+  shows "(\<forall>i<DIM('a^'b). P i) \<longleftrightarrow> (\<forall>x::'b. \<forall>i<DIM('a). P (i + \<pi>' x * DIM('a)))"
+unfolding DIM_cart
+apply safe
+apply (drule spec, erule mp, erule linear_less_than_times [OF pi'_range])
+apply (erule split_CARD_DIM, simp)
+done
 
-  have inj: "inj_on ?b {..<CARD('b)*DIM('a)}"
-    by (auto intro!: inj_onI elim!: split_CARD_DIM split: split_if_asm
-             simp add: Cart_eq basis_eq_pi' all_conj_distrib basis_neq_0
-                       inj_on_iff[OF basis_inj])
-  moreover
-  hence indep: "independent (?b ` {..<CARD('b) * DIM('a)})"
-  proof (rule independent_eq_inj_on[THEN iffD2], safe elim!: split_CARD_DIM del: notI)
-    fix j and i :: 'b and u :: "'a^'b \<Rightarrow> real" assume "j < DIM('a)"
-    let ?x = "j + \<pi>' i * DIM('a)"
-    show "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) \<noteq> ?b ?x"
-      unfolding Cart_eq not_all
-    proof
-      have "(\<lambda>j. j + \<pi>' i*DIM('a))`({..<DIM('a)}-{j}) =
-        {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)} - {?x}"(is "?S = ?I - _")
-      proof safe
-        fix y assume "y \<in> ?I"
-        moreover def k \<equiv> "y - \<pi>' i*DIM('a)"
-        ultimately have "k < DIM('a)" and "y = k + \<pi>' i * DIM('a)" by auto
-        moreover assume "y \<notin> ?S"
-        ultimately show "y = j + \<pi>' i * DIM('a)" by auto
-      qed auto
+lemma eq_pi_iff:
+  fixes x :: "'c::finite"
+  shows "i < CARD('c::finite) \<Longrightarrow> x = \<pi> i \<longleftrightarrow> \<pi>' x = i"
+  by auto
+
+lemma all_less_mult:
+  fixes m n :: nat
+  shows "(\<forall>i<(m * n). P i) \<longleftrightarrow> (\<forall>i<m. \<forall>j<n. P (j + i * n))"
+apply safe
+apply (drule spec, erule mp, erule (1) linear_less_than_times)
+apply (erule split_times_into_modulo, simp)
+done
+
+lemma inner_if:
+  "inner (if a then x else y) z = (if a then inner x z else inner y z)"
+  "inner x (if a then y else z) = (if a then inner x y else inner x z)"
+  by simp_all
 
-      have "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) $ i =
-          (\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k $ i)" by simp
-      also have "\<dots> = (\<Sum>k\<in>?S. u(?b k) *\<^sub>R ?b k $ i)"
-        unfolding `?S = ?I - {?x}`
-      proof (safe intro!: setsum_mono_zero_cong_right)
-        fix y assume "y \<in> {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)}"
-        moreover have "Suc (\<pi>' i) * DIM('a) \<le> CARD('b) * DIM('a)"
-          unfolding mult_le_cancel2 using pi'_range[of i] by simp
-        ultimately show "y < CARD('b) * DIM('a)" by simp
-      next
-        fix y assume "y < CARD('b) * DIM('a)"
-        with split_CARD_DIM guess l k . note y = this
-        moreover assume "u (?b y) *\<^sub>R ?b y $ i \<noteq> 0"
-        ultimately show "y \<in> {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)}"
-          by (auto simp: basis_eq_pi' split: split_if_asm)
-      qed simp
-      also have "\<dots> = (\<Sum>k\<in>{..<DIM('a)} - {j}. u (?b (k + \<pi>' i*DIM('a))) *\<^sub>R (?b' k))"
-        by (subst setsum_reindex) (auto simp: basis_eq_pi' intro!: inj_onI)
-      also have "\<dots> \<noteq> ?b ?x $ i"
-      proof -
-        note independent_eq_inj_on[THEN iffD1, OF basis_inj independent_basis, rule_format]
-        note this[of j "\<lambda>v. u (\<chi> ka::'b. if ka = i then v else (0\<Colon>'a))"]
-        thus ?thesis by (simp add: `j < DIM('a)` basis_eq pi'_range)
-      qed
-      finally show "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) $ i \<noteq> ?b ?x $ i" .
-    qed
-  qed
-  ultimately
-  show "\<exists>d>0. ?b ` {d..} = {0} \<and> independent (?b ` {..<d}) \<and> inj_on ?b {..<d}"
-    by (auto intro!: exI[of _ "CARD('b) * DIM('a)"] simp: basis_cart_def)
-
-  from indep have exclude_0: "0 \<notin> ?b ` {..<CARD('b) * DIM('a)}"
-    using dependent_0[of "?b ` {..<CARD('b) * DIM('a)}"] by blast
-
-  show "span (range ?b) = UNIV"
-  proof -
-    { fix x :: "'a^'b"
-      let "?if i y" = "(\<chi> k::'b. if k = i then ?b' y else (0\<Colon>'a))"
-      have The_if: "\<And>i j. j < DIM('a) \<Longrightarrow> (THE k. (?if i j) $ k \<noteq> 0) = i"
-        by (rule the_equality) (simp_all split: split_if_asm add: basis_neq_0)
-      { fix x :: 'a
-        have "x \<in> span (range basis)"
-          using span_basis by (auto simp: range_basis)
-        hence "\<exists>u. (\<Sum>x<DIM('a). u (?b' x) *\<^sub>R ?b' x) = x"
-          by (subst (asm) span_finite) (auto simp: setsum_basis) }
-      hence "\<forall>i. \<exists>u. (\<Sum>x<DIM('a). u (?b' x) *\<^sub>R ?b' x) = i" by auto
-      then obtain u where u: "\<forall>i. (\<Sum>x<DIM('a). u i (?b' x) *\<^sub>R ?b' x) = i"
-        by (auto dest: choice)
-      have "\<exists>u. \<forall>i. (\<Sum>j<DIM('a). u (?if i j) *\<^sub>R ?b' j) = x $ i"
-        apply (rule exI[of _ "\<lambda>v. let i = (THE i. v$i \<noteq> 0) in u (x$i) (v$i)"])
-        using The_if u by simp }
-    moreover
-    have "\<And>i::'b. {..<CARD('b)} \<inter> {x. i = \<pi> x} = {\<pi>' i}"
-      using pi'_range[where 'n='b] by auto
-    moreover
-    have "range ?b = {0} \<union> ?b ` {..<CARD('b) * DIM('a)}"
-      by (auto simp: image_def basis_cart_def)
-    ultimately
-    show ?thesis
-      by (auto simp add: Cart_eq setsum_reindex[OF inj] range_basis
-          setsum_mult_product basis_eq if_distrib setsum_cases span_finite
-          setsum_reindex[OF basis_inj])
-  qed
+instance proof
+  show "0 < DIM('a ^ 'b)"
+    unfolding dimension_cart_def
+    by (intro mult_pos_pos zero_less_card_finite DIM_positive)
+next
+  fix i :: nat
+  assume "DIM('a ^ 'b) \<le> i" thus "basis i = (0::'a^'b)"
+    unfolding dimension_cart_def basis_cart_def
+    by simp
+next
+  show "\<forall>i<DIM('a ^ 'b). \<forall>j<DIM('a ^ 'b).
+    (basis i :: 'a ^ 'b) \<bullet> basis j = (if i = j then 1 else 0)"
+    apply (simp add: inner_vector_def)
+    apply safe
+    apply (erule split_CARD_DIM, simp add: basis_eq_pi')
+    apply (simp add: inner_if setsum_delta cong: if_cong)
+    apply (simp add: basis_orthonormal)
+    apply (elim split_CARD_DIM, simp add: basis_eq_pi')
+    apply (simp add: inner_if setsum_delta cong: if_cong)
+    apply (clarsimp simp add: basis_orthonormal)
+    done
+next
+  fix x :: "'a ^ 'b"
+  show "(\<forall>i<DIM('a ^ 'b). inner (basis i) x = 0) \<longleftrightarrow> x = 0"
+    unfolding all_less_DIM_cart
+    unfolding inner_vector_def
+    apply (simp add: basis_eq_pi')
+    apply (simp add: inner_if setsum_delta cong: if_cong)
+    apply (simp add: euclidean_all_zero)
+    apply (simp add: Cart_eq)
+    done
 qed
 
 end
 
-lemma DIM_cart[simp]: "DIM('a^'b) = CARD('b) * DIM('a::real_basis)"
-proof (safe intro!: dimension_eq elim!: split_times_into_modulo del: notI)
-  fix i j assume *: "i < CARD('b)" "j < DIM('a)"
-  hence A: "(i * DIM('a) + j) div DIM('a) = i"
-    by (subst div_add1_eq) simp
-  from * have B: "(i * DIM('a) + j) mod DIM('a) = j"
-    unfolding mod_mult_self3 by simp
-  show "basis (j + i * DIM('a)) \<noteq> (0::'a^'b)" unfolding basis_cart_def
-    using * basis_finite[where 'a='a]
-      linear_less_than_times[of i "CARD('b)" j "DIM('a)"]
-    by (auto simp: A B field_simps Cart_eq basis_eq_0_iff)
-qed (auto simp: basis_cart_def)
-
 lemma if_distr: "(if P then f else g) $ i = (if P then f $ i else g $ i)" by simp
 
 lemma split_dimensions'[consumes 1]:
-  assumes "k < DIM('a::real_basis^'b)"
-  obtains i j where "i < CARD('b::finite)" and "j < DIM('a::real_basis)" and "k = j + i * DIM('a::real_basis)"
+  assumes "k < DIM('a::euclidean_space^'b)"
+  obtains i j where "i < CARD('b::finite)" and "j < DIM('a::euclidean_space)" and "k = j + i * DIM('a::euclidean_space)"
 using split_times_into_modulo[OF assms[simplified]] .
 
 lemma cart_euclidean_bound[intro]:
-  assumes j:"j < DIM('a::{real_basis})"
-  shows "j + \<pi>' (i::'b::finite) * DIM('a) < CARD('b) * DIM('a::real_basis)"
+  assumes j:"j < DIM('a::euclidean_space)"
+  shows "j + \<pi>' (i::'b::finite) * DIM('a) < CARD('b) * DIM('a::euclidean_space)"
   using linear_less_than_times[OF pi'_range j, of i] .
 
-instance cart :: (real_basis_with_inner,finite) real_basis_with_inner ..
-
-lemma (in real_basis) forall_CARD_DIM:
+lemma (in euclidean_space) forall_CARD_DIM:
   "(\<forall>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<forall>(i::'b::finite) j. j<DIM('a) \<longrightarrow> P (j + \<pi>' i * DIM('a)))"
    (is "?l \<longleftrightarrow> ?r")
 proof (safe elim!: split_times_into_modulo)
@@ -557,7 +510,7 @@
   show "P (j + i * DIM('a))" by simp
 qed
 
-lemma (in real_basis) exists_CARD_DIM:
+lemma (in euclidean_space) exists_CARD_DIM:
   "(\<exists>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<exists>i::'b::finite. \<exists>j<DIM('a). P (j + \<pi>' i * DIM('a)))"
   using forall_CARD_DIM[where 'b='b, of "\<lambda>x. \<not> P x"] by blast
 
@@ -572,7 +525,7 @@
 lemmas cart_simps = forall_CARD_DIM exists_CARD_DIM forall_CARD exists_CARD
 
 lemma cart_euclidean_nth[simp]:
-  fixes x :: "('a::real_basis_with_inner, 'b::finite) cart"
+  fixes x :: "('a::euclidean_space, 'b::finite) cart"
   assumes j:"j < DIM('a)"
   shows "x $$ (j + \<pi>' i * DIM('a)) = x $ i $$ j"
   unfolding euclidean_component_def inner_vector_def basis_eq_pi'[OF j] if_distrib cond_application_beta
@@ -606,22 +559,6 @@
   thus "x = y \<and> i = j" using * by simp
 qed simp
 
-instance cart :: (euclidean_space,finite) euclidean_space
-proof (default, safe elim!: split_dimensions')
-  let ?b = "basis :: nat \<Rightarrow> 'a^'b"
-  have if_distrib_op: "\<And>f P Q a b c d.
-    f (if P then a else b) (if Q then c else d) =
-      (if P then if Q then f a c else f a d else if Q then f b c else f b d)"
-    by simp
-
-  fix i j k l
-  assume "i < CARD('b)" "k < CARD('b)" "j < DIM('a)" "l < DIM('a)"
-  thus "?b (j + i * DIM('a)) \<bullet> ?b (l + k * DIM('a)) =
-    (if j + i * DIM('a) = l + k * DIM('a) then 1 else 0)"
-    using inj_on_iff[OF \<pi>_inj_on[where 'n='b], of k i]
-    by (auto simp add: basis_eq inner_vector_def if_distrib_op[of inner] setsum_cases basis_orthonormal mult_split_eq)
-qed
-
 instance cart :: (ordered_euclidean_space,finite) ordered_euclidean_space
 proof
   fix x y::"'a^'b"
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -3054,7 +3054,7 @@
   apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+
   apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule)
   apply(rule assms[unfolded convex_def, rule_format]) prefer 6
-  apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto
+  by (auto intro: tendsto_intros)
 
 lemma convex_interior:
   fixes s :: "'a::real_normed_vector set"
--- a/src/HOL/Multivariate_Analysis/Derivative.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -73,7 +73,7 @@
       apply(rule_tac x=d in exI) apply(erule conjE,rule,assumption) apply rule apply(erule_tac x="xa + x" in allE)
       unfolding dist_norm netlimit_at_vector[of x] by (auto simp add: diff_diff_eq add.commute) qed qed
 
-subsection {* These are the only cases we'll care about, probably. *}
+text {* These are the only cases we'll care about, probably. *}
 
 lemma has_derivative_within: "(f has_derivative f') (at x within s) \<longleftrightarrow>
          bounded_linear f' \<and> ((\<lambda>y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) ---> 0) (at x within s)"
@@ -83,7 +83,7 @@
          bounded_linear f' \<and> ((\<lambda>y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) ---> 0) (at x)"
   apply(subst within_UNIV[THEN sym]) unfolding has_derivative_within unfolding within_UNIV by auto
 
-subsection {* More explicit epsilon-delta forms. *}
+text {* More explicit epsilon-delta forms. *}
 
 lemma has_derivative_within':
   "(f has_derivative f')(at x within s) \<longleftrightarrow> bounded_linear f' \<and>
@@ -133,17 +133,18 @@
   "(f has_derivative f') net \<Longrightarrow> linear f'"
   by (rule derivative_linear [THEN bounded_linear_imp_linear])
 
-subsection {* Combining theorems. *}
+subsubsection {* Combining theorems. *}
 
 lemma (in bounded_linear) has_derivative: "(f has_derivative f) net"
   unfolding has_derivative_def apply(rule,rule bounded_linear_axioms)
-  unfolding diff by(simp add: Lim_const)
+  unfolding diff by (simp add: tendsto_const)
 
 lemma has_derivative_id: "((\<lambda>x. x) has_derivative (\<lambda>h. h)) net"
   apply(rule bounded_linear.has_derivative) using bounded_linear_ident[unfolded id_def] by simp
 
 lemma has_derivative_const: "((\<lambda>x. c) has_derivative (\<lambda>h. 0)) net"
-  unfolding has_derivative_def apply(rule,rule bounded_linear_zero) by(simp add: Lim_const)
+  unfolding has_derivative_def
+  by (rule, rule bounded_linear_zero, simp add: tendsto_const)
 
 lemma (in bounded_linear) cmul: shows "bounded_linear (\<lambda>x. (c::real) *\<^sub>R f x)"
 proof -
@@ -156,7 +157,8 @@
 
 lemma has_derivative_cmul: assumes "(f has_derivative f') net" shows "((\<lambda>x. c *\<^sub>R f(x)) has_derivative (\<lambda>h. c *\<^sub>R f'(h))) net"
   unfolding has_derivative_def apply(rule,rule bounded_linear.cmul)
-  using assms[unfolded has_derivative_def] using Lim_cmul[OF assms[unfolded has_derivative_def,THEN conjunct2]]
+  using assms[unfolded has_derivative_def]
+  using scaleR.tendsto[OF tendsto_const assms[unfolded has_derivative_def,THEN conjunct2]]
   unfolding scaleR_right_diff_distrib scaleR_right_distrib by auto 
 
 lemma has_derivative_cmul_eq: assumes "c \<noteq> 0" 
@@ -171,34 +173,35 @@
 lemma has_derivative_neg_eq: "((\<lambda>x. -(f x)) has_derivative (\<lambda>h. -(f' h))) net \<longleftrightarrow> (f has_derivative f') net"
   apply(rule, drule_tac[!] has_derivative_neg) by auto
 
-lemma has_derivative_add: assumes "(f has_derivative f') net" "(g has_derivative g') net"
-  shows "((\<lambda>x. f(x) + g(x)) has_derivative (\<lambda>h. f'(h) + g'(h))) net" proof-
+lemma has_derivative_add:
+  assumes "(f has_derivative f') net" and "(g has_derivative g') net"
+  shows "((\<lambda>x. f(x) + g(x)) has_derivative (\<lambda>h. f'(h) + g'(h))) net"
+proof-
   note as = assms[unfolded has_derivative_def]
   show ?thesis unfolding has_derivative_def apply(rule,rule bounded_linear_add)
-    using Lim_add[OF as(1)[THEN conjunct2] as(2)[THEN conjunct2]] and as
-    by (auto simp add:algebra_simps scaleR_right_diff_distrib scaleR_right_distrib) qed
+    using tendsto_add[OF as(1)[THEN conjunct2] as(2)[THEN conjunct2]] and as
+    by (auto simp add:algebra_simps scaleR_right_diff_distrib scaleR_right_distrib)
+qed
 
 lemma has_derivative_add_const:"(f has_derivative f') net \<Longrightarrow> ((\<lambda>x. f x + c) has_derivative f') net"
   apply(drule has_derivative_add) apply(rule has_derivative_const) by auto
 
 lemma has_derivative_sub:
- "(f has_derivative f') net \<Longrightarrow> (g has_derivative g') net \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_derivative (\<lambda>h. f'(h) - g'(h))) net"
-  apply(drule has_derivative_add) apply(drule has_derivative_neg,assumption) by(simp add:algebra_simps)
+  assumes "(f has_derivative f') net" and "(g has_derivative g') net"
+  shows "((\<lambda>x. f(x) - g(x)) has_derivative (\<lambda>h. f'(h) - g'(h))) net"
+  unfolding diff_minus by (intro has_derivative_add has_derivative_neg assms)
 
-lemma has_derivative_setsum: assumes "finite s" "\<forall>a\<in>s. ((f a) has_derivative (f' a)) net"
+lemma has_derivative_setsum:
+  assumes "finite s" and "\<forall>a\<in>s. ((f a) has_derivative (f' a)) net"
   shows "((\<lambda>x. setsum (\<lambda>a. f a x) s) has_derivative (\<lambda>h. setsum (\<lambda>a. f' a h) s)) net"
-  apply(induct_tac s rule:finite_subset_induct[where A=s]) apply(rule assms(1)) 
-proof- fix x F assume as:"finite F" "x \<notin> F" "x\<in>s" "((\<lambda>x. \<Sum>a\<in>F. f a x) has_derivative (\<lambda>h. \<Sum>a\<in>F. f' a h)) net" 
-  thus "((\<lambda>xa. \<Sum>a\<in>insert x F. f a xa) has_derivative (\<lambda>h. \<Sum>a\<in>insert x F. f' a h)) net"
-    unfolding setsum_insert[OF as(1,2)] apply-apply(rule has_derivative_add) apply(rule assms(2)[rule_format]) by auto
-qed(auto intro!: has_derivative_const)
+  using assms by (induct, simp_all add: has_derivative_const has_derivative_add)
 
 lemma has_derivative_setsum_numseg:
   "\<forall>i. m \<le> i \<and> i \<le> n \<longrightarrow> ((f i) has_derivative (f' i)) net \<Longrightarrow>
   ((\<lambda>x. setsum (\<lambda>i. f i x) {m..n::nat}) has_derivative (\<lambda>h. setsum (\<lambda>i. f' i h) {m..n})) net"
-  apply(rule has_derivative_setsum) by auto
+  by (rule has_derivative_setsum) simp_all
 
-subsection {* somewhat different results for derivative of scalar multiplier. *}
+text {* Somewhat different results for derivative of scalar multiplier. *}
 
 (** move **)
 lemma linear_vmul_component:
@@ -211,7 +214,8 @@
   unfolding euclidean_component_def
   by (rule inner.bounded_linear_right)
 
-lemma has_derivative_vmul_component: fixes c::"'a::real_normed_vector \<Rightarrow> 'b::euclidean_space" and v::"'c::real_normed_vector"
+lemma has_derivative_vmul_component:
+  fixes c::"'a::real_normed_vector \<Rightarrow> 'b::euclidean_space" and v::"'c::real_normed_vector"
   assumes "(c has_derivative c') net"
   shows "((\<lambda>x. c(x)$$k *\<^sub>R v) has_derivative (\<lambda>x. (c' x)$$k *\<^sub>R v)) net" proof-
   have *:"\<And>y. (c y $$ k *\<^sub>R v - (c (netlimit net) $$ k *\<^sub>R v + c' (y - netlimit net) $$ k *\<^sub>R v)) = 
@@ -222,7 +226,8 @@
     apply (rule bounded_linear_compose [OF scaleR.bounded_linear_left])
     apply (rule bounded_linear_compose [OF bounded_linear_euclidean_component])
     apply (rule derivative_linear [OF assms])
-    apply(subst scaleR_zero_left[THEN sym, of v]) unfolding scaleR_scaleR apply(rule Lim_vmul)
+    apply(subst scaleR_zero_left[THEN sym, of v]) unfolding scaleR_scaleR
+    apply (intro tendsto_intros)
     using assms[unfolded has_derivative_def] unfolding Lim o_def apply- apply(cases "trivial_limit net")
     apply(rule,assumption,rule disjI2,rule,rule) proof-
     have *:"\<And>x. x - 0 = (x::'a)" by auto 
@@ -261,11 +266,13 @@
     apply(drule Lim_inner[where a=v]) unfolding o_def
     by(auto simp add:inner.scaleR_right inner.add_right inner.diff_right) qed
 
-lemmas has_derivative_intros = has_derivative_sub has_derivative_add has_derivative_cmul has_derivative_id has_derivative_const
-   has_derivative_neg has_derivative_vmul_component has_derivative_vmul_at has_derivative_vmul_within has_derivative_cmul 
-   bounded_linear.has_derivative has_derivative_lift_dot
+lemmas has_derivative_intros =
+  has_derivative_sub has_derivative_add has_derivative_cmul has_derivative_id
+  has_derivative_const has_derivative_neg has_derivative_vmul_component
+  has_derivative_vmul_at has_derivative_vmul_within has_derivative_cmul 
+  bounded_linear.has_derivative has_derivative_lift_dot
 
-subsection {* limit transformation for derivatives. *}
+subsubsection {* Limit transformation for derivatives *}
 
 lemma has_derivative_transform_within:
   assumes "0 < d" "x \<in> s" "\<forall>x'\<in>s. dist x' x < d \<longrightarrow> f x' = g x'" "(f has_derivative f') (at x within s)"
@@ -287,7 +294,7 @@
   apply(rule Lim_transform_within_open[OF assms(1,2)]) defer apply assumption
   apply(rule,rule) apply(drule assms(3)[rule_format]) using assms(3)[rule_format, OF assms(2)] by auto
 
-subsection {* differentiability. *}
+subsection {* Differentiability *}
 
 no_notation Deriv.differentiable (infixl "differentiable" 60)
 
@@ -303,22 +310,28 @@
 lemma differentiable_at_withinI: "f differentiable (at x) \<Longrightarrow> f differentiable (at x within s)"
   unfolding differentiable_def using has_derivative_at_within by blast
 
-lemma differentiable_within_open: assumes "a \<in> s" "open s" shows 
-  "f differentiable (at a within s) \<longleftrightarrow> (f differentiable (at a))"
+lemma differentiable_within_open: (* TODO: delete *)
+  assumes "a \<in> s" and "open s"
+  shows "f differentiable (at a within s) \<longleftrightarrow> (f differentiable (at a))"
   using assms by (simp only: at_within_interior interior_open)
 
-lemma differentiable_on_eq_differentiable_at: "open s \<Longrightarrow> (f differentiable_on s \<longleftrightarrow> (\<forall>x\<in>s. f differentiable at x))"
-  unfolding differentiable_on_def by(auto simp add: differentiable_within_open)
+lemma differentiable_on_eq_differentiable_at:
+  "open s \<Longrightarrow> (f differentiable_on s \<longleftrightarrow> (\<forall>x\<in>s. f differentiable at x))"
+  unfolding differentiable_on_def
+  by (auto simp add: at_within_interior interior_open)
 
 lemma differentiable_transform_within:
-  assumes "0 < d" "x \<in> s" "\<forall>x'\<in>s. dist x' x < d \<longrightarrow> f x' = g x'" "f differentiable (at x within s)"
+  assumes "0 < d" and "x \<in> s" and "\<forall>x'\<in>s. dist x' x < d \<longrightarrow> f x' = g x'"
+  assumes "f differentiable (at x within s)"
   shows "g differentiable (at x within s)"
-  using assms(4) unfolding differentiable_def by(auto intro!: has_derivative_transform_within[OF assms(1-3)])
+  using assms(4) unfolding differentiable_def
+  by (auto intro!: has_derivative_transform_within[OF assms(1-3)])
 
 lemma differentiable_transform_at:
   assumes "0 < d" "\<forall>x'. dist x' x < d \<longrightarrow> f x' = g x'" "f differentiable at x"
   shows "g differentiable at x"
-  using assms(3) unfolding differentiable_def using has_derivative_transform_at[OF assms(1-2)] by auto
+  using assms(3) unfolding differentiable_def
+  using has_derivative_transform_at[OF assms(1-2)] by auto
 
 subsection {* Frechet derivative and Jacobian matrix. *}
 
@@ -330,34 +343,50 @@
 
 lemma linear_frechet_derivative:
   shows "f differentiable net \<Longrightarrow> linear(frechet_derivative f net)"
-  unfolding frechet_derivative_works has_derivative_def by (auto intro: bounded_linear_imp_linear)
+  unfolding frechet_derivative_works has_derivative_def
+  by (auto intro: bounded_linear_imp_linear)
 
-subsection {* Differentiability implies continuity. *}
+subsection {* Differentiability implies continuity *}
 
-lemma Lim_mul_norm_within: fixes f::"'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
+lemma Lim_mul_norm_within:
+  fixes f::"'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
   shows "(f ---> 0) (at a within s) \<Longrightarrow> ((\<lambda>x. norm(x - a) *\<^sub>R f(x)) ---> 0) (at a within s)"
-  unfolding Lim_within apply(rule,rule) apply(erule_tac x=e in allE,erule impE,assumption,erule exE,erule conjE)
-  apply(rule_tac x="min d 1" in exI) apply rule defer apply(rule,erule_tac x=x in ballE) unfolding dist_norm diff_0_right
+  unfolding Lim_within apply(rule,rule)
+  apply(erule_tac x=e in allE,erule impE,assumption,erule exE,erule conjE)
+  apply(rule_tac x="min d 1" in exI) apply rule defer
+  apply(rule,erule_tac x=x in ballE) unfolding dist_norm diff_0_right
   by(auto intro!: mult_strict_mono[of _ "1::real", unfolded mult_1_left])
 
-lemma differentiable_imp_continuous_within: assumes "f differentiable (at x within s)" 
-  shows "continuous (at x within s) f" proof-
-  from assms guess f' unfolding differentiable_def has_derivative_within .. note f'=this
+lemma differentiable_imp_continuous_within:
+  assumes "f differentiable (at x within s)" 
+  shows "continuous (at x within s) f"
+proof-
+  from assms guess f' unfolding differentiable_def has_derivative_within ..
+  note f'=this
   then interpret bounded_linear f' by auto
   have *:"\<And>xa. x\<noteq>xa \<Longrightarrow> (f' \<circ> (\<lambda>y. y - x)) xa + norm (xa - x) *\<^sub>R ((1 / norm (xa - x)) *\<^sub>R (f xa - (f x + f' (xa - x)))) - ((f' \<circ> (\<lambda>y. y - x)) x + 0) = f xa - f x"
     using zero by auto
   have **:"continuous (at x within s) (f' \<circ> (\<lambda>y. y - x))"
     apply(rule continuous_within_compose) apply(rule continuous_intros)+
     by(rule linear_continuous_within[OF f'[THEN conjunct1]])
-  show ?thesis unfolding continuous_within using f'[THEN conjunct2, THEN Lim_mul_norm_within]
-    apply-apply(drule Lim_add) apply(rule **[unfolded continuous_within]) unfolding Lim_within and dist_norm
-    apply(rule,rule) apply(erule_tac x=e in allE) apply(erule impE|assumption)+ apply(erule exE,rule_tac x=d in exI)
-    by(auto simp add:zero * elim!:allE) qed
+  show ?thesis unfolding continuous_within
+    using f'[THEN conjunct2, THEN Lim_mul_norm_within]
+    apply- apply(drule tendsto_add)
+    apply(rule **[unfolded continuous_within])
+    unfolding Lim_within and dist_norm
+    apply (rule, rule)
+    apply (erule_tac x=e in allE)
+    apply (erule impE | assumption)+
+    apply (erule exE, rule_tac x=d in exI)
+    by (auto simp add: zero * elim!: allE)
+qed
 
-lemma differentiable_imp_continuous_at: "f differentiable at x \<Longrightarrow> continuous (at x) f"
+lemma differentiable_imp_continuous_at:
+  "f differentiable at x \<Longrightarrow> continuous (at x) f"
  by(rule differentiable_imp_continuous_within[of _ x UNIV, unfolded within_UNIV])
 
-lemma differentiable_imp_continuous_on: "f differentiable_on s \<Longrightarrow> continuous_on s f"
+lemma differentiable_imp_continuous_on:
+  "f differentiable_on s \<Longrightarrow> continuous_on s f"
   unfolding differentiable_on_def continuous_on_eq_continuous_within
   using differentiable_imp_continuous_within by blast
 
@@ -369,39 +398,56 @@
   "f differentiable (at x within t) \<Longrightarrow> s \<subseteq> t \<Longrightarrow> f differentiable (at x within s)"
   unfolding differentiable_def using has_derivative_within_subset by blast
 
-lemma differentiable_on_subset: "f differentiable_on t \<Longrightarrow> s \<subseteq> t \<Longrightarrow> f differentiable_on s"
+lemma differentiable_on_subset:
+  "f differentiable_on t \<Longrightarrow> s \<subseteq> t \<Longrightarrow> f differentiable_on s"
   unfolding differentiable_on_def using differentiable_within_subset by blast
 
 lemma differentiable_on_empty: "f differentiable_on {}"
   unfolding differentiable_on_def by auto
 
-subsection {* Several results are easier using a "multiplied-out" variant.              *)
-(* (I got this idea from Dieudonne's proof of the chain rule). *}
+text {* Several results are easier using a "multiplied-out" variant.
+(I got this idea from Dieudonne's proof of the chain rule). *}
 
 lemma has_derivative_within_alt:
  "(f has_derivative f') (at x within s) \<longleftrightarrow> bounded_linear f' \<and>
   (\<forall>e>0. \<exists>d>0. \<forall>y\<in>s. norm(y - x) < d \<longrightarrow> norm(f(y) - f(x) - f'(y - x)) \<le> e * norm(y - x))" (is "?lhs \<longleftrightarrow> ?rhs")
-proof assume ?lhs thus ?rhs unfolding has_derivative_within apply-apply(erule conjE,rule,assumption)
-    unfolding Lim_within apply(rule,erule_tac x=e in allE,rule,erule impE,assumption)
-    apply(erule exE,rule_tac x=d in exI) apply(erule conjE,rule,assumption,rule,rule) proof-
+proof
+  assume ?lhs thus ?rhs
+    unfolding has_derivative_within apply-apply(erule conjE,rule,assumption)
+    unfolding Lim_within
+    apply(rule,erule_tac x=e in allE,rule,erule impE,assumption)
+    apply(erule exE,rule_tac x=d in exI)
+    apply(erule conjE,rule,assumption,rule,rule)
+  proof-
     fix x y e d assume as:"0 < e" "0 < d" "norm (y - x) < d" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow>
       dist ((1 / norm (xa - x)) *\<^sub>R (f xa - (f x + f' (xa - x)))) 0 < e" "y \<in> s" "bounded_linear f'"
     then interpret bounded_linear f' by auto
     show "norm (f y - f x - f' (y - x)) \<le> e * norm (y - x)" proof(cases "y=x")
-      case True thus ?thesis using `bounded_linear f'` by(auto simp add: zero) next
+      case True thus ?thesis using `bounded_linear f'` by(auto simp add: zero)
+    next
       case False hence "norm (f y - (f x + f' (y - x))) < e * norm (y - x)" using as(4)[rule_format, OF `y\<in>s`]
         unfolding dist_norm diff_0_right using as(3)
         using pos_divide_less_eq[OF False[unfolded dist_nz], unfolded dist_norm]
         by (auto simp add: linear_0 linear_sub)
-      thus ?thesis by(auto simp add:algebra_simps) qed qed next
-  assume ?rhs thus ?lhs unfolding has_derivative_within Lim_within apply-apply(erule conjE,rule,assumption)
-    apply(rule,erule_tac x="e/2" in allE,rule,erule impE) defer apply(erule exE,rule_tac x=d in exI)
-    apply(erule conjE,rule,assumption,rule,rule) unfolding dist_norm diff_0_right norm_scaleR
-    apply(erule_tac x=xa in ballE,erule impE) proof-
+      thus ?thesis by(auto simp add:algebra_simps)
+    qed
+  qed
+next
+  assume ?rhs thus ?lhs unfolding has_derivative_within Lim_within
+    apply-apply(erule conjE,rule,assumption)
+    apply(rule,erule_tac x="e/2" in allE,rule,erule impE) defer
+    apply(erule exE,rule_tac x=d in exI)
+    apply(erule conjE,rule,assumption,rule,rule)
+    unfolding dist_norm diff_0_right norm_scaleR
+    apply(erule_tac x=xa in ballE,erule impE)
+  proof-
     fix e d y assume "bounded_linear f'" "0 < e" "0 < d" "y \<in> s" "0 < norm (y - x) \<and> norm (y - x) < d"
         "norm (f y - f x - f' (y - x)) \<le> e / 2 * norm (y - x)"
     thus "\<bar>1 / norm (y - x)\<bar> * norm (f y - (f x + f' (y - x))) < e"
-      apply(rule_tac le_less_trans[of _ "e/2"]) by(auto intro!:mult_imp_div_pos_le simp add:algebra_simps) qed auto qed
+      apply(rule_tac le_less_trans[of _ "e/2"])
+      by(auto intro!:mult_imp_div_pos_le simp add:algebra_simps)
+  qed auto
+qed
 
 lemma has_derivative_at_alt:
   "(f has_derivative f') (at x) \<longleftrightarrow> bounded_linear f' \<and>
@@ -411,11 +457,14 @@
 subsection {* The chain rule. *}
 
 lemma diff_chain_within:
-  assumes "(f has_derivative f') (at x within s)" "(g has_derivative g') (at (f x) within (f ` s))"
+  assumes "(f has_derivative f') (at x within s)"
+  assumes "(g has_derivative g') (at (f x) within (f ` s))"
   shows "((g o f) has_derivative (g' o f'))(at x within s)"
-  unfolding has_derivative_within_alt apply(rule,rule bounded_linear_compose[unfolded o_def[THEN sym]])
+  unfolding has_derivative_within_alt
+  apply(rule,rule bounded_linear_compose[unfolded o_def[THEN sym]])
   apply(rule assms(2)[unfolded has_derivative_def,THEN conjE],assumption)
-  apply(rule assms(1)[unfolded has_derivative_def,THEN conjE],assumption) proof(rule,rule)
+  apply(rule assms(1)[unfolded has_derivative_def,THEN conjE],assumption)
+proof(rule,rule)
   note assms = assms[unfolded has_derivative_within_alt]
   fix e::real assume "0<e"
   guess B1 using bounded_linear.pos_bounded[OF assms(1)[THEN conjunct1, rule_format]] .. note B1 = this
@@ -436,50 +485,74 @@
     hence 1:"norm (f y - f x - f' (y - x)) \<le> min (norm (y - x)) (e / 2 / B2 * norm (y - x))" using d1 d2 d by auto
 
     have "norm (f y - f x) \<le> norm (f y - f x - f' (y - x)) + norm (f' (y - x))"
-      using norm_triangle_sub[of "f y - f x" "f' (y - x)"] by(auto simp add:algebra_simps)
-    also have "\<dots> \<le> norm (f y - f x - f' (y - x)) + B1 * norm (y - x)" apply(rule add_left_mono) using B1 by(auto simp add:algebra_simps)
-    also have "\<dots> \<le> min (norm (y - x)) (e / 2 / B2 * norm (y - x)) + B1 * norm (y - x)" apply(rule add_right_mono) using d1 d2 d as by auto
+      using norm_triangle_sub[of "f y - f x" "f' (y - x)"]
+      by(auto simp add:algebra_simps)
+    also have "\<dots> \<le> norm (f y - f x - f' (y - x)) + B1 * norm (y - x)"
+      apply(rule add_left_mono) using B1 by(auto simp add:algebra_simps)
+    also have "\<dots> \<le> min (norm (y - x)) (e / 2 / B2 * norm (y - x)) + B1 * norm (y - x)"
+      apply(rule add_right_mono) using d1 d2 d as by auto
     also have "\<dots> \<le> norm (y - x) + B1 * norm (y - x)" by auto
     also have "\<dots> = norm (y - x) * (1 + B1)" by(auto simp add:field_simps)
     finally have 3:"norm (f y - f x) \<le> norm (y - x) * (1 + B1)" by auto 
 
-    hence "norm (f y - f x) \<le> d * (1 + B1)" apply- apply(rule order_trans,assumption,rule mult_right_mono) using as B1 by auto 
+    hence "norm (f y - f x) \<le> d * (1 + B1)" apply-
+      apply(rule order_trans,assumption,rule mult_right_mono)
+      using as B1 by auto 
     also have "\<dots> < de" using d B1 by(auto simp add:field_simps) 
     finally have "norm (g (f y) - g (f x) - g' (f y - f x)) \<le> e / 2 / (1 + B1) * norm (f y - f x)"
-      apply-apply(rule de[THEN conjunct2,rule_format]) using `y\<in>s` using d as by auto 
+      apply-apply(rule de[THEN conjunct2,rule_format])
+      using `y\<in>s` using d as by auto 
     also have "\<dots> = (e / 2) * (1 / (1 + B1) * norm (f y - f x))" by auto 
-    also have "\<dots> \<le> e / 2 * norm (y - x)" apply(rule mult_left_mono) using `e>0` and 3 using B1 and `e>0` by(auto simp add:divide_le_eq)
+    also have "\<dots> \<le> e / 2 * norm (y - x)" apply(rule mult_left_mono)
+      using `e>0` and 3 using B1 and `e>0` by(auto simp add:divide_le_eq)
     finally have 4:"norm (g (f y) - g (f x) - g' (f y - f x)) \<le> e / 2 * norm (y - x)" by auto
     
     interpret g': bounded_linear g' using assms(2) by auto
     interpret f': bounded_linear f' using assms(1) by auto
     have "norm (- g' (f' (y - x)) + g' (f y - f x)) = norm (g' (f y - f x - f' (y - x)))"
       by(auto simp add:algebra_simps f'.diff g'.diff g'.add)
-    also have "\<dots> \<le> B2 * norm (f y - f x - f' (y - x))" using B2 by(auto simp add:algebra_simps)
-    also have "\<dots> \<le> B2 * (e / 2 / B2 * norm (y - x))" apply(rule mult_left_mono) using as d1 d2 d B2 by auto 
+    also have "\<dots> \<le> B2 * norm (f y - f x - f' (y - x))" using B2
+      by (auto simp add: algebra_simps)
+    also have "\<dots> \<le> B2 * (e / 2 / B2 * norm (y - x))"
+      apply (rule mult_left_mono) using as d1 d2 d B2 by auto 
     also have "\<dots> \<le> e / 2 * norm (y - x)" using B2 by auto
     finally have 5:"norm (- g' (f' (y - x)) + g' (f y - f x)) \<le> e / 2 * norm (y - x)" by auto
     
-    have "norm (g (f y) - g (f x) - g' (f y - f x)) + norm (g (f y) - g (f x) - g' (f' (y - x)) - (g (f y) - g (f x) - g' (f y - f x))) \<le> e * norm (y - x)" using 5 4 by auto
-    thus "norm ((g \<circ> f) y - (g \<circ> f) x - (g' \<circ> f') (y - x)) \<le> e * norm (y - x)" unfolding o_def apply- apply(rule order_trans, rule norm_triangle_sub) by assumption qed qed
+    have "norm (g (f y) - g (f x) - g' (f y - f x)) + norm (g (f y) - g (f x) - g' (f' (y - x)) - (g (f y) - g (f x) - g' (f y - f x))) \<le> e * norm (y - x)"
+      using 5 4 by auto
+    thus "norm ((g \<circ> f) y - (g \<circ> f) x - (g' \<circ> f') (y - x)) \<le> e * norm (y - x)"
+      unfolding o_def apply- apply(rule order_trans, rule norm_triangle_sub)
+      by assumption
+  qed
+qed
 
 lemma diff_chain_at:
   "(f has_derivative f') (at x) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow> ((g o f) has_derivative (g' o f')) (at x)"
-  using diff_chain_within[of f f' x UNIV g g'] using has_derivative_within_subset[of g g' "f x" UNIV "range f"] unfolding within_UNIV by auto
+  using diff_chain_within[of f f' x UNIV g g']
+  using has_derivative_within_subset[of g g' "f x" UNIV "range f"]
+  unfolding within_UNIV by auto
 
 subsection {* Composition rules stated just for differentiability. *}
 
-lemma differentiable_const[intro]: "(\<lambda>z. c) differentiable (net::'a::real_normed_vector filter)"
+lemma differentiable_const [intro]:
+  "(\<lambda>z. c) differentiable (net::'a::real_normed_vector filter)"
   unfolding differentiable_def using has_derivative_const by auto
 
-lemma differentiable_id[intro]: "(\<lambda>z. z) differentiable (net::'a::real_normed_vector filter)"
+lemma differentiable_id [intro]:
+  "(\<lambda>z. z) differentiable (net::'a::real_normed_vector filter)"
     unfolding differentiable_def using has_derivative_id by auto
 
-lemma differentiable_cmul[intro]: "f differentiable net \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) differentiable (net::'a::real_normed_vector filter)"
-  unfolding differentiable_def apply(erule exE, drule has_derivative_cmul) by auto
+lemma differentiable_cmul [intro]:
+  "f differentiable net \<Longrightarrow>
+  (\<lambda>x. c *\<^sub>R f(x)) differentiable (net::'a::real_normed_vector filter)"
+  unfolding differentiable_def
+  apply(erule exE, drule has_derivative_cmul) by auto
 
-lemma differentiable_neg[intro]: "f differentiable net \<Longrightarrow> (\<lambda>z. -(f z)) differentiable (net::'a::real_normed_vector filter)"
-  unfolding differentiable_def apply(erule exE, drule has_derivative_neg) by auto
+lemma differentiable_neg [intro]:
+  "f differentiable net \<Longrightarrow>
+  (\<lambda>z. -(f z)) differentiable (net::'a::real_normed_vector filter)"
+  unfolding differentiable_def
+  apply(erule exE, drule has_derivative_neg) by auto
 
 lemma differentiable_add: "f differentiable net \<Longrightarrow> g differentiable net
    \<Longrightarrow> (\<lambda>z. f z + g z) differentiable (net::'a::real_normed_vector filter)"
@@ -488,14 +561,18 @@
 
 lemma differentiable_sub: "f differentiable net \<Longrightarrow> g differentiable net
   \<Longrightarrow> (\<lambda>z. f z - g z) differentiable (net::'a::real_normed_vector filter)"
-  unfolding differentiable_def apply(erule exE)+ apply(rule_tac x="\<lambda>z. f' z - f'a z" in exI)
-    apply(rule has_derivative_sub) by auto 
+  unfolding differentiable_def apply(erule exE)+
+  apply(rule_tac x="\<lambda>z. f' z - f'a z" in exI)
+  apply(rule has_derivative_sub) by auto
 
 lemma differentiable_setsum:
   assumes "finite s" "\<forall>a\<in>s. (f a) differentiable net"
-  shows "(\<lambda>x. setsum (\<lambda>a. f a x) s) differentiable net" proof-
+  shows "(\<lambda>x. setsum (\<lambda>a. f a x) s) differentiable net"
+proof-
   guess f' using bchoice[OF assms(2)[unfolded differentiable_def]] ..
-  thus ?thesis unfolding differentiable_def apply- apply(rule,rule has_derivative_setsum[where f'=f'],rule assms(1)) by auto qed
+  thus ?thesis unfolding differentiable_def apply-
+    apply(rule,rule has_derivative_setsum[where f'=f'],rule assms(1)) by auto
+qed
 
 lemma differentiable_setsum_numseg:
   shows "\<forall>i. m \<le> i \<and> i \<le> n \<longrightarrow> (f i) differentiable net \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) {m::nat..n}) differentiable net"
@@ -517,63 +594,102 @@
  limit point from any direction. But OK for nontrivial intervals etc.
 *}
     
-lemma frechet_derivative_unique_within: fixes f::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "(f has_derivative f') (at x within s)" "(f has_derivative f'') (at x within s)"
-  "(\<forall>i<DIM('a). \<forall>e>0. \<exists>d. 0 < abs(d) \<and> abs(d) < e \<and> (x + d *\<^sub>R basis i) \<in> s)" shows "f' = f''" proof-
+lemma frechet_derivative_unique_within:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes "(f has_derivative f') (at x within s)"
+  assumes "(f has_derivative f'') (at x within s)"
+  assumes "(\<forall>i<DIM('a). \<forall>e>0. \<exists>d. 0 < abs(d) \<and> abs(d) < e \<and> (x + d *\<^sub>R basis i) \<in> s)"
+  shows "f' = f''"
+proof-
   note as = assms(1,2)[unfolded has_derivative_def]
-  then interpret f': bounded_linear f' by auto from as interpret f'': bounded_linear f'' by auto
-  have "x islimpt s" unfolding islimpt_approachable proof(rule,rule)
-    fix e::real assume "0<e" guess d using assms(3)[rule_format,OF DIM_positive `e>0`] ..
-    thus "\<exists>x'\<in>s. x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x="x + d *\<^sub>R basis 0" in bexI)
-      unfolding dist_norm by auto qed
-  hence *:"netlimit (at x within s) = x" apply-apply(rule netlimit_within) unfolding trivial_limit_within by simp
-  show ?thesis  apply(rule linear_eq_stdbasis) unfolding linear_conv_bounded_linear
-    apply(rule as(1,2)[THEN conjunct1])+ proof(rule,rule,rule ccontr)
+  then interpret f': bounded_linear f' by auto
+  from as interpret f'': bounded_linear f'' by auto
+  have "x islimpt s" unfolding islimpt_approachable
+  proof(rule,rule)
+    fix e::real assume "0<e" guess d
+      using assms(3)[rule_format,OF DIM_positive `e>0`] ..
+    thus "\<exists>x'\<in>s. x' \<noteq> x \<and> dist x' x < e"
+      apply(rule_tac x="x + d *\<^sub>R basis 0" in bexI)
+      unfolding dist_norm by auto
+  qed
+  hence *:"netlimit (at x within s) = x" apply-apply(rule netlimit_within)
+    unfolding trivial_limit_within by simp
+  show ?thesis  apply(rule linear_eq_stdbasis)
+    unfolding linear_conv_bounded_linear
+    apply(rule as(1,2)[THEN conjunct1])+
+  proof(rule,rule,rule ccontr)
     fix i assume i:"i<DIM('a)" def e \<equiv> "norm (f' (basis i) - f'' (basis i))"
-    assume "f' (basis i) \<noteq> f'' (basis i)" hence "e>0" unfolding e_def by auto
-    guess d using Lim_sub[OF as(1,2)[THEN conjunct2], unfolded * Lim_within,rule_format,OF `e>0`] .. note d=this
+    assume "f' (basis i) \<noteq> f'' (basis i)"
+    hence "e>0" unfolding e_def by auto
+    guess d using tendsto_diff [OF as(1,2)[THEN conjunct2], unfolded * Lim_within,rule_format,OF `e>0`] .. note d=this
     guess c using assms(3)[rule_format,OF i d[THEN conjunct1]] .. note c=this
     have *:"norm (- ((1 / \<bar>c\<bar>) *\<^sub>R f' (c *\<^sub>R basis i)) + (1 / \<bar>c\<bar>) *\<^sub>R f'' (c *\<^sub>R basis i)) = norm ((1 / abs c) *\<^sub>R (- (f' (c *\<^sub>R basis i)) + f'' (c *\<^sub>R basis i)))"
       unfolding scaleR_right_distrib by auto
     also have "\<dots> = norm ((1 / abs c) *\<^sub>R (c *\<^sub>R (- (f' (basis i)) + f'' (basis i))))"  
-      unfolding f'.scaleR f''.scaleR unfolding scaleR_right_distrib scaleR_minus_right by auto
-    also have "\<dots> = e" unfolding e_def using c[THEN conjunct1] using norm_minus_cancel[of "f' (basis i) - f'' (basis i)"] by (auto simp add: add.commute ab_diff_minus)
-    finally show False using c using d[THEN conjunct2,rule_format,of "x + c *\<^sub>R basis i"] 
-      unfolding dist_norm unfolding f'.scaleR f''.scaleR f'.add f''.add f'.diff f''.diff
-        scaleR_scaleR scaleR_right_diff_distrib scaleR_right_distrib using i by auto qed qed
+      unfolding f'.scaleR f''.scaleR
+      unfolding scaleR_right_distrib scaleR_minus_right by auto
+    also have "\<dots> = e" unfolding e_def using c[THEN conjunct1]
+      using norm_minus_cancel[of "f' (basis i) - f'' (basis i)"]
+      by (auto simp add: add.commute ab_diff_minus)
+    finally show False using c
+      using d[THEN conjunct2,rule_format,of "x + c *\<^sub>R basis i"]
+      unfolding dist_norm
+      unfolding f'.scaleR f''.scaleR f'.add f''.add f'.diff f''.diff
+        scaleR_scaleR scaleR_right_diff_distrib scaleR_right_distrib
+      using i by auto
+  qed
+qed
 
 lemma frechet_derivative_unique_at:
   shows "(f has_derivative f') (at x) \<Longrightarrow> (f has_derivative f'') (at x) \<Longrightarrow> f' = f''"
   unfolding FDERIV_conv_has_derivative [symmetric]
   by (rule FDERIV_unique)
 
-lemma continuous_isCont: "isCont f x = continuous (at x) f" unfolding isCont_def LIM_def
+lemma continuous_isCont: "isCont f x = continuous (at x) f"
+  unfolding isCont_def LIM_def
   unfolding continuous_at Lim_at unfolding dist_nz by auto
 
-lemma frechet_derivative_unique_within_closed_interval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "\<forall>i<DIM('a). a$$i < b$$i" "x \<in> {a..b}" (is "x\<in>?I") and
-  "(f has_derivative f' ) (at x within {a..b})" and
-  "(f has_derivative f'') (at x within {a..b})"
-  shows "f' = f''" apply(rule frechet_derivative_unique_within) apply(rule assms(3,4))+ proof(rule,rule,rule,rule)
+lemma frechet_derivative_unique_within_closed_interval:
+  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes "\<forall>i<DIM('a). a$$i < b$$i" "x \<in> {a..b}" (is "x\<in>?I")
+  assumes "(f has_derivative f' ) (at x within {a..b})"
+  assumes "(f has_derivative f'') (at x within {a..b})"
+  shows "f' = f''"
+  apply(rule frechet_derivative_unique_within)
+  apply(rule assms(3,4))+
+proof(rule,rule,rule,rule)
   fix e::real and i assume "e>0" and i:"i<DIM('a)"
-  thus "\<exists>d. 0 < \<bar>d\<bar> \<and> \<bar>d\<bar> < e \<and> x + d *\<^sub>R basis i \<in> {a..b}" proof(cases "x$$i=a$$i")
-    case True thus ?thesis apply(rule_tac x="(min (b$$i - a$$i)  e) / 2" in exI)
+  thus "\<exists>d. 0 < \<bar>d\<bar> \<and> \<bar>d\<bar> < e \<and> x + d *\<^sub>R basis i \<in> {a..b}"
+  proof(cases "x$$i=a$$i")
+    case True thus ?thesis
+      apply(rule_tac x="(min (b$$i - a$$i)  e) / 2" in exI)
       using assms(1)[THEN spec[where x=i]] and `e>0` and assms(2)
-      unfolding mem_interval euclidean_simps basis_component using i by(auto simp add:field_simps)
+      unfolding mem_interval euclidean_simps basis_component
+      using i by (auto simp add: field_simps)
   next note * = assms(2)[unfolded mem_interval,THEN spec[where x=i]]
     case False moreover have "a $$ i < x $$ i" using False * by auto
-    moreover { have "a $$ i * 2 + min (x $$ i - a $$ i) e \<le> a$$i *2 + x$$i - a$$i" by auto
-    also have "\<dots> = a$$i + x$$i" by auto also have "\<dots> \<le> 2 * x$$i" using * by auto 
-    finally have "a $$ i * 2 + min (x $$ i - a $$ i) e \<le> x $$ i * 2" by auto }
+    moreover {
+      have "a $$ i * 2 + min (x $$ i - a $$ i) e \<le> a$$i *2 + x$$i - a$$i"
+        by auto
+      also have "\<dots> = a$$i + x$$i" by auto
+      also have "\<dots> \<le> 2 * x$$i" using * by auto 
+      finally have "a $$ i * 2 + min (x $$ i - a $$ i) e \<le> x $$ i * 2" by auto
+    }
     moreover have "min (x $$ i - a $$ i) e \<ge> 0" using * and `e>0` by auto
     hence "x $$ i * 2 \<le> b $$ i * 2 + min (x $$ i - a $$ i) e" using * by auto
-    ultimately show ?thesis apply(rule_tac x="- (min (x$$i - a$$i) e) / 2" in exI)
+    ultimately show ?thesis
+      apply(rule_tac x="- (min (x$$i - a$$i) e) / 2" in exI)
       using assms(1)[THEN spec[where x=i]] and `e>0` and assms(2)
-      unfolding mem_interval euclidean_simps basis_component using i by(auto simp add:field_simps) qed qed
+      unfolding mem_interval euclidean_simps basis_component
+      using i by (auto simp add: field_simps)
+  qed
+qed
 
-lemma frechet_derivative_unique_within_open_interval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "x \<in> {a<..<b}" "(f has_derivative f' ) (at x within {a<..<b})"
-                         "(f has_derivative f'') (at x within {a<..<b})"
+lemma frechet_derivative_unique_within_open_interval:
+  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes "x \<in> {a<..<b}"
+  assumes "(f has_derivative f' ) (at x within {a<..<b})"
+  assumes "(f has_derivative f'') (at x within {a<..<b})"
   shows "f' = f''"
 proof -
   from assms(1) have *: "at x within {a<..<b} = at x"
@@ -587,8 +703,10 @@
   apply(rule frechet_derivative_unique_at[of f],assumption)
   unfolding frechet_derivative_works[THEN sym] using differentiable_def by auto
 
-lemma frechet_derivative_within_closed_interval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "\<forall>i<DIM('a). a$$i < b$$i" "x \<in> {a..b}" "(f has_derivative f') (at x within {a.. b})"
+lemma frechet_derivative_within_closed_interval:
+  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes "\<forall>i<DIM('a). a$$i < b$$i" and "x \<in> {a..b}"
+  assumes "(f has_derivative f') (at x within {a.. b})"
   shows "frechet_derivative f (at x within {a.. b}) = f'"
   apply(rule frechet_derivative_unique_within_closed_interval[where f=f]) 
   apply(rule assms(1,2))+ unfolding frechet_derivative_works[THEN sym]
@@ -660,11 +778,13 @@
   have ***: "\<And>y y1 y2 d dx::real.
     (y1\<le>y\<and>y2\<le>y) \<or> (y\<le>y1\<and>y\<le>y2) \<Longrightarrow> d < abs dx \<Longrightarrow> abs(y1 - y - - dx) \<le> d \<Longrightarrow> (abs (y2 - y - dx) \<le> d) \<Longrightarrow> False" by arith
   show False apply(rule ***[OF **, where dx="d * ?D k $$ j" and d="\<bar>?D k $$ j\<bar> / 2 * \<bar>d\<bar>"])
-    using *[of "-d"] and *[of d] and d[THEN conjunct1] and j unfolding mult_minus_left
-    unfolding abs_mult diff_minus_eq_add scaleR.minus_left unfolding algebra_simps by (auto intro: mult_pos_pos)
+    using *[of "-d"] and *[of d] and d[THEN conjunct1] and j
+    unfolding mult_minus_left
+    unfolding abs_mult diff_minus_eq_add scaleR.minus_left
+    unfolding algebra_simps by (auto intro: mult_pos_pos)
 qed
 
-subsection {* In particular if we have a mapping into @{typ "real"}. *}
+text {* In particular if we have a mapping into @{typ "real"}. *}
 
 lemma differential_zero_maxmin:
   fixes f::"'a\<Colon>euclidean_space \<Rightarrow> real"
@@ -673,7 +793,8 @@
   and mono: "(\<forall>y\<in>s. f y \<le> f x) \<or> (\<forall>y\<in>s. f x \<le> f y)"
   shows "f' = (\<lambda>v. 0)"
 proof -
-  obtain e where e:"e>0" "ball x e \<subseteq> s" using `open s`[unfolded open_contains_ball] and `x \<in> s` by auto
+  obtain e where e:"e>0" "ball x e \<subseteq> s"
+    using `open s`[unfolded open_contains_ball] and `x \<in> s` by auto
   with differential_zero_maxmin_component[where 'b=real, of 0 e x f, simplified]
   have "(\<chi>\<chi> j. frechet_derivative f (at x) (basis j)) = (0::'a)"
     unfolding differentiable_def using mono deriv by auto
@@ -685,273 +806,431 @@
 qed
 
 lemma rolle: fixes f::"real\<Rightarrow>real"
-  assumes "a < b" "f a = f b" "continuous_on {a..b} f"
-  "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
-  shows "\<exists>x\<in>{a<..<b}. f' x = (\<lambda>v. 0)" proof-
-  have "\<exists>x\<in>{a<..<b}. ((\<forall>y\<in>{a<..<b}. f x \<le> f y) \<or> (\<forall>y\<in>{a<..<b}. f y \<le> f x))" proof-
-    have "(a + b) / 2 \<in> {a .. b}" using assms(1) by auto hence *:"{a .. b}\<noteq>{}" by auto
+  assumes "a < b" and "f a = f b" and "continuous_on {a..b} f"
+  assumes "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
+  shows "\<exists>x\<in>{a<..<b}. f' x = (\<lambda>v. 0)"
+proof-
+  have "\<exists>x\<in>{a<..<b}. ((\<forall>y\<in>{a<..<b}. f x \<le> f y) \<or> (\<forall>y\<in>{a<..<b}. f y \<le> f x))"
+  proof-
+    have "(a + b) / 2 \<in> {a .. b}" using assms(1) by auto
+    hence *:"{a .. b}\<noteq>{}" by auto
     guess d using continuous_attains_sup[OF compact_interval * assms(3)] .. note d=this
     guess c using continuous_attains_inf[OF compact_interval * assms(3)] .. note c=this
-    show ?thesis proof(cases "d\<in>{a<..<b} \<or> c\<in>{a<..<b}")
-      case True thus ?thesis apply(erule_tac disjE) apply(rule_tac x=d in bexI)
-        apply(rule_tac[3] x=c in bexI) using d c by auto next def e \<equiv> "(a + b) /2"
+    show ?thesis
+    proof(cases "d\<in>{a<..<b} \<or> c\<in>{a<..<b}")
+      case True thus ?thesis
+        apply(erule_tac disjE) apply(rule_tac x=d in bexI)
+        apply(rule_tac[3] x=c in bexI)
+        using d c by auto
+    next
+      def e \<equiv> "(a + b) /2"
       case False hence "f d = f c" using d c assms(2) by auto
-      hence "\<And>x. x\<in>{a..b} \<Longrightarrow> f x = f d" using c d apply- apply(erule_tac x=x in ballE)+ by auto
-      thus ?thesis apply(rule_tac x=e in bexI) unfolding e_def using assms(1) by auto qed qed
+      hence "\<And>x. x\<in>{a..b} \<Longrightarrow> f x = f d"
+        using c d apply- apply(erule_tac x=x in ballE)+ by auto
+      thus ?thesis
+        apply(rule_tac x=e in bexI) unfolding e_def using assms(1) by auto
+    qed
+  qed
   then guess x .. note x=this
-  hence "f' x = (\<lambda>v. 0)" apply(rule_tac differential_zero_maxmin[of x "{a<..<b}" f "f' x"])
+  hence "f' x = (\<lambda>v. 0)"
+    apply(rule_tac differential_zero_maxmin[of x "{a<..<b}" f "f' x"])
     defer apply(rule open_interval)
     apply(rule assms(4)[unfolded has_derivative_at[THEN sym],THEN bspec[where x=x]],assumption)
     unfolding o_def apply(erule disjE,rule disjI2) by auto
   thus ?thesis apply(rule_tac x=x in bexI) unfolding o_def apply rule
-    apply(drule_tac x=v in fun_cong) using x(1) by auto qed
+    apply(drule_tac x=v in fun_cong) using x(1) by auto
+qed
 
 subsection {* One-dimensional mean value theorem. *}
 
 lemma mvt: fixes f::"real \<Rightarrow> real"
-  assumes "a < b" "continuous_on {a .. b} f" "\<forall>x\<in>{a<..<b}. (f has_derivative (f' x)) (at x)"
-  shows "\<exists>x\<in>{a<..<b}. (f b - f a = (f' x) (b - a))" proof-
+  assumes "a < b" and "continuous_on {a .. b} f"
+  assumes "\<forall>x\<in>{a<..<b}. (f has_derivative (f' x)) (at x)"
+  shows "\<exists>x\<in>{a<..<b}. (f b - f a = (f' x) (b - a))"
+proof-
   have "\<exists>x\<in>{a<..<b}. (\<lambda>xa. f' x xa - (f b - f a) / (b - a) * xa) = (\<lambda>v. 0)"
-    apply(rule rolle[OF assms(1), of "\<lambda>x. f x - (f b - f a) / (b - a) * x"]) defer
-    apply(rule continuous_on_intros assms(2) continuous_on_cmul[where 'b=real, unfolded real_scaleR_def])+ proof
+    apply(rule rolle[OF assms(1), of "\<lambda>x. f x - (f b - f a) / (b - a) * x"])
+    defer
+    apply(rule continuous_on_intros assms(2) continuous_on_cmul[where 'b=real, unfolded real_scaleR_def])+
+  proof
     fix x assume x:"x \<in> {a<..<b}"
     show "((\<lambda>x. f x - (f b - f a) / (b - a) * x) has_derivative (\<lambda>xa. f' x xa - (f b - f a) / (b - a) * xa)) (at x)"
       by(rule has_derivative_intros assms(3)[rule_format,OF x]
-        has_derivative_cmul[where 'b=real, unfolded real_scaleR_def])+ 
+        has_derivative_cmul[where 'b=real, unfolded real_scaleR_def])+
   qed(insert assms(1), auto simp add:field_simps)
-  then guess x .. thus ?thesis apply(rule_tac x=x in bexI) apply(drule fun_cong[of _ _ "b - a"]) by auto qed
+  then guess x ..
+  thus ?thesis apply(rule_tac x=x in bexI)
+    apply(drule fun_cong[of _ _ "b - a"]) by auto
+qed
 
-lemma mvt_simple: fixes f::"real \<Rightarrow> real"
-  assumes "a<b"  "\<forall>x\<in>{a..b}. (f has_derivative f' x) (at x within {a..b})"
+lemma mvt_simple:
+  fixes f::"real \<Rightarrow> real"
+  assumes "a<b" and "\<forall>x\<in>{a..b}. (f has_derivative f' x) (at x within {a..b})"
   shows "\<exists>x\<in>{a<..<b}. f b - f a = f' x (b - a)"
-  apply(rule mvt) apply(rule assms(1), rule differentiable_imp_continuous_on)
-  unfolding differentiable_on_def differentiable_def defer proof 
+  apply(rule mvt)
+  apply(rule assms(1), rule differentiable_imp_continuous_on)
+  unfolding differentiable_on_def differentiable_def defer
+proof
   fix x assume x:"x \<in> {a<..<b}" show "(f has_derivative f' x) (at x)"
     unfolding has_derivative_within_open[OF x open_interval,THEN sym] 
-    apply(rule has_derivative_within_subset) apply(rule assms(2)[rule_format]) using x by auto qed(insert assms(2), auto)
+    apply(rule has_derivative_within_subset)
+    apply(rule assms(2)[rule_format])
+    using x by auto
+qed(insert assms(2), auto)
 
-lemma mvt_very_simple: fixes f::"real \<Rightarrow> real"
-  assumes "a \<le> b" "\<forall>x\<in>{a..b}. (f has_derivative f'(x)) (at x within {a..b})"
-  shows "\<exists>x\<in>{a..b}. f b - f a = f' x (b - a)" proof(cases "a = b")
+lemma mvt_very_simple:
+  fixes f::"real \<Rightarrow> real"
+  assumes "a \<le> b" and "\<forall>x\<in>{a..b}. (f has_derivative f'(x)) (at x within {a..b})"
+  shows "\<exists>x\<in>{a..b}. f b - f a = f' x (b - a)"
+proof (cases "a = b")
   interpret bounded_linear "f' b" using assms(2) assms(1) by auto
   case True thus ?thesis apply(rule_tac x=a in bexI)
     using assms(2)[THEN bspec[where x=a]] unfolding has_derivative_def
     unfolding True using zero by auto next
-  case False thus ?thesis using mvt_simple[OF _ assms(2)] using assms(1) by auto qed
+  case False thus ?thesis using mvt_simple[OF _ assms(2)] using assms(1) by auto
+qed
 
-subsection {* A nice generalization (see Havin's proof of 5.19 from Rudin's book). *}
+text {* A nice generalization (see Havin's proof of 5.19 from Rudin's book). *}
 
-lemma mvt_general: fixes f::"real\<Rightarrow>'a::euclidean_space"
-  assumes "a<b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
-  shows "\<exists>x\<in>{a<..<b}. norm(f b - f a) \<le> norm(f'(x) (b - a))" proof-
+lemma mvt_general:
+  fixes f::"real\<Rightarrow>'a::euclidean_space"
+  assumes "a<b" and "continuous_on {a..b} f"
+  assumes "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
+  shows "\<exists>x\<in>{a<..<b}. norm(f b - f a) \<le> norm(f'(x) (b - a))"
+proof-
   have "\<exists>x\<in>{a<..<b}. (op \<bullet> (f b - f a) \<circ> f) b - (op \<bullet> (f b - f a) \<circ> f) a = (f b - f a) \<bullet> f' x (b - a)"
-    apply(rule mvt) apply(rule assms(1)) apply(rule continuous_on_inner continuous_on_intros assms(2))+ 
-    unfolding o_def apply(rule,rule has_derivative_lift_dot) using assms(3) by auto
+    apply(rule mvt) apply(rule assms(1))
+    apply(rule continuous_on_inner continuous_on_intros assms(2))+
+    unfolding o_def apply(rule,rule has_derivative_lift_dot)
+    using assms(3) by auto
   then guess x .. note x=this
   show ?thesis proof(cases "f a = f b")
     case False
-    have "norm (f b - f a) * norm (f b - f a) = norm (f b - f a)^2" by(simp add: power2_eq_square)
+    have "norm (f b - f a) * norm (f b - f a) = norm (f b - f a)^2"
+      by (simp add: power2_eq_square)
     also have "\<dots> = (f b - f a) \<bullet> (f b - f a)" unfolding power2_norm_eq_inner ..
-    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)" using x unfolding inner_simps by (auto simp add: inner_diff_left)
-    also have "\<dots> \<le> norm (f b - f a) * norm (f' x (b - a))" by(rule norm_cauchy_schwarz)
-    finally show ?thesis using False x(1) by(auto simp add: real_mult_left_cancel) next
-    case True thus ?thesis using assms(1) apply(rule_tac x="(a + b) /2" in bexI) by auto qed qed
+    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)"
+      using x unfolding inner_simps by (auto simp add: inner_diff_left)
+    also have "\<dots> \<le> norm (f b - f a) * norm (f' x (b - a))"
+      by (rule norm_cauchy_schwarz)
+    finally show ?thesis using False x(1)
+      by (auto simp add: real_mult_left_cancel)
+  next
+    case True thus ?thesis using assms(1)
+      apply (rule_tac x="(a + b) /2" in bexI) by auto
+  qed
+qed
 
-subsection {* Still more general bound theorem. *}
+text {* Still more general bound theorem. *}
 
-lemma differentiable_bound: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "convex s" "\<forall>x\<in>s. (f has_derivative f'(x)) (at x within s)" "\<forall>x\<in>s. onorm(f' x) \<le> B" and x:"x\<in>s" and y:"y\<in>s"
-  shows "norm(f x - f y) \<le> B * norm(x - y)" proof-
+lemma differentiable_bound:
+  fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "convex s" and "\<forall>x\<in>s. (f has_derivative f'(x)) (at x within s)"
+  assumes "\<forall>x\<in>s. onorm(f' x) \<le> B" and x:"x\<in>s" and y:"y\<in>s"
+  shows "norm(f x - f y) \<le> B * norm(x - y)"
+proof-
   let ?p = "\<lambda>u. x + u *\<^sub>R (y - x)"
   have *:"\<And>u. u\<in>{0..1} \<Longrightarrow> x + u *\<^sub>R (y - x) \<in> s"
-    using assms(1)[unfolded convex_alt,rule_format,OF x y] unfolding scaleR_left_diff_distrib scaleR_right_diff_distrib by(auto simp add:algebra_simps)
-  hence 1:"continuous_on {0..1} (f \<circ> ?p)" apply- apply(rule continuous_on_intros continuous_on_vmul)+
-    unfolding continuous_on_eq_continuous_within apply(rule,rule differentiable_imp_continuous_within)
+    using assms(1)[unfolded convex_alt,rule_format,OF x y]
+    unfolding scaleR_left_diff_distrib scaleR_right_diff_distrib
+    by (auto simp add: algebra_simps)
+  hence 1:"continuous_on {0..1} (f \<circ> ?p)" apply-
+    apply(rule continuous_on_intros continuous_on_vmul)+
+    unfolding continuous_on_eq_continuous_within
+    apply(rule,rule differentiable_imp_continuous_within)
     unfolding differentiable_def apply(rule_tac x="f' xa" in exI)
-    apply(rule has_derivative_within_subset) apply(rule assms(2)[rule_format]) by auto
-  have 2:"\<forall>u\<in>{0<..<1}. ((f \<circ> ?p) has_derivative f' (x + u *\<^sub>R (y - x)) \<circ> (\<lambda>u. 0 + u *\<^sub>R (y - x))) (at u)" proof rule case goal1
+    apply(rule has_derivative_within_subset)
+    apply(rule assms(2)[rule_format]) by auto
+  have 2:"\<forall>u\<in>{0<..<1}. ((f \<circ> ?p) has_derivative f' (x + u *\<^sub>R (y - x)) \<circ> (\<lambda>u. 0 + u *\<^sub>R (y - x))) (at u)"
+  proof rule
+    case goal1
     let ?u = "x + u *\<^sub>R (y - x)"
     have "(f \<circ> ?p has_derivative (f' ?u) \<circ> (\<lambda>u. 0 + u *\<^sub>R (y - x))) (at u within {0<..<1})" 
       apply(rule diff_chain_within) apply(rule has_derivative_intros)+ 
-      apply(rule has_derivative_within_subset) apply(rule assms(2)[rule_format]) using goal1 * by auto
-    thus ?case unfolding has_derivative_within_open[OF goal1 open_interval] by auto qed
+      apply(rule has_derivative_within_subset)
+      apply(rule assms(2)[rule_format]) using goal1 * by auto
+    thus ?case
+      unfolding has_derivative_within_open[OF goal1 open_interval] by auto
+  qed
   guess u using mvt_general[OF zero_less_one 1 2] .. note u = this
-  have **:"\<And>x y. x\<in>s \<Longrightarrow> norm (f' x y) \<le> B * norm y" proof- case goal1
+  have **:"\<And>x y. x\<in>s \<Longrightarrow> norm (f' x y) \<le> B * norm y"
+  proof-
+    case goal1
     have "norm (f' x y) \<le> onorm (f' x) * norm y"
       using onorm(1)[OF derivative_is_linear[OF assms(2)[rule_format,OF goal1]]] by assumption
-    also have "\<dots> \<le> B * norm y" apply(rule mult_right_mono)
-      using assms(3)[rule_format,OF goal1] by(auto simp add:field_simps)
-    finally show ?case by simp qed
+    also have "\<dots> \<le> B * norm y"
+      apply(rule mult_right_mono)
+      using assms(3)[rule_format,OF goal1]
+      by(auto simp add:field_simps)
+    finally show ?case by simp
+  qed
   have "norm (f x - f y) = norm ((f \<circ> (\<lambda>u. x + u *\<^sub>R (y - x))) 1 - (f \<circ> (\<lambda>u. x + u *\<^sub>R (y - x))) 0)"
     by(auto simp add:norm_minus_commute) 
   also have "\<dots> \<le> norm (f' (x + u *\<^sub>R (y - x)) (y - x))" using u by auto
   also have "\<dots> \<le> B * norm(y - x)" apply(rule **) using * and u by auto
-  finally show ?thesis by(auto simp add:norm_minus_commute) qed 
+  finally show ?thesis by(auto simp add:norm_minus_commute)
+qed
 
-lemma differentiable_bound_real: fixes f::"real \<Rightarrow> real"
-  assumes "convex s" "\<forall>x\<in>s. (f has_derivative f' x) (at x within s)" "\<forall>x\<in>s. onorm(f' x) \<le> B" and x:"x\<in>s" and y:"y\<in>s"
+lemma differentiable_bound_real:
+  fixes f::"real \<Rightarrow> real"
+  assumes "convex s" and "\<forall>x\<in>s. (f has_derivative f' x) (at x within s)"
+  assumes "\<forall>x\<in>s. onorm(f' x) \<le> B" and x:"x\<in>s" and y:"y\<in>s"
   shows "norm(f x - f y) \<le> B * norm(x - y)"
   using differentiable_bound[of s f f' B x y]
   unfolding Ball_def image_iff o_def using assms by auto
 
-subsection {* In particular. *}
+text {* In particular. *}
 
-lemma has_derivative_zero_constant: fixes f::"real\<Rightarrow>real"
+lemma has_derivative_zero_constant:
+  fixes f::"real\<Rightarrow>real"
   assumes "convex s" "\<forall>x\<in>s. (f has_derivative (\<lambda>h. 0)) (at x within s)"
-  shows "\<exists>c. \<forall>x\<in>s. f x = c" proof(cases "s={}")
+  shows "\<exists>c. \<forall>x\<in>s. f x = c"
+proof(cases "s={}")
   case False then obtain x where "x\<in>s" by auto
   have "\<And>y. y\<in>s \<Longrightarrow> f x = f y" proof- case goal1
-    thus ?case using differentiable_bound_real[OF assms(1-2), of 0 x y] and `x\<in>s`
-    unfolding onorm_const by auto qed
-  thus ?thesis apply(rule_tac x="f x" in exI) by auto qed auto
+    thus ?case
+      using differentiable_bound_real[OF assms(1-2), of 0 x y] and `x\<in>s`
+      unfolding onorm_const by auto qed
+  thus ?thesis apply(rule_tac x="f x" in exI) by auto
+qed auto
 
 lemma has_derivative_zero_unique: fixes f::"real\<Rightarrow>real"
-  assumes "convex s" "a \<in> s" "f a = c" "\<forall>x\<in>s. (f has_derivative (\<lambda>h. 0)) (at x within s)" "x\<in>s"
-  shows "f x = c" using has_derivative_zero_constant[OF assms(1,4)] using assms(2-3,5) by auto
+  assumes "convex s" and "a \<in> s" and "f a = c"
+  assumes "\<forall>x\<in>s. (f has_derivative (\<lambda>h. 0)) (at x within s)" and "x\<in>s"
+  shows "f x = c"
+  using has_derivative_zero_constant[OF assms(1,4)] using assms(2-3,5) by auto
 
 subsection {* Differentiability of inverse function (most basic form). *}
 
-lemma has_derivative_inverse_basic: fixes f::"'b::euclidean_space \<Rightarrow> 'c::euclidean_space"
-  assumes "(f has_derivative f') (at (g y))" "bounded_linear g'" "g' \<circ> f' = id" "continuous (at y) g"
-  "open t" "y \<in> t" "\<forall>z\<in>t. f(g z) = z"
-  shows "(g has_derivative g') (at y)" proof-
-  interpret f': bounded_linear f' using assms unfolding has_derivative_def by auto
+lemma has_derivative_inverse_basic:
+  fixes f::"'b::euclidean_space \<Rightarrow> 'c::euclidean_space"
+  assumes "(f has_derivative f') (at (g y))"
+  assumes "bounded_linear g'" and "g' \<circ> f' = id" and "continuous (at y) g"
+  assumes "open t" and "y \<in> t" and "\<forall>z\<in>t. f(g z) = z"
+  shows "(g has_derivative g') (at y)"
+proof-
+  interpret f': bounded_linear f'
+    using assms unfolding has_derivative_def by auto
   interpret g': bounded_linear g' using assms by auto
   guess C using bounded_linear.pos_bounded[OF assms(2)] .. note C = this
 (*  have fgid:"\<And>x. g' (f' x) = x" using assms(3) unfolding o_def id_def apply()*)
-  have lem1:"\<forall>e>0. \<exists>d>0. \<forall>z. norm(z - y) < d \<longrightarrow> norm(g z - g y - g'(z - y)) \<le> e * norm(g z - g y)" proof(rule,rule) case goal1
+  have lem1:"\<forall>e>0. \<exists>d>0. \<forall>z. norm(z - y) < d \<longrightarrow> norm(g z - g y - g'(z - y)) \<le> e * norm(g z - g y)"
+  proof(rule,rule)
+    case goal1
     have *:"e / C > 0" apply(rule divide_pos_pos) using `e>0` C by auto
     guess d0 using assms(1)[unfolded has_derivative_at_alt,THEN conjunct2,rule_format,OF *] .. note d0=this
     guess d1 using assms(4)[unfolded continuous_at Lim_at,rule_format,OF d0[THEN conjunct1]] .. note d1=this
     guess d2 using assms(5)[unfolded open_dist,rule_format,OF assms(6)] .. note d2=this
     guess d using real_lbound_gt_zero[OF d1[THEN conjunct1] d2[THEN conjunct1]] .. note d=this
-    thus ?case apply(rule_tac x=d in exI) apply rule defer proof(rule,rule)
-      fix z assume as:"norm (z - y) < d" hence "z\<in>t" using d2 d unfolding dist_norm by auto
+    thus ?case apply(rule_tac x=d in exI) apply rule defer
+    proof(rule,rule)
+      fix z assume as:"norm (z - y) < d" hence "z\<in>t"
+        using d2 d unfolding dist_norm by auto
       have "norm (g z - g y - g' (z - y)) \<le> norm (g' (f (g z) - y - f' (g z - g y)))"
-        unfolding g'.diff f'.diff unfolding assms(3)[unfolded o_def id_def, THEN fun_cong] 
-        unfolding assms(7)[rule_format,OF `z\<in>t`] apply(subst norm_minus_cancel[THEN sym]) by auto
-      also have "\<dots> \<le> norm(f (g z) - y - f' (g z - g y)) * C" by(rule C[THEN conjunct2,rule_format]) 
-      also have "\<dots> \<le> (e / C) * norm (g z - g y) * C" apply(rule mult_right_mono)
-        apply(rule d0[THEN conjunct2,rule_format,unfolded assms(7)[rule_format,OF `y\<in>t`]]) apply(cases "z=y") defer
-        apply(rule d1[THEN conjunct2, unfolded dist_norm,rule_format]) using as d C d0 by auto
-      also have "\<dots> \<le> e * norm (g z - g y)" using C by(auto simp add:field_simps)
-      finally show "norm (g z - g y - g' (z - y)) \<le> e * norm (g z - g y)" by simp qed auto qed
-  have *:"(0::real) < 1 / 2" by auto guess d using lem1[rule_format,OF *] .. note d=this def B\<equiv>"C*2"
+        unfolding g'.diff f'.diff
+        unfolding assms(3)[unfolded o_def id_def, THEN fun_cong] 
+        unfolding assms(7)[rule_format,OF `z\<in>t`]
+        apply(subst norm_minus_cancel[THEN sym]) by auto
+      also have "\<dots> \<le> norm(f (g z) - y - f' (g z - g y)) * C"
+        by (rule C [THEN conjunct2, rule_format])
+      also have "\<dots> \<le> (e / C) * norm (g z - g y) * C"
+        apply(rule mult_right_mono)
+        apply(rule d0[THEN conjunct2,rule_format,unfolded assms(7)[rule_format,OF `y\<in>t`]])
+        apply(cases "z=y") defer
+        apply(rule d1[THEN conjunct2, unfolded dist_norm,rule_format])
+        using as d C d0 by auto
+      also have "\<dots> \<le> e * norm (g z - g y)"
+        using C by (auto simp add: field_simps)
+      finally show "norm (g z - g y - g' (z - y)) \<le> e * norm (g z - g y)"
+        by simp
+    qed auto
+  qed
+  have *:"(0::real) < 1 / 2" by auto
+  guess d using lem1[rule_format,OF *] .. note d=this
+  def B\<equiv>"C*2"
   have "B>0" unfolding B_def using C by auto
-  have lem2:"\<forall>z. norm(z - y) < d \<longrightarrow> norm(g z - g y) \<le> B * norm(z - y)" proof(rule,rule) case goal1
-    have "norm (g z - g y) \<le> norm(g' (z - y)) + norm ((g z - g y) - g'(z - y))" by(rule norm_triangle_sub)
-    also have "\<dots> \<le> norm(g' (z - y)) + 1 / 2 * norm (g z - g y)" apply(rule add_left_mono) using d and goal1 by auto
-    also have "\<dots> \<le> norm (z - y) * C + 1 / 2 * norm (g z - g y)" apply(rule add_right_mono) using C by auto
-    finally show ?case unfolding B_def by(auto simp add:field_simps) qed
-  show ?thesis unfolding has_derivative_at_alt proof(rule,rule assms,rule,rule) case goal1
+  have lem2:"\<forall>z. norm(z - y) < d \<longrightarrow> norm(g z - g y) \<le> B * norm(z - y)"
+  proof(rule,rule) case goal1
+    have "norm (g z - g y) \<le> norm(g' (z - y)) + norm ((g z - g y) - g'(z - y))"
+      by(rule norm_triangle_sub)
+    also have "\<dots> \<le> norm(g' (z - y)) + 1 / 2 * norm (g z - g y)"
+      apply(rule add_left_mono) using d and goal1 by auto
+    also have "\<dots> \<le> norm (z - y) * C + 1 / 2 * norm (g z - g y)"
+      apply(rule add_right_mono) using C by auto
+    finally show ?case unfolding B_def by(auto simp add:field_simps)
+  qed
+  show ?thesis unfolding has_derivative_at_alt
+  proof(rule,rule assms,rule,rule) case goal1
     hence *:"e/B >0" apply-apply(rule divide_pos_pos) using `B>0` by auto
     guess d' using lem1[rule_format,OF *] .. note d'=this
     guess k using real_lbound_gt_zero[OF d[THEN conjunct1] d'[THEN conjunct1]] .. note k=this
-    show ?case apply(rule_tac x=k in exI,rule) defer proof(rule,rule) fix z assume as:"norm(z - y) < k"
-      hence "norm (g z - g y - g' (z - y)) \<le> e / B * norm(g z - g y)" using d' k by auto
-      also have "\<dots> \<le> e * norm(z - y)" unfolding times_divide_eq_left pos_divide_le_eq[OF `B>0`]
-        using lem2[THEN spec[where x=z]] using k as using `e>0` by(auto simp add:field_simps)
-      finally show "norm (g z - g y - g' (z - y)) \<le> e * norm (z - y)" by simp qed(insert k, auto) qed qed
+    show ?case
+      apply(rule_tac x=k in exI,rule) defer
+    proof(rule,rule)
+      fix z assume as:"norm(z - y) < k"
+      hence "norm (g z - g y - g' (z - y)) \<le> e / B * norm(g z - g y)"
+        using d' k by auto
+      also have "\<dots> \<le> e * norm(z - y)"
+        unfolding times_divide_eq_left pos_divide_le_eq[OF `B>0`]
+        using lem2[THEN spec[where x=z]] using k as using `e>0`
+        by (auto simp add: field_simps)
+      finally show "norm (g z - g y - g' (z - y)) \<le> e * norm (z - y)"
+        by simp qed(insert k, auto)
+  qed
+qed
 
-subsection {* Simply rewrite that based on the domain point x. *}
+text {* Simply rewrite that based on the domain point x. *}
 
-lemma has_derivative_inverse_basic_x: fixes f::"'b::euclidean_space \<Rightarrow> 'c::euclidean_space"
+lemma has_derivative_inverse_basic_x:
+  fixes f::"'b::euclidean_space \<Rightarrow> 'c::euclidean_space"
   assumes "(f has_derivative f') (at x)" "bounded_linear g'" "g' o f' = id"
   "continuous (at (f x)) g" "g(f x) = x" "open t" "f x \<in> t" "\<forall>y\<in>t. f(g y) = y"
   shows "(g has_derivative g') (at (f(x)))"
   apply(rule has_derivative_inverse_basic) using assms by auto
 
-subsection {* This is the version in Dieudonne', assuming continuity of f and g. *}
+text {* This is the version in Dieudonne', assuming continuity of f and g. *}
 
-lemma has_derivative_inverse_dieudonne: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+lemma has_derivative_inverse_dieudonne:
+  fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
   assumes "open s" "open (f ` s)" "continuous_on s f" "continuous_on (f ` s) g" "\<forall>x\<in>s. g(f x) = x"
   (**) "x\<in>s" "(f has_derivative f') (at x)"  "bounded_linear g'" "g' o f' = id"
   shows "(g has_derivative g') (at (f x))"
   apply(rule has_derivative_inverse_basic_x[OF assms(7-9) _ _ assms(2)])
-  using assms(3-6) unfolding continuous_on_eq_continuous_at[OF assms(1)]  continuous_on_eq_continuous_at[OF assms(2)] by auto
+  using assms(3-6) unfolding continuous_on_eq_continuous_at[OF assms(1)]
+    continuous_on_eq_continuous_at[OF assms(2)] by auto
 
-subsection {* Here's the simplest way of not assuming much about g. *}
+text {* Here's the simplest way of not assuming much about g. *}
 
-lemma has_derivative_inverse: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+lemma has_derivative_inverse:
+  fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
   assumes "compact s" "x \<in> s" "f x \<in> interior(f ` s)" "continuous_on s f"
   "\<forall>y\<in>s. g(f y) = y" "(f has_derivative f') (at x)" "bounded_linear g'" "g' \<circ> f' = id"
-  shows "(g has_derivative g') (at (f x))" proof-
+  shows "(g has_derivative g') (at (f x))"
+proof-
   { fix y assume "y\<in>interior (f ` s)" 
-    then obtain x where "x\<in>s" and *:"y = f x" unfolding image_iff using interior_subset by auto
-    have "f (g y) = y" unfolding * and assms(5)[rule_format,OF `x\<in>s`] .. } note * = this
-  show ?thesis apply(rule has_derivative_inverse_basic_x[OF assms(6-8)])
-    apply(rule continuous_on_interior[OF _ assms(3)]) apply(rule continuous_on_inverse[OF assms(4,1)])
-    apply(rule assms(2,5) assms(5)[rule_format] open_interior assms(3))+ by(rule, rule *, assumption)  qed
+    then obtain x where "x\<in>s" and *:"y = f x"
+      unfolding image_iff using interior_subset by auto
+    have "f (g y) = y" unfolding * and assms(5)[rule_format,OF `x\<in>s`] ..
+  } note * = this
+  show ?thesis
+    apply(rule has_derivative_inverse_basic_x[OF assms(6-8)])
+    apply(rule continuous_on_interior[OF _ assms(3)])
+    apply(rule continuous_on_inverse[OF assms(4,1)])
+    apply(rule assms(2,5) assms(5)[rule_format] open_interior assms(3))+
+    by(rule, rule *, assumption)
+qed
 
 subsection {* Proving surjectivity via Brouwer fixpoint theorem. *}
 
-lemma brouwer_surjective: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
+lemma brouwer_surjective:
+  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
   assumes "compact t" "convex t"  "t \<noteq> {}" "continuous_on t f"
   "\<forall>x\<in>s. \<forall>y\<in>t. x + (y - f y) \<in> t" "x\<in>s"
-  shows "\<exists>y\<in>t. f y = x" proof-
-  have *:"\<And>x y. f y = x \<longleftrightarrow> x + (y - f y) = y" by(auto simp add:algebra_simps)
-  show ?thesis  unfolding * apply(rule brouwer[OF assms(1-3), of "\<lambda>y. x + (y - f y)"])
-    apply(rule continuous_on_intros assms)+ using assms(4-6) by auto qed
+  shows "\<exists>y\<in>t. f y = x"
+proof-
+  have *:"\<And>x y. f y = x \<longleftrightarrow> x + (y - f y) = y"
+    by(auto simp add:algebra_simps)
+  show ?thesis
+    unfolding *
+    apply(rule brouwer[OF assms(1-3), of "\<lambda>y. x + (y - f y)"])
+    apply(rule continuous_on_intros assms)+ using assms(4-6) by auto
+qed
 
-lemma brouwer_surjective_cball: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
+lemma brouwer_surjective_cball:
+  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
   assumes "0 < e" "continuous_on (cball a e) f"
   "\<forall>x\<in>s. \<forall>y\<in>cball a e. x + (y - f y) \<in> cball a e" "x\<in>s"
-  shows "\<exists>y\<in>cball a e. f y = x" apply(rule brouwer_surjective) apply(rule compact_cball convex_cball)+
-  unfolding cball_eq_empty using assms by auto 
+  shows "\<exists>y\<in>cball a e. f y = x"
+  apply(rule brouwer_surjective)
+  apply(rule compact_cball convex_cball)+
+  unfolding cball_eq_empty using assms by auto
 
 text {* See Sussmann: "Multidifferential calculus", Theorem 2.1.1 *}
 
-lemma sussmann_open_mapping: fixes f::"'a::euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"
+lemma sussmann_open_mapping:
+  fixes f::"'a::euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"
   assumes "open s" "continuous_on s f" "x \<in> s" 
   "(f has_derivative f') (at x)" "bounded_linear g'" "f' \<circ> g' = id"
   "t \<subseteq> s" "x \<in> interior t"
-  shows "f x \<in> interior (f ` t)" proof- 
-  interpret f':bounded_linear f' using assms unfolding has_derivative_def by auto
+  shows "f x \<in> interior (f ` t)"
+proof- 
+  interpret f':bounded_linear f'
+    using assms unfolding has_derivative_def by auto
   interpret g':bounded_linear g' using assms by auto
-  guess B using bounded_linear.pos_bounded[OF assms(5)] .. note B=this hence *:"1/(2*B)>0" by(auto intro!: divide_pos_pos)
+  guess B using bounded_linear.pos_bounded[OF assms(5)] .. note B=this
+  hence *:"1/(2*B)>0" by (auto intro!: divide_pos_pos)
   guess e0 using assms(4)[unfolded has_derivative_at_alt,THEN conjunct2,rule_format,OF *] .. note e0=this
   guess e1 using assms(8)[unfolded mem_interior_cball] .. note e1=this
-  have *:"0<e0/B" "0<e1/B" apply(rule_tac[!] divide_pos_pos) using e0 e1 B by auto
+  have *:"0<e0/B" "0<e1/B"
+    apply(rule_tac[!] divide_pos_pos) using e0 e1 B by auto
   guess e using real_lbound_gt_zero[OF *] .. note e=this
   have "\<forall>z\<in>cball (f x) (e/2). \<exists>y\<in>cball (f x) e. f (x + g' (y - f x)) = z"
     apply(rule,rule brouwer_surjective_cball[where s="cball (f x) (e/2)"])
-    prefer 3 apply(rule,rule) proof- 
-    show "continuous_on (cball (f x) e) (\<lambda>y. f (x + g' (y - f x)))" unfolding g'.diff
+    prefer 3 apply(rule,rule)
+  proof-
+    show "continuous_on (cball (f x) e) (\<lambda>y. f (x + g' (y - f x)))"
+      unfolding g'.diff
       apply(rule continuous_on_compose[of _ _ f, unfolded o_def])
       apply(rule continuous_on_intros linear_continuous_on[OF assms(5)])+
-      apply(rule continuous_on_subset[OF assms(2)]) apply(rule,unfold image_iff,erule bexE) proof-
+      apply(rule continuous_on_subset[OF assms(2)])
+      apply(rule,unfold image_iff,erule bexE)
+    proof-
       fix y z assume as:"y \<in>cball (f x) e"  "z = x + (g' y - g' (f x))"
-      have "dist x z = norm (g' (f x) - g' y)" unfolding as(2) and dist_norm by auto
-      also have "\<dots> \<le> norm (f x - y) * B" unfolding g'.diff[THEN sym] using B by auto
-      also have "\<dots> \<le> e * B" using as(1)[unfolded mem_cball dist_norm] using B by auto
+      have "dist x z = norm (g' (f x) - g' y)"
+        unfolding as(2) and dist_norm by auto
+      also have "\<dots> \<le> norm (f x - y) * B"
+        unfolding g'.diff[THEN sym] using B by auto
+      also have "\<dots> \<le> e * B"
+        using as(1)[unfolded mem_cball dist_norm] using B by auto
       also have "\<dots> \<le> e1" using e unfolding less_divide_eq using B by auto
       finally have "z\<in>cball x e1" unfolding mem_cball by force
-      thus "z \<in> s" using e1 assms(7) by auto qed next
+      thus "z \<in> s" using e1 assms(7) by auto
+    qed
+  next
     fix y z assume as:"y \<in> cball (f x) (e / 2)" "z \<in> cball (f x) e"
     have "norm (g' (z - f x)) \<le> norm (z - f x) * B" using B by auto
-    also have "\<dots> \<le> e * B" apply(rule mult_right_mono) using as(2)[unfolded mem_cball dist_norm] and B unfolding norm_minus_commute by auto
+    also have "\<dots> \<le> e * B" apply(rule mult_right_mono)
+      using as(2)[unfolded mem_cball dist_norm] and B
+      unfolding norm_minus_commute by auto
     also have "\<dots> < e0" using e and B unfolding less_divide_eq by auto
     finally have *:"norm (x + g' (z - f x) - x) < e0" by auto
-    have **:"f x + f' (x + g' (z - f x) - x) = z" using assms(6)[unfolded o_def id_def,THEN cong] by auto
+    have **:"f x + f' (x + g' (z - f x) - x) = z"
+      using assms(6)[unfolded o_def id_def,THEN cong] by auto
     have "norm (f x - (y + (z - f (x + g' (z - f x))))) \<le> norm (f (x + g' (z - f x)) - z) + norm (f x - y)"
-      using norm_triangle_ineq[of "f (x + g'(z - f x)) - z" "f x - y"] by(auto simp add:algebra_simps)
-    also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + norm (f x - y)" using e0[THEN conjunct2,rule_format,OF *] unfolding algebra_simps ** by auto 
-    also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + e/2" using as(1)[unfolded mem_cball dist_norm] by auto
-    also have "\<dots> \<le> 1 / (B * 2) * B * norm (z - f x) + e/2" using * and B by(auto simp add:field_simps)
+      using norm_triangle_ineq[of "f (x + g'(z - f x)) - z" "f x - y"]
+      by (auto simp add: algebra_simps)
+    also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + norm (f x - y)"
+      using e0[THEN conjunct2,rule_format,OF *]
+      unfolding algebra_simps ** by auto
+    also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + e/2"
+      using as(1)[unfolded mem_cball dist_norm] by auto
+    also have "\<dots> \<le> 1 / (B * 2) * B * norm (z - f x) + e/2"
+      using * and B by (auto simp add: field_simps)
     also have "\<dots> \<le> 1 / 2 * norm (z - f x) + e/2" by auto
-    also have "\<dots> \<le> e/2 + e/2" apply(rule add_right_mono) using as(2)[unfolded mem_cball dist_norm] unfolding norm_minus_commute by auto
-    finally show "y + (z - f (x + g' (z - f x))) \<in> cball (f x) e" unfolding mem_cball dist_norm by auto
+    also have "\<dots> \<le> e/2 + e/2" apply(rule add_right_mono)
+      using as(2)[unfolded mem_cball dist_norm]
+      unfolding norm_minus_commute by auto
+    finally show "y + (z - f (x + g' (z - f x))) \<in> cball (f x) e"
+      unfolding mem_cball dist_norm by auto
   qed(insert e, auto) note lem = this
   show ?thesis unfolding mem_interior apply(rule_tac x="e/2" in exI)
-    apply(rule,rule divide_pos_pos) prefer 3 proof 
-    fix y assume "y \<in> ball (f x) (e/2)" hence *:"y\<in>cball (f x) (e/2)" by auto
+    apply(rule,rule divide_pos_pos) prefer 3
+  proof
+    fix y assume "y \<in> ball (f x) (e/2)"
+    hence *:"y\<in>cball (f x) (e/2)" by auto
     guess z using lem[rule_format,OF *] .. note z=this
-    hence "norm (g' (z - f x)) \<le> norm (z - f x) * B" using B by(auto simp add:field_simps)
-    also have "\<dots> \<le> e * B" apply(rule mult_right_mono) using z(1) unfolding mem_cball dist_norm norm_minus_commute using B by auto
+    hence "norm (g' (z - f x)) \<le> norm (z - f x) * B"
+      using B by (auto simp add: field_simps)
+    also have "\<dots> \<le> e * B"
+      apply (rule mult_right_mono) using z(1)
+      unfolding mem_cball dist_norm norm_minus_commute using B by auto
     also have "\<dots> \<le> e1"  using e B unfolding less_divide_eq by auto
-    finally have "x + g'(z - f x) \<in> t" apply- apply(rule e1[THEN conjunct2,unfolded subset_eq,rule_format]) 
+    finally have "x + g'(z - f x) \<in> t" apply-
+      apply(rule e1[THEN conjunct2,unfolded subset_eq,rule_format])
       unfolding mem_cball dist_norm by auto
-    thus "y \<in> f ` t" using z by auto qed(insert e, auto) qed
+    thus "y \<in> f ` t" using z by auto
+  qed(insert e, auto)
+qed
 
 text {* Hence the following eccentric variant of the inverse function theorem.    *)
 (* This has no continuity assumptions, but we do need the inverse function.  *)
@@ -960,7 +1239,8 @@
 
 (* move  before left_inverse_linear in Euclidean_Space*)
 
- lemma right_inverse_linear: fixes f::"'a::euclidean_space => 'a"
+ lemma right_inverse_linear:
+   fixes f::"'a::euclidean_space => 'a"
    assumes lf: "linear f" and gf: "f o g = id"
    shows "linear g"
  proof-
@@ -973,289 +1253,495 @@
    with h(1) show ?thesis by blast
  qed
  
-lemma has_derivative_inverse_strong: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
-  assumes "open s" "x \<in> s" "continuous_on s f"
-  "\<forall>x\<in>s. g(f x) = x" "(f has_derivative f') (at x)" "f' o g' = id"
-  shows "(g has_derivative g') (at (f x))" proof-
-  have linf:"bounded_linear f'" using assms(5) unfolding has_derivative_def by auto
-  hence ling:"bounded_linear g'" unfolding linear_conv_bounded_linear[THEN sym]
-    apply- apply(rule right_inverse_linear) using assms(6) by auto 
-  moreover have "g' \<circ> f' = id" using assms(6) linf ling unfolding linear_conv_bounded_linear[THEN sym]
+lemma has_derivative_inverse_strong:
+  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
+  assumes "open s" and "x \<in> s" and "continuous_on s f"
+  assumes "\<forall>x\<in>s. g(f x) = x" "(f has_derivative f') (at x)" and "f' o g' = id"
+  shows "(g has_derivative g') (at (f x))"
+proof-
+  have linf:"bounded_linear f'"
+    using assms(5) unfolding has_derivative_def by auto
+  hence ling:"bounded_linear g'"
+    unfolding linear_conv_bounded_linear[THEN sym]
+    apply- apply(rule right_inverse_linear) using assms(6) by auto
+  moreover have "g' \<circ> f' = id" using assms(6) linf ling
+    unfolding linear_conv_bounded_linear[THEN sym]
     using linear_inverse_left by auto
-  moreover have *:"\<forall>t\<subseteq>s. x\<in>interior t \<longrightarrow> f x \<in> interior (f ` t)" apply(rule,rule,rule,rule sussmann_open_mapping )
+  moreover have *:"\<forall>t\<subseteq>s. x\<in>interior t \<longrightarrow> f x \<in> interior (f ` t)"
+    apply(rule,rule,rule,rule sussmann_open_mapping )
     apply(rule assms ling)+ by auto
-  have "continuous (at (f x)) g" unfolding continuous_at Lim_at proof(rule,rule)
+  have "continuous (at (f x)) g" unfolding continuous_at Lim_at
+  proof(rule,rule)
     fix e::real assume "e>0"
-    hence "f x \<in> interior (f ` (ball x e \<inter> s))" using *[rule_format,of "ball x e \<inter> s"] `x\<in>s`
+    hence "f x \<in> interior (f ` (ball x e \<inter> s))"
+      using *[rule_format,of "ball x e \<inter> s"] `x\<in>s`
       by(auto simp add: interior_open[OF open_ball] interior_open[OF assms(1)])
     then guess d unfolding mem_interior .. note d=this
     show "\<exists>d>0. \<forall>y. 0 < dist y (f x) \<and> dist y (f x) < d \<longrightarrow> dist (g y) (g (f x)) < e"
-      apply(rule_tac x=d in exI) apply(rule,rule d[THEN conjunct1]) proof(rule,rule) case goal1
-      hence "g y \<in> g ` f ` (ball x e \<inter> s)" using d[THEN conjunct2,unfolded subset_eq,THEN bspec[where x=y]]
+      apply(rule_tac x=d in exI)
+      apply(rule,rule d[THEN conjunct1])
+    proof(rule,rule) case goal1
+      hence "g y \<in> g ` f ` (ball x e \<inter> s)"
+        using d[THEN conjunct2,unfolded subset_eq,THEN bspec[where x=y]]
         by(auto simp add:dist_commute)
       hence "g y \<in> ball x e \<inter> s" using assms(4) by auto
-      thus "dist (g y) (g (f x)) < e" using assms(4)[rule_format,OF `x\<in>s`] by(auto simp add:dist_commute) qed qed
-  moreover have "f x \<in> interior (f ` s)" apply(rule sussmann_open_mapping)
-    apply(rule assms ling)+ using interior_open[OF assms(1)] and `x\<in>s` by auto
-  moreover have "\<And>y. y \<in> interior (f ` s) \<Longrightarrow> f (g y) = y" proof- case goal1
-    hence "y\<in>f ` s" using interior_subset by auto then guess z unfolding image_iff ..
-    thus ?case using assms(4) by auto qed
-  ultimately show ?thesis apply- apply(rule has_derivative_inverse_basic_x[OF assms(5)]) using assms by auto qed 
+      thus "dist (g y) (g (f x)) < e"
+        using assms(4)[rule_format,OF `x\<in>s`]
+        by (auto simp add: dist_commute)
+    qed
+  qed
+  moreover have "f x \<in> interior (f ` s)"
+    apply(rule sussmann_open_mapping)
+    apply(rule assms ling)+
+    using interior_open[OF assms(1)] and `x\<in>s` by auto
+  moreover have "\<And>y. y \<in> interior (f ` s) \<Longrightarrow> f (g y) = y"
+  proof- case goal1
+    hence "y\<in>f ` s" using interior_subset by auto
+    then guess z unfolding image_iff ..
+    thus ?case using assms(4) by auto
+  qed
+  ultimately show ?thesis
+    apply- apply(rule has_derivative_inverse_basic_x[OF assms(5)])
+    using assms by auto
+qed
 
-subsection {* A rewrite based on the other domain. *}
+text {* A rewrite based on the other domain. *}
 
-lemma has_derivative_inverse_strong_x: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
-  assumes "open s" "g y \<in> s" "continuous_on s f"
-  "\<forall>x\<in>s. g(f x) = x" "(f has_derivative f') (at (g y))" "f' o g' = id" "f(g y) = y"
+lemma has_derivative_inverse_strong_x:
+  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
+  assumes "open s" and "g y \<in> s" and "continuous_on s f"
+  assumes "\<forall>x\<in>s. g(f x) = x" "(f has_derivative f') (at (g y))"
+  assumes "f' o g' = id" and "f(g y) = y"
   shows "(g has_derivative g') (at y)"
   using has_derivative_inverse_strong[OF assms(1-6)] unfolding assms(7) by simp
 
-subsection {* On a region. *}
+text {* On a region. *}
 
-lemma has_derivative_inverse_on: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
-  assumes "open s" "\<forall>x\<in>s. (f has_derivative f'(x)) (at x)" "\<forall>x\<in>s. g(f x) = x" "f'(x) o g'(x) = id" "x\<in>s"
+lemma has_derivative_inverse_on:
+  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'n"
+  assumes "open s" and "\<forall>x\<in>s. (f has_derivative f'(x)) (at x)"
+  assumes "\<forall>x\<in>s. g(f x) = x" and "f'(x) o g'(x) = id" and "x\<in>s"
   shows "(g has_derivative g'(x)) (at (f x))"
-  apply(rule has_derivative_inverse_strong[where g'="g' x" and f=f]) apply(rule assms)+
+  apply(rule has_derivative_inverse_strong[where g'="g' x" and f=f])
+  apply(rule assms)+
   unfolding continuous_on_eq_continuous_at[OF assms(1)]
-  apply(rule,rule differentiable_imp_continuous_at) unfolding differentiable_def using assms by auto
+  apply(rule,rule differentiable_imp_continuous_at)
+  unfolding differentiable_def using assms by auto
 
-subsection {* Invertible derivative continous at a point implies local injectivity.     *)
-(* It's only for this we need continuity of the derivative, except of course *)
-(* if we want the fact that the inverse derivative is also continuous. So if *)
-(* we know for some other reason that the inverse function exists, it's OK. *}
+text {* Invertible derivative continous at a point implies local
+injectivity. It's only for this we need continuity of the derivative,
+except of course if we want the fact that the inverse derivative is
+also continuous. So if we know for some other reason that the inverse
+function exists, it's OK. *}
 
-lemma bounded_linear_sub: "bounded_linear f \<Longrightarrow> bounded_linear g ==> bounded_linear (\<lambda>x. f x - g x)"
-  using bounded_linear_add[of f "\<lambda>x. - g x"] bounded_linear_minus[of g] by(auto simp add:algebra_simps)
+lemma bounded_linear_sub:
+  "bounded_linear f \<Longrightarrow> bounded_linear g ==> bounded_linear (\<lambda>x. f x - g x)"
+  using bounded_linear_add[of f "\<lambda>x. - g x"] bounded_linear_minus[of g]
+  by (auto simp add: algebra_simps)
 
-lemma has_derivative_locally_injective: fixes f::"'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
+lemma has_derivative_locally_injective:
+  fixes f::"'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
   assumes "a \<in> s" "open s" "bounded_linear g'" "g' o f'(a) = id"
   "\<forall>x\<in>s. (f has_derivative f'(x)) (at x)"
   "\<forall>e>0. \<exists>d>0. \<forall>x. dist a x < d \<longrightarrow> onorm(\<lambda>v. f' x v - f' a v) < e"
-  obtains t where "a \<in> t" "open t" "\<forall>x\<in>t. \<forall>x'\<in>t. (f x' = f x) \<longrightarrow> (x' = x)" proof-
+  obtains t where "a \<in> t" "open t" "\<forall>x\<in>t. \<forall>x'\<in>t. (f x' = f x) \<longrightarrow> (x' = x)"
+proof-
   interpret bounded_linear g' using assms by auto
   note f'g' = assms(4)[unfolded id_def o_def,THEN cong]
   have "g' (f' a (\<chi>\<chi> i.1)) = (\<chi>\<chi> i.1)" "(\<chi>\<chi> i.1) \<noteq> (0::'n)" defer 
     apply(subst euclidean_eq) using f'g' by auto
-  hence *:"0 < onorm g'" unfolding onorm_pos_lt[OF assms(3)[unfolded linear_linear]] by fastsimp
+  hence *:"0 < onorm g'"
+    unfolding onorm_pos_lt[OF assms(3)[unfolded linear_linear]] by fastsimp
   def k \<equiv> "1 / onorm g' / 2" have *:"k>0" unfolding k_def using * by auto
   guess d1 using assms(6)[rule_format,OF *] .. note d1=this
   from `open s` obtain d2 where "d2>0" "ball a d2 \<subseteq> s" using `a\<in>s` ..
   obtain d2 where "d2>0" "ball a d2 \<subseteq> s" using assms(2,1) ..
-  guess d2 using assms(2)[unfolded open_contains_ball,rule_format,OF `a\<in>s`] .. note d2=this
-  guess d using real_lbound_gt_zero[OF d1[THEN conjunct1] d2[THEN conjunct1]] .. note d = this
-  show ?thesis proof show "a\<in>ball a d" using d by auto
-    show "\<forall>x\<in>ball a d. \<forall>x'\<in>ball a d. f x' = f x \<longrightarrow> x' = x" proof(intro strip)
+  guess d2 using assms(2)[unfolded open_contains_ball,rule_format,OF `a\<in>s`] ..
+  note d2=this
+  guess d using real_lbound_gt_zero[OF d1[THEN conjunct1] d2[THEN conjunct1]] ..
+  note d = this
+  show ?thesis
+  proof
+    show "a\<in>ball a d" using d by auto
+    show "\<forall>x\<in>ball a d. \<forall>x'\<in>ball a d. f x' = f x \<longrightarrow> x' = x"
+    proof (intro strip)
       fix x y assume as:"x\<in>ball a d" "y\<in>ball a d" "f x = f y"
-      def ph \<equiv> "\<lambda>w. w - g'(f w - f x)" have ph':"ph = g' \<circ> (\<lambda>w. f' a w - (f w - f x))"
-        unfolding ph_def o_def unfolding diff using f'g' by(auto simp add:algebra_simps)
+      def ph \<equiv> "\<lambda>w. w - g'(f w - f x)"
+      have ph':"ph = g' \<circ> (\<lambda>w. f' a w - (f w - f x))"
+        unfolding ph_def o_def unfolding diff using f'g'
+        by (auto simp add: algebra_simps)
       have "norm (ph x - ph y) \<le> (1/2) * norm (x - y)"
         apply(rule differentiable_bound[OF convex_ball _ _ as(1-2), where f'="\<lambda>x v. v - g'(f' x v)"])
-        apply(rule_tac[!] ballI) proof- fix u assume u:"u \<in> ball a d" hence "u\<in>s" using d d2 by auto
-        have *:"(\<lambda>v. v - g' (f' u v)) = g' \<circ> (\<lambda>w. f' a w - f' u w)" unfolding o_def and diff using f'g' by auto
+        apply(rule_tac[!] ballI)
+      proof-
+        fix u assume u:"u \<in> ball a d"
+        hence "u\<in>s" using d d2 by auto
+        have *:"(\<lambda>v. v - g' (f' u v)) = g' \<circ> (\<lambda>w. f' a w - f' u w)"
+          unfolding o_def and diff using f'g' by auto
         show "(ph has_derivative (\<lambda>v. v - g' (f' u v))) (at u within ball a d)"
-          unfolding ph' * apply(rule diff_chain_within) defer apply(rule bounded_linear.has_derivative[OF assms(3)])
-          apply(rule has_derivative_intros) defer apply(rule has_derivative_sub[where g'="\<lambda>x.0",unfolded diff_0_right])
-          apply(rule has_derivative_at_within) using assms(5) and `u\<in>s` `a\<in>s`
+          unfolding ph' * apply(rule diff_chain_within) defer
+          apply(rule bounded_linear.has_derivative[OF assms(3)])
+          apply(rule has_derivative_intros) defer
+          apply(rule has_derivative_sub[where g'="\<lambda>x.0",unfolded diff_0_right])
+          apply(rule has_derivative_at_within)
+          using assms(5) and `u\<in>s` `a\<in>s`
           by(auto intro!: has_derivative_intros derivative_linear)
-        have **:"bounded_linear (\<lambda>x. f' u x - f' a x)" "bounded_linear (\<lambda>x. f' a x - f' u x)" apply(rule_tac[!] bounded_linear_sub)
-          apply(rule_tac[!] derivative_linear) using assms(5) `u\<in>s` `a\<in>s` by auto
-        have "onorm (\<lambda>v. v - g' (f' u v)) \<le> onorm g' * onorm (\<lambda>w. f' a w - f' u w)" unfolding * apply(rule onorm_compose)
-          unfolding linear_conv_bounded_linear by(rule assms(3) **)+ 
-        also have "\<dots> \<le> onorm g' * k" apply(rule mult_left_mono) 
-          using d1[THEN conjunct2,rule_format,of u] using onorm_neg[OF **(1)[unfolded linear_linear]]
-          using d and u and onorm_pos_le[OF assms(3)[unfolded linear_linear]] by(auto simp add:algebra_simps) 
+        have **:"bounded_linear (\<lambda>x. f' u x - f' a x)"
+          "bounded_linear (\<lambda>x. f' a x - f' u x)"
+          apply(rule_tac[!] bounded_linear_sub)
+          apply(rule_tac[!] derivative_linear)
+          using assms(5) `u\<in>s` `a\<in>s` by auto
+        have "onorm (\<lambda>v. v - g' (f' u v)) \<le> onorm g' * onorm (\<lambda>w. f' a w - f' u w)"
+          unfolding * apply(rule onorm_compose)
+          unfolding linear_conv_bounded_linear by(rule assms(3) **)+
+        also have "\<dots> \<le> onorm g' * k"
+          apply(rule mult_left_mono) 
+          using d1[THEN conjunct2,rule_format,of u]
+          using onorm_neg[OF **(1)[unfolded linear_linear]]
+          using d and u and onorm_pos_le[OF assms(3)[unfolded linear_linear]]
+          by (auto simp add: algebra_simps)
         also have "\<dots> \<le> 1/2" unfolding k_def by auto
-        finally show "onorm (\<lambda>v. v - g' (f' u v)) \<le> 1 / 2" by assumption qed
-      moreover have "norm (ph y - ph x) = norm (y - x)" apply(rule arg_cong[where f=norm])
+        finally show "onorm (\<lambda>v. v - g' (f' u v)) \<le> 1 / 2" by assumption
+      qed
+      moreover have "norm (ph y - ph x) = norm (y - x)"
+        apply(rule arg_cong[where f=norm])
         unfolding ph_def using diff unfolding as by auto
-      ultimately show "x = y" unfolding norm_minus_commute by auto qed qed auto qed
+      ultimately show "x = y" unfolding norm_minus_commute by auto
+    qed
+  qed auto
+qed
 
 subsection {* Uniformly convergent sequence of derivatives. *}
 
-lemma has_derivative_sequence_lipschitz_lemma: fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
-  "\<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)"
-  shows "\<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f m x - f n x) - (f m y - f n y)) \<le> 2 * e * norm(x - y)" proof(default)+ 
+lemma has_derivative_sequence_lipschitz_lemma:
+  fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
+  assumes "\<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)"
+  shows "\<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f m x - f n x) - (f m y - f n y)) \<le> 2 * e * norm(x - y)"
+proof (default)+
   fix m n x y assume as:"N\<le>m" "N\<le>n" "x\<in>s" "y\<in>s"
   show "norm((f m x - f n x) - (f m y - f n y)) \<le> 2 * e * norm(x - y)"
-    apply(rule differentiable_bound[where f'="\<lambda>x h. f' m x h - f' n x h", OF assms(1) _ _ as(3-4)]) apply(rule_tac[!] ballI) proof-
-    fix x assume "x\<in>s" show "((\<lambda>a. f m a - f n a) has_derivative (\<lambda>h. f' m x h - f' n x h)) (at x within s)"
+    apply(rule differentiable_bound[where f'="\<lambda>x h. f' m x h - f' n x h", OF assms(1) _ _ as(3-4)])
+    apply(rule_tac[!] ballI)
+  proof-
+    fix x assume "x\<in>s"
+    show "((\<lambda>a. f m a - f n a) has_derivative (\<lambda>h. f' m x h - f' n x h)) (at x within s)"
       by(rule has_derivative_intros assms(2)[rule_format] `x\<in>s`)+
-    { fix h have "norm (f' m x h - f' n x h) \<le> norm (f' m x h - g' x h) + norm (f' n x h - g' x h)"
-        using norm_triangle_ineq[of "f' m x h - g' x h" "- f' n x h + g' x h"] unfolding norm_minus_commute by(auto simp add:algebra_simps) 
-      also have "\<dots> \<le> e * norm h+ e * norm h"  using assms(3)[rule_format,OF `N\<le>m` `x\<in>s`, of h] assms(3)[rule_format,OF `N\<le>n` `x\<in>s`, of h]
+    { fix h
+      have "norm (f' m x h - f' n x h) \<le> norm (f' m x h - g' x h) + norm (f' n x h - g' x h)"
+        using norm_triangle_ineq[of "f' m x h - g' x h" "- f' n x h + g' x h"]
+        unfolding norm_minus_commute by (auto simp add: algebra_simps)
+      also have "\<dots> \<le> e * norm h+ e * norm h"
+        using assms(3)[rule_format,OF `N\<le>m` `x\<in>s`, of h]
+        using assms(3)[rule_format,OF `N\<le>n` `x\<in>s`, of h]
         by(auto simp add:field_simps)
       finally have "norm (f' m x h - f' n x h) \<le> 2 * e * norm h" by auto }
-    thus "onorm (\<lambda>h. f' m x h - f' n x h) \<le> 2 * e" apply-apply(rule onorm(2)) apply(rule linear_compose_sub)
-      unfolding linear_conv_bounded_linear using assms(2)[rule_format,OF `x\<in>s`, THEN derivative_linear] by auto qed qed
+    thus "onorm (\<lambda>h. f' m x h - f' n x h) \<le> 2 * e"
+      apply-apply(rule onorm(2)) apply(rule linear_compose_sub)
+      unfolding linear_conv_bounded_linear
+      using assms(2)[rule_format,OF `x\<in>s`, THEN derivative_linear]
+      by auto
+  qed
+qed
 
-lemma has_derivative_sequence_lipschitz: fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
-  "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)" "0 < e"
-  shows "\<forall>e>0. \<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f m x - f n x) - (f m y - f n y)) \<le> e * norm(x - y)" proof(rule,rule)
+lemma has_derivative_sequence_lipschitz:
+  fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
+  assumes "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)"
+  assumes "0 < e"
+  shows "\<forall>e>0. \<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f m x - f n x) - (f m y - f n y)) \<le> e * norm(x - y)"
+proof(rule,rule)
   case goal1 have *:"2 * (1/2* e) = e" "1/2 * e >0" using `e>0` by auto
   guess N using assms(3)[rule_format,OF *(2)] ..
-  thus ?case apply(rule_tac x=N in exI) apply(rule has_derivative_sequence_lipschitz_lemma[where e="1/2 *e", unfolded *]) using assms by auto qed
+  thus ?case
+    apply(rule_tac x=N in exI)
+    apply(rule has_derivative_sequence_lipschitz_lemma[where e="1/2 *e", unfolded *])
+    using assms by auto
+qed
 
-lemma has_derivative_sequence: fixes f::"nat\<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
-  "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)"
-  "x0 \<in> s"  "((\<lambda>n. f n x0) ---> l) sequentially"
-  shows "\<exists>g. \<forall>x\<in>s. ((\<lambda>n. f n x) ---> g x) sequentially \<and> (g has_derivative g'(x)) (at x within s)" proof-
+lemma has_derivative_sequence:
+  fixes f::"nat\<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
+  assumes "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm(h)"
+  assumes "x0 \<in> s" and "((\<lambda>n. f n x0) ---> l) sequentially"
+  shows "\<exists>g. \<forall>x\<in>s. ((\<lambda>n. f n x) ---> g x) sequentially \<and>
+    (g has_derivative g'(x)) (at x within s)"
+proof-
   have lem1:"\<forall>e>0. \<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f m x - f n x) - (f m y - f n y)) \<le> e * norm(x - y)"
-    apply(rule has_derivative_sequence_lipschitz[where e="42::nat"]) apply(rule assms)+ by auto
-  have "\<exists>g. \<forall>x\<in>s. ((\<lambda>n. f n x) ---> g x) sequentially" apply(rule bchoice) unfolding convergent_eq_cauchy proof
-    fix x assume "x\<in>s" show "Cauchy (\<lambda>n. f n x)" proof(cases "x=x0")
-      case True thus ?thesis using convergent_imp_cauchy[OF assms(5)] by auto next
-      case False show ?thesis unfolding Cauchy_def proof(rule,rule)
-        fix e::real assume "e>0" hence *:"e/2>0" "e/2/norm(x-x0)>0" using False by(auto intro!:divide_pos_pos)
+    apply(rule has_derivative_sequence_lipschitz[where e="42::nat"])
+    apply(rule assms)+ by auto
+  have "\<exists>g. \<forall>x\<in>s. ((\<lambda>n. f n x) ---> g x) sequentially"
+    apply(rule bchoice) unfolding convergent_eq_cauchy
+  proof
+    fix x assume "x\<in>s" show "Cauchy (\<lambda>n. f n x)"
+    proof(cases "x=x0")
+      case True thus ?thesis using convergent_imp_cauchy[OF assms(5)] by auto
+    next
+      case False show ?thesis unfolding Cauchy_def
+      proof(rule,rule)
+        fix e::real assume "e>0"
+        hence *:"e/2>0" "e/2/norm(x-x0)>0"
+          using False by (auto intro!: divide_pos_pos)
         guess M using convergent_imp_cauchy[OF assms(5), unfolded Cauchy_def, rule_format,OF *(1)] .. note M=this
         guess N using lem1[rule_format,OF *(2)] .. note N = this
-        show " \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e" apply(rule_tac x="max M N" in exI) proof(default+)
+        show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e"
+          apply(rule_tac x="max M N" in exI)
+        proof(default+)
           fix m n assume as:"max M N \<le>m" "max M N\<le>n"
           have "dist (f m x) (f n x) \<le> norm (f m x0 - f n x0) + norm (f m x - f n x - (f m x0 - f n x0))"
             unfolding dist_norm by(rule norm_triangle_sub)
-          also have "\<dots> \<le> norm (f m x0 - f n x0) + e / 2" using N[rule_format,OF _ _ `x\<in>s` `x0\<in>s`, of m n] and as and False by auto
-          also have "\<dots> < e / 2 + e / 2" apply(rule add_strict_right_mono) using as and M[rule_format] unfolding dist_norm by auto 
-          finally show "dist (f m x) (f n x) < e" by auto qed qed qed qed
+          also have "\<dots> \<le> norm (f m x0 - f n x0) + e / 2"
+            using N[rule_format,OF _ _ `x\<in>s` `x0\<in>s`, of m n] and as and False
+            by auto
+          also have "\<dots> < e / 2 + e / 2"
+            apply(rule add_strict_right_mono)
+            using as and M[rule_format] unfolding dist_norm by auto
+          finally show "dist (f m x) (f n x) < e" by auto
+        qed
+      qed
+    qed
+  qed
   then guess g .. note g = this
-  have lem2:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f n x - f n y) - (g x - g y)) \<le> e * norm(x - y)" proof(rule,rule)
-    fix e::real assume *:"e>0" guess N using lem1[rule_format,OF *] .. note N=this
-    show "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm (f n x - f n y - (g x - g y)) \<le> e * norm (x - y)" apply(rule_tac x=N in exI) proof(default+)
+  have lem2:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm((f n x - f n y) - (g x - g y)) \<le> e * norm(x - y)"
+  proof(rule,rule)
+    fix e::real assume *:"e>0"
+    guess N using lem1[rule_format,OF *] .. note N=this
+    show "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>y\<in>s. norm (f n x - f n y - (g x - g y)) \<le> e * norm (x - y)"
+      apply(rule_tac x=N in exI)
+    proof(default+)
       fix n x y assume as:"N \<le> n" "x \<in> s" "y \<in> s"
-      have "eventually (\<lambda>xa. norm (f n x - f n y - (f xa x - f xa y)) \<le> e * norm (x - y)) sequentially" 
-        unfolding eventually_sequentially apply(rule_tac x=N in exI) proof(rule,rule)
-        fix m assume "N\<le>m" thus "norm (f n x - f n y - (f m x - f m y)) \<le> e * norm (x - y)"
-          using N[rule_format, of n m x y] and as by(auto simp add:algebra_simps) qed
-      thus "norm (f n x - f n y - (g x - g y)) \<le> e * norm (x - y)" apply-
+      have "eventually (\<lambda>xa. norm (f n x - f n y - (f xa x - f xa y)) \<le> e * norm (x - y)) sequentially"
+        unfolding eventually_sequentially
+        apply(rule_tac x=N in exI)
+      proof(rule,rule)
+        fix m assume "N\<le>m"
+        thus "norm (f n x - f n y - (f m x - f m y)) \<le> e * norm (x - y)"
+          using N[rule_format, of n m x y] and as
+          by (auto simp add: algebra_simps)
+      qed
+      thus "norm (f n x - f n y - (g x - g y)) \<le> e * norm (x - y)"
+        apply-
         apply(rule Lim_norm_ubound[OF trivial_limit_sequentially, where f="\<lambda>m. (f n x - f n y) - (f m x - f m y)"])
-        apply(rule Lim_sub Lim_const g[rule_format] as)+ by assumption qed qed
+        apply(rule tendsto_intros g[rule_format] as)+ by assumption
+    qed
+  qed
   show ?thesis unfolding has_derivative_within_alt apply(rule_tac x=g in exI)
-    apply(rule,rule,rule g[rule_format],assumption) proof fix x assume "x\<in>s"
-    have lem3:"\<forall>u. ((\<lambda>n. f' n x u) ---> g' x u) sequentially" unfolding Lim_sequentially proof(rule,rule,rule)
-      fix u and e::real assume "e>0" show "\<exists>N. \<forall>n\<ge>N. dist (f' n x u) (g' x u) < e" proof(cases "u=0")
+    apply(rule,rule,rule g[rule_format],assumption)
+  proof fix x assume "x\<in>s"
+    have lem3:"\<forall>u. ((\<lambda>n. f' n x u) ---> g' x u) sequentially"
+      unfolding Lim_sequentially
+    proof(rule,rule,rule)
+      fix u and e::real assume "e>0"
+      show "\<exists>N. \<forall>n\<ge>N. dist (f' n x u) (g' x u) < e"
+      proof(cases "u=0")
         case True guess N using assms(3)[rule_format,OF `e>0`] .. note N=this
         show ?thesis apply(rule_tac x=N in exI) unfolding True 
-          using N[rule_format,OF _ `x\<in>s`,of _ 0] and `e>0` by auto next
-        case False hence *:"e / 2 / norm u > 0" using `e>0` by(auto intro!: divide_pos_pos)
+          using N[rule_format,OF _ `x\<in>s`,of _ 0] and `e>0` by auto
+      next
+        case False hence *:"e / 2 / norm u > 0"
+          using `e>0` by (auto intro!: divide_pos_pos)
         guess N using assms(3)[rule_format,OF *] .. note N=this
-        show ?thesis apply(rule_tac x=N in exI) proof(rule,rule) case goal1
-          show ?case unfolding dist_norm using N[rule_format,OF goal1 `x\<in>s`, of u] False `e>0`
-            by (auto simp add:field_simps) qed qed qed
-    show "bounded_linear (g' x)" unfolding linear_linear linear_def apply(rule,rule,rule) defer proof(rule,rule)
+        show ?thesis apply(rule_tac x=N in exI)
+        proof(rule,rule) case goal1
+          show ?case unfolding dist_norm
+            using N[rule_format,OF goal1 `x\<in>s`, of u] False `e>0`
+            by (auto simp add:field_simps)
+        qed
+      qed
+    qed
+    show "bounded_linear (g' x)"
+      unfolding linear_linear linear_def
+      apply(rule,rule,rule) defer
+    proof(rule,rule)
       fix x' y z::"'m" and c::real
       note lin = assms(2)[rule_format,OF `x\<in>s`,THEN derivative_linear]
-      show "g' x (c *\<^sub>R x') = c *\<^sub>R g' x x'" apply(rule tendsto_unique[OF trivial_limit_sequentially])
+      show "g' x (c *\<^sub>R x') = c *\<^sub>R g' x x'"
+        apply(rule tendsto_unique[OF trivial_limit_sequentially])
         apply(rule lem3[rule_format])
         unfolding lin[unfolded bounded_linear_def bounded_linear_axioms_def,THEN conjunct2,THEN conjunct1,rule_format]
-        apply(rule Lim_cmul) by(rule lem3[rule_format])
-      show "g' x (y + z) = g' x y + g' x z" apply(rule tendsto_unique[OF trivial_limit_sequentially])
-        apply(rule lem3[rule_format]) unfolding lin[unfolded bounded_linear_def additive_def,THEN conjunct1,rule_format]
-        apply(rule Lim_add) by(rule lem3[rule_format])+ qed 
-    show "\<forall>e>0. \<exists>d>0. \<forall>y\<in>s. norm (y - x) < d \<longrightarrow> norm (g y - g x - g' x (y - x)) \<le> e * norm (y - x)" proof(rule,rule) case goal1
-      have *:"e/3>0" using goal1 by auto guess N1 using assms(3)[rule_format,OF *] .. note N1=this
+        apply (intro tendsto_intros) by(rule lem3[rule_format])
+      show "g' x (y + z) = g' x y + g' x z"
+        apply(rule tendsto_unique[OF trivial_limit_sequentially])
+        apply(rule lem3[rule_format])
+        unfolding lin[unfolded bounded_linear_def additive_def,THEN conjunct1,rule_format]
+        apply(rule tendsto_add) by(rule lem3[rule_format])+
+    qed
+    show "\<forall>e>0. \<exists>d>0. \<forall>y\<in>s. norm (y - x) < d \<longrightarrow> norm (g y - g x - g' x (y - x)) \<le> e * norm (y - x)"
+    proof(rule,rule) case goal1
+      have *:"e/3>0" using goal1 by auto
+      guess N1 using assms(3)[rule_format,OF *] .. note N1=this
       guess N2 using lem2[rule_format,OF *] .. note N2=this
       guess d1 using assms(2)[unfolded has_derivative_within_alt, rule_format,OF `x\<in>s`, of "max N1 N2",THEN conjunct2,rule_format,OF *] .. note d1=this
-      show ?case apply(rule_tac x=d1 in exI) apply(rule,rule d1[THEN conjunct1]) proof(rule,rule)
-        fix y assume as:"y \<in> s" "norm (y - x) < d1" let ?N ="max N1 N2"
-        have "norm (g y - g x - (f ?N y - f ?N x)) \<le> e /3 * norm (y - x)" apply(subst norm_minus_cancel[THEN sym])
-          using N2[rule_format, OF _ `y\<in>s` `x\<in>s`, of ?N] by auto moreover
-        have "norm (f ?N y - f ?N x - f' ?N x (y - x)) \<le> e / 3 * norm (y - x)" using d1 and as by auto ultimately
+      show ?case apply(rule_tac x=d1 in exI) apply(rule,rule d1[THEN conjunct1])
+      proof(rule,rule)
+        fix y assume as:"y \<in> s" "norm (y - x) < d1"
+        let ?N ="max N1 N2"
+        have "norm (g y - g x - (f ?N y - f ?N x)) \<le> e /3 * norm (y - x)"
+          apply(subst norm_minus_cancel[THEN sym])
+          using N2[rule_format, OF _ `y\<in>s` `x\<in>s`, of ?N] by auto
+        moreover
+        have "norm (f ?N y - f ?N x - f' ?N x (y - x)) \<le> e / 3 * norm (y - x)"
+          using d1 and as by auto
+        ultimately
         have "norm (g y - g x - f' ?N x (y - x)) \<le> 2 * e / 3 * norm (y - x)" 
-          using norm_triangle_le[of "g y - g x - (f ?N y - f ?N x)" "f ?N y - f ?N x - f' ?N x (y - x)" "2 * e / 3 * norm (y - x)"] 
-          by (auto simp add:algebra_simps) moreover
-        have " norm (f' ?N x (y - x) - g' x (y - x)) \<le> e / 3 * norm (y - x)" using N1 `x\<in>s` by auto
+          using norm_triangle_le[of "g y - g x - (f ?N y - f ?N x)" "f ?N y - f ?N x - f' ?N x (y - x)" "2 * e / 3 * norm (y - x)"]
+          by (auto simp add:algebra_simps)
+        moreover
+        have " norm (f' ?N x (y - x) - g' x (y - x)) \<le> e / 3 * norm (y - x)"
+          using N1 `x\<in>s` by auto
         ultimately show "norm (g y - g x - g' x (y - x)) \<le> e * norm (y - x)"
-          using norm_triangle_le[of "g y - g x - f' (max N1 N2) x (y - x)" "f' (max N1 N2) x (y - x) - g' x (y - x)"] by(auto simp add:algebra_simps)
-        qed qed qed qed
+          using norm_triangle_le[of "g y - g x - f' (max N1 N2) x (y - x)" "f' (max N1 N2) x (y - x) - g' x (y - x)"]
+          by(auto simp add:algebra_simps)
+      qed
+    qed
+  qed
+qed
 
-subsection {* Can choose to line up antiderivatives if we want. *}
+text {* Can choose to line up antiderivatives if we want. *}
 
-lemma has_antiderivative_sequence: fixes f::"nat\<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
-  "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm h"
-  shows "\<exists>g. \<forall>x\<in>s. (g has_derivative g'(x)) (at x within s)" proof(cases "s={}")
-  case False then obtain a where "a\<in>s" by auto have *:"\<And>P Q. \<exists>g. \<forall>x\<in>s. P g x \<and> Q g x \<Longrightarrow> \<exists>g. \<forall>x\<in>s. Q g x" by auto
-  show ?thesis  apply(rule *) apply(rule has_derivative_sequence[OF assms(1) _ assms(3), of "\<lambda>n x. f n x + (f 0 a - f n a)"])
-    apply(rule,rule) apply(rule has_derivative_add_const, rule assms(2)[rule_format], assumption)  
-    apply(rule `a\<in>s`) by(auto intro!: Lim_const) qed auto
+lemma has_antiderivative_sequence:
+  fixes f::"nat\<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
+  assumes "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(f' n x h - g' x h) \<le> e * norm h"
+  shows "\<exists>g. \<forall>x\<in>s. (g has_derivative g'(x)) (at x within s)"
+proof(cases "s={}")
+  case False then obtain a where "a\<in>s" by auto
+  have *:"\<And>P Q. \<exists>g. \<forall>x\<in>s. P g x \<and> Q g x \<Longrightarrow> \<exists>g. \<forall>x\<in>s. Q g x" by auto
+  show ?thesis
+    apply(rule *)
+    apply(rule has_derivative_sequence[OF assms(1) _ assms(3), of "\<lambda>n x. f n x + (f 0 a - f n a)"])
+    apply(rule,rule)
+    apply(rule has_derivative_add_const, rule assms(2)[rule_format], assumption)  
+    apply(rule `a\<in>s`) by(auto intro!: tendsto_const)
+qed auto
 
-lemma has_antiderivative_limit: fixes g'::"'m::euclidean_space \<Rightarrow> 'm \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>e>0. \<exists>f f'. \<forall>x\<in>s. (f has_derivative (f' x)) (at x within s) \<and> (\<forall>h. norm(f' x h - g' x h) \<le> e * norm(h))"
-  shows "\<exists>g. \<forall>x\<in>s. (g has_derivative g'(x)) (at x within s)" proof-
+lemma has_antiderivative_limit:
+  fixes g'::"'m::euclidean_space \<Rightarrow> 'm \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>e>0. \<exists>f f'. \<forall>x\<in>s. (f has_derivative (f' x)) (at x within s) \<and> (\<forall>h. norm(f' x h - g' x h) \<le> e * norm(h))"
+  shows "\<exists>g. \<forall>x\<in>s. (g has_derivative g'(x)) (at x within s)"
+proof-
   have *:"\<forall>n. \<exists>f f'. \<forall>x\<in>s. (f has_derivative (f' x)) (at x within s) \<and> (\<forall>h. norm(f' x h - g' x h) \<le> inverse (real (Suc n)) * norm(h))"
-    apply(rule) using assms(2) apply(erule_tac x="inverse (real (Suc n))" in allE) by auto
-  guess f using *[THEN choice] .. note * = this guess f' using *[THEN choice] .. note f=this
-  show ?thesis apply(rule has_antiderivative_sequence[OF assms(1), of f f']) defer proof(rule,rule)
+    apply(rule) using assms(2)
+    apply(erule_tac x="inverse (real (Suc n))" in allE) by auto
+  guess f using *[THEN choice] .. note * = this
+  guess f' using *[THEN choice] .. note f=this
+  show ?thesis apply(rule has_antiderivative_sequence[OF assms(1), of f f']) defer
+  proof(rule,rule)
     fix e::real assume "0<e" guess  N using reals_Archimedean[OF `e>0`] .. note N=this 
-    show "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm (f' n x h - g' x h) \<le> e * norm h"  apply(rule_tac x=N in exI) proof(default+) case goal1
+    show "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm (f' n x h - g' x h) \<le> e * norm h"
+      apply(rule_tac x=N in exI)
+    proof(default+)
+      case goal1
       have *:"inverse (real (Suc n)) \<le> e" apply(rule order_trans[OF _ N[THEN less_imp_le]])
         using goal1(1) by(auto simp add:field_simps) 
-      show ?case using f[rule_format,THEN conjunct2,OF goal1(2), of n, THEN spec[where x=h]] 
-        apply(rule order_trans) using N * apply(cases "h=0") by auto qed qed(insert f,auto) qed
+      show ?case
+        using f[rule_format,THEN conjunct2,OF goal1(2), of n, THEN spec[where x=h]] 
+        apply(rule order_trans) using N * apply(cases "h=0") by auto
+    qed
+  qed(insert f,auto)
+qed
 
 subsection {* Differentiation of a series. *}
 
 definition sums_seq :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> (nat set) \<Rightarrow> bool"
 (infixl "sums'_seq" 12) where "(f sums_seq l) s \<equiv> ((\<lambda>n. setsum f (s \<inter> {0..n})) ---> l) sequentially"
 
-lemma has_derivative_series: fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
-  assumes "convex s" "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
-  "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(setsum (\<lambda>i. f' i x h) (k \<inter> {0..n}) - g' x h) \<le> e * norm(h)"
-  "x\<in>s" "((\<lambda>n. f n x) sums_seq l) k"
+lemma has_derivative_series:
+  fixes f::"nat \<Rightarrow> 'm::euclidean_space \<Rightarrow> 'n::euclidean_space"
+  assumes "convex s"
+  assumes "\<forall>n. \<forall>x\<in>s. ((f n) has_derivative (f' n x)) (at x within s)"
+  assumes "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. norm(setsum (\<lambda>i. f' i x h) (k \<inter> {0..n}) - g' x h) \<le> e * norm(h)"
+  assumes "x\<in>s" and "((\<lambda>n. f n x) sums_seq l) k"
   shows "\<exists>g. \<forall>x\<in>s. ((\<lambda>n. f n x) sums_seq (g x)) k \<and> (g has_derivative g'(x)) (at x within s)"
-  unfolding sums_seq_def apply(rule has_derivative_sequence[OF assms(1) _ assms(3)]) apply(rule,rule)
-  apply(rule has_derivative_setsum) defer apply(rule,rule assms(2)[rule_format],assumption)
+  unfolding sums_seq_def
+  apply(rule has_derivative_sequence[OF assms(1) _ assms(3)])
+  apply(rule,rule)
+  apply(rule has_derivative_setsum) defer
+  apply(rule,rule assms(2)[rule_format],assumption)
   using assms(4-5) unfolding sums_seq_def by auto
 
 subsection {* Derivative with composed bilinear function. *}
 
 lemma has_derivative_bilinear_within:
-  assumes "(f has_derivative f') (at x within s)" "(g has_derivative g') (at x within s)" "bounded_bilinear h"
-  shows "((\<lambda>x. h (f x) (g x)) has_derivative (\<lambda>d. h (f x) (g' d) + h (f' d) (g x))) (at x within s)" proof-
-  have "(g ---> g x) (at x within s)" apply(rule differentiable_imp_continuous_within[unfolded continuous_within])
-    using assms(2) unfolding differentiable_def by auto moreover
-  interpret f':bounded_linear f' using assms unfolding has_derivative_def by auto
-  interpret g':bounded_linear g' using assms unfolding has_derivative_def by auto
-  interpret h:bounded_bilinear h using assms by auto
-  have "((\<lambda>y. f' (y - x)) ---> 0) (at x within s)" unfolding f'.zero[THEN sym]
-    apply(rule Lim_linear[of "\<lambda>y. y - x" 0 "at x within s" f']) using Lim_sub[OF Lim_within_id Lim_const, of x x s]
+  assumes "(f has_derivative f') (at x within s)"
+  assumes "(g has_derivative g') (at x within s)"
+  assumes "bounded_bilinear h"
+  shows "((\<lambda>x. h (f x) (g x)) has_derivative (\<lambda>d. h (f x) (g' d) + h (f' d) (g x))) (at x within s)"
+proof-
+  have "(g ---> g x) (at x within s)"
+    apply(rule differentiable_imp_continuous_within[unfolded continuous_within])
+    using assms(2) unfolding differentiable_def by auto
+  moreover
+  interpret f':bounded_linear f'
+    using assms unfolding has_derivative_def by auto
+  interpret g':bounded_linear g'
+    using assms unfolding has_derivative_def by auto
+  interpret h:bounded_bilinear h
+    using assms by auto
+  have "((\<lambda>y. f' (y - x)) ---> 0) (at x within s)"
+    unfolding f'.zero[THEN sym]
+    using bounded_linear.tendsto [of f' "\<lambda>y. y - x" 0 "at x within s"]
+    using tendsto_diff [OF Lim_within_id tendsto_const, of x x s]
     unfolding id_def using assms(1) unfolding has_derivative_def by auto
   hence "((\<lambda>y. f x + f' (y - x)) ---> f x) (at x within s)"
-    using Lim_add[OF Lim_const, of "\<lambda>y. f' (y - x)" 0 "at x within s" "f x"] by auto ultimately
+    using tendsto_add[OF tendsto_const, of "\<lambda>y. f' (y - x)" 0 "at x within s" "f x"]
+    by auto
+  ultimately
   have *:"((\<lambda>x'. h (f x + f' (x' - x)) ((1/(norm (x' - x))) *\<^sub>R (g x' - (g x + g' (x' - x))))
              + h ((1/ (norm (x' - x))) *\<^sub>R (f x' - (f x + f' (x' - x)))) (g x')) ---> h (f x) 0 + h 0 (g x)) (at x within s)"
-    apply-apply(rule Lim_add) apply(rule_tac[!] Lim_bilinear[OF _ _ assms(3)]) using assms(1-2)  unfolding has_derivative_within by auto
+    apply-apply(rule tendsto_add) apply(rule_tac[!] Lim_bilinear[OF _ _ assms(3)])
+    using assms(1-2)  unfolding has_derivative_within by auto
   guess B using bounded_bilinear.pos_bounded[OF assms(3)] .. note B=this
   guess C using f'.pos_bounded .. note C=this
   guess D using g'.pos_bounded .. note D=this
   have bcd:"B * C * D > 0" using B C D by (auto intro!: mult_pos_pos)
-  have **:"((\<lambda>y. (1/(norm(y - x))) *\<^sub>R (h (f'(y - x)) (g'(y - x)))) ---> 0) (at x within s)" unfolding Lim_within proof(rule,rule) case goal1
+  have **:"((\<lambda>y. (1/(norm(y - x))) *\<^sub>R (h (f'(y - x)) (g'(y - x)))) ---> 0) (at x within s)"
+    unfolding Lim_within
+  proof(rule,rule) case goal1
     hence "e/(B*C*D)>0" using B C D by(auto intro!:divide_pos_pos mult_pos_pos)
-    thus ?case apply(rule_tac x="e/(B*C*D)" in exI,rule) proof(rule,rule,erule conjE)
+    thus ?case apply(rule_tac x="e/(B*C*D)" in exI,rule)
+    proof(rule,rule,erule conjE)
       fix y assume as:"y \<in> s" "0 < dist y x" "dist y x < e / (B * C * D)"
       have "norm (h (f' (y - x)) (g' (y - x))) \<le> norm (f' (y - x)) * norm (g' (y - x)) * B" using B by auto
-      also have "\<dots> \<le> (norm (y - x) * C) * (D * norm (y - x)) * B" apply(rule mult_right_mono)
-        apply(rule mult_mono) using B C D by (auto simp add: field_simps intro!:mult_nonneg_nonneg)
-      also have "\<dots> = (B * C * D * norm (y - x)) * norm (y - x)" by(auto simp add:field_simps)
-      also have "\<dots> < e * norm (y - x)" apply(rule mult_strict_right_mono)
-        using as(3)[unfolded dist_norm] and as(2) unfolding pos_less_divide_eq[OF bcd] by (auto simp add:field_simps)
+      also have "\<dots> \<le> (norm (y - x) * C) * (D * norm (y - x)) * B"
+        apply(rule mult_right_mono)
+        apply(rule mult_mono) using B C D
+        by (auto simp add: field_simps intro!:mult_nonneg_nonneg)
+      also have "\<dots> = (B * C * D * norm (y - x)) * norm (y - x)"
+        by (auto simp add: field_simps)
+      also have "\<dots> < e * norm (y - x)"
+        apply(rule mult_strict_right_mono)
+        using as(3)[unfolded dist_norm] and as(2)
+        unfolding pos_less_divide_eq[OF bcd] by (auto simp add: field_simps)
       finally show "dist ((1 / norm (y - x)) *\<^sub>R h (f' (y - x)) (g' (y - x))) 0 < e"
-        unfolding dist_norm apply-apply(cases "y = x") by(auto simp add:field_simps) qed qed
+        unfolding dist_norm apply-apply(cases "y = x")
+        by(auto simp add: field_simps)
+    qed
+  qed
   have "bounded_linear (\<lambda>d. h (f x) (g' d) + h (f' d) (g x))"
     apply (rule bounded_linear_add)
     apply (rule bounded_linear_compose [OF h.bounded_linear_right `bounded_linear g'`])
     apply (rule bounded_linear_compose [OF h.bounded_linear_left `bounded_linear f'`])
     done
-  thus ?thesis using Lim_add[OF * **] unfolding has_derivative_within 
+  thus ?thesis using tendsto_add[OF * **] unfolding has_derivative_within 
     unfolding g'.add f'.scaleR f'.add g'.scaleR f'.diff g'.diff
      h.add_right h.add_left scaleR_right_distrib h.scaleR_left h.scaleR_right h.diff_right h.diff_left
-    scaleR_right_diff_distrib h.zero_right h.zero_left by(auto simp add:field_simps) qed
+    scaleR_right_diff_distrib h.zero_right h.zero_left
+    by(auto simp add:field_simps)
+qed
 
 lemma has_derivative_bilinear_at:
-  assumes "(f has_derivative f') (at x)" "(g has_derivative g') (at x)" "bounded_bilinear h"
+  assumes "(f has_derivative f') (at x)"
+  assumes "(g has_derivative g') (at x)"
+  assumes "bounded_bilinear h"
   shows "((\<lambda>x. h (f x) (g x)) has_derivative (\<lambda>d. h (f x) (g' d) + h (f' d) (g x))) (at x)"
-  using has_derivative_bilinear_within[of f f' x UNIV g g' h] unfolding within_UNIV using assms by auto
+  using has_derivative_bilinear_within[of f f' x UNIV g g' h]
+  unfolding within_UNIV using assms by auto
 
 subsection {* Considering derivative @{typ "real \<Rightarrow> 'b\<Colon>real_normed_vector"} as a vector. *}
 
@@ -1265,14 +1751,20 @@
 
 definition "vector_derivative f net \<equiv> (SOME f'. (f has_vector_derivative f') net)"
 
-lemma vector_derivative_works: fixes f::"real \<Rightarrow> 'a::real_normed_vector"
+lemma vector_derivative_works:
+  fixes f::"real \<Rightarrow> 'a::real_normed_vector"
   shows "f differentiable net \<longleftrightarrow> (f has_vector_derivative (vector_derivative f net)) net" (is "?l = ?r")
-proof assume ?l guess f' using `?l`[unfolded differentiable_def] .. note f' = this
+proof
+  assume ?l guess f' using `?l`[unfolded differentiable_def] .. note f' = this
   then interpret bounded_linear f' by auto
   thus ?r unfolding vector_derivative_def has_vector_derivative_def
     apply-apply(rule someI_ex,rule_tac x="f' 1" in exI)
     using f' unfolding scaleR[THEN sym] by auto
-next assume ?r thus ?l  unfolding vector_derivative_def has_vector_derivative_def differentiable_def by auto qed
+next
+  assume ?r thus ?l
+    unfolding vector_derivative_def has_vector_derivative_def differentiable_def
+    by auto
+qed
 
 lemma vector_derivative_unique_at:
   assumes "(f has_vector_derivative f') (at x)"
@@ -1285,16 +1777,26 @@
   thus ?thesis unfolding fun_eq_iff by auto
 qed
 
-lemma vector_derivative_unique_within_closed_interval: fixes f::"real \<Rightarrow> 'n::ordered_euclidean_space"
-  assumes "a < b" "x \<in> {a..b}"
-  "(f has_vector_derivative f') (at x within {a..b})"
-  "(f has_vector_derivative f'') (at x within {a..b})" shows "f' = f''" proof-
+lemma vector_derivative_unique_within_closed_interval:
+  fixes f::"real \<Rightarrow> 'n::ordered_euclidean_space"
+  assumes "a < b" and "x \<in> {a..b}"
+  assumes "(f has_vector_derivative f') (at x within {a..b})"
+  assumes "(f has_vector_derivative f'') (at x within {a..b})"
+  shows "f' = f''"
+proof-
   have *:"(\<lambda>x. x *\<^sub>R f') = (\<lambda>x. x *\<^sub>R f'')"
     apply(rule frechet_derivative_unique_within_closed_interval[of "a" "b"])
-    using assms(3-)[unfolded has_vector_derivative_def] using assms(1-2) by auto
-  show ?thesis proof(rule ccontr) assume "f' \<noteq> f''" moreover
-    hence "(\<lambda>x. x *\<^sub>R f') 1 = (\<lambda>x. x *\<^sub>R f'') 1" using * by (auto simp: fun_eq_iff)
-    ultimately show False unfolding o_def by auto qed qed
+    using assms(3-)[unfolded has_vector_derivative_def] using assms(1-2)
+    by auto
+  show ?thesis
+  proof(rule ccontr)
+    assume "f' \<noteq> f''"
+    moreover
+    hence "(\<lambda>x. x *\<^sub>R f') 1 = (\<lambda>x. x *\<^sub>R f'') 1"
+      using * by (auto simp: fun_eq_iff)
+    ultimately show False unfolding o_def by auto
+  qed
+qed
 
 lemma vector_derivative_at:
   shows "(f has_vector_derivative f') (at x) \<Longrightarrow> vector_derivative f (at x) = f'"
@@ -1302,8 +1804,10 @@
   unfolding vector_derivative_works[THEN sym] differentiable_def
   unfolding has_vector_derivative_def by auto
 
-lemma vector_derivative_within_closed_interval: fixes f::"real \<Rightarrow> 'a::ordered_euclidean_space"
-  assumes "a < b" "x \<in> {a..b}" "(f has_vector_derivative f') (at x within {a..b})"
+lemma vector_derivative_within_closed_interval:
+  fixes f::"real \<Rightarrow> 'a::ordered_euclidean_space"
+  assumes "a < b" and "x \<in> {a..b}"
+  assumes "(f has_vector_derivative f') (at x within {a..b})"
   shows "vector_derivative f (at x within {a..b}) = f'"
   apply(rule vector_derivative_unique_within_closed_interval)
   using vector_derivative_works[unfolded differentiable_def]
@@ -1320,71 +1824,95 @@
 lemma has_vector_derivative_id: "((\<lambda>x::real. x) has_vector_derivative 1) net"
   unfolding has_vector_derivative_def using has_derivative_id by auto
 
-lemma has_vector_derivative_cmul:  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net"
-  unfolding has_vector_derivative_def apply(drule has_derivative_cmul) by(auto simp add:algebra_simps)
+lemma has_vector_derivative_cmul:
+  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net"
+  unfolding has_vector_derivative_def apply(drule has_derivative_cmul)
+  by (auto simp add: algebra_simps)
 
-lemma has_vector_derivative_cmul_eq: assumes "c \<noteq> 0"
+lemma has_vector_derivative_cmul_eq:
+  assumes "c \<noteq> 0"
   shows "(((\<lambda>x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net \<longleftrightarrow> (f has_vector_derivative f') net)"
   apply rule apply(drule has_vector_derivative_cmul[where c="1/c"]) defer
   apply(rule has_vector_derivative_cmul) using assms by auto
 
 lemma has_vector_derivative_neg:
- "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. -(f x)) has_vector_derivative (- f')) net"
+  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. -(f x)) has_vector_derivative (- f')) net"
   unfolding has_vector_derivative_def apply(drule has_derivative_neg) by auto
 
 lemma has_vector_derivative_add:
-  assumes "(f has_vector_derivative f') net" "(g has_vector_derivative g') net"
+  assumes "(f has_vector_derivative f') net"
+  assumes "(g has_vector_derivative g') net"
   shows "((\<lambda>x. f(x) + g(x)) has_vector_derivative (f' + g')) net"
   using has_derivative_add[OF assms[unfolded has_vector_derivative_def]]
   unfolding has_vector_derivative_def unfolding scaleR_right_distrib by auto
 
 lemma has_vector_derivative_sub:
-  assumes "(f has_vector_derivative f') net" "(g has_vector_derivative g') net"
+  assumes "(f has_vector_derivative f') net"
+  assumes "(g has_vector_derivative g') net"
   shows "((\<lambda>x. f(x) - g(x)) has_vector_derivative (f' - g')) net"
   using has_derivative_sub[OF assms[unfolded has_vector_derivative_def]]
   unfolding has_vector_derivative_def scaleR_right_diff_distrib by auto
 
 lemma has_vector_derivative_bilinear_within:
-  assumes "(f has_vector_derivative f') (at x within s)" "(g has_vector_derivative g') (at x within s)" "bounded_bilinear h"
-  shows "((\<lambda>x. h (f x) (g x)) has_vector_derivative (h (f x) g' + h f' (g x))) (at x within s)" proof-
+  assumes "(f has_vector_derivative f') (at x within s)"
+  assumes "(g has_vector_derivative g') (at x within s)"
+  assumes "bounded_bilinear h"
+  shows "((\<lambda>x. h (f x) (g x)) has_vector_derivative (h (f x) g' + h f' (g x))) (at x within s)"
+proof-
   interpret bounded_bilinear h using assms by auto 
   show ?thesis using has_derivative_bilinear_within[OF assms(1-2)[unfolded has_vector_derivative_def], of h]
     unfolding o_def has_vector_derivative_def
-    using assms(3) unfolding scaleR_right scaleR_left scaleR_right_distrib by auto qed
+    using assms(3) unfolding scaleR_right scaleR_left scaleR_right_distrib
+    by auto
+qed
 
 lemma has_vector_derivative_bilinear_at:
-  assumes "(f has_vector_derivative f') (at x)" "(g has_vector_derivative g') (at x)" "bounded_bilinear h"
+  assumes "(f has_vector_derivative f') (at x)"
+  assumes "(g has_vector_derivative g') (at x)"
+  assumes "bounded_bilinear h"
   shows "((\<lambda>x. h (f x) (g x)) has_vector_derivative (h (f x) g' + h f' (g x))) (at x)"
   apply(rule has_vector_derivative_bilinear_within[where s=UNIV, unfolded within_UNIV]) using assms by auto
 
-lemma has_vector_derivative_at_within: "(f has_vector_derivative f') (at x) \<Longrightarrow> (f has_vector_derivative f') (at x within s)"
-  unfolding has_vector_derivative_def apply(rule has_derivative_at_within) by auto
+lemma has_vector_derivative_at_within:
+  "(f has_vector_derivative f') (at x) \<Longrightarrow> (f has_vector_derivative f') (at x within s)"
+  unfolding has_vector_derivative_def
+  by (rule has_derivative_at_within) auto
 
 lemma has_vector_derivative_transform_within:
-  assumes "0 < d" "x \<in> s" "\<forall>x'\<in>s. dist x' x < d \<longrightarrow> f x' = g x'" "(f has_vector_derivative f') (at x within s)"
+  assumes "0 < d" and "x \<in> s" and "\<forall>x'\<in>s. dist x' x < d \<longrightarrow> f x' = g x'"
+  assumes "(f has_vector_derivative f') (at x within s)"
   shows "(g has_vector_derivative f') (at x within s)"
-  using assms unfolding has_vector_derivative_def by(rule has_derivative_transform_within)
+  using assms unfolding has_vector_derivative_def
+  by (rule has_derivative_transform_within)
 
 lemma has_vector_derivative_transform_at:
-  assumes "0 < d" "\<forall>x'. dist x' x < d \<longrightarrow> f x' = g x'" "(f has_vector_derivative f') (at x)"
+  assumes "0 < d" and "\<forall>x'. dist x' x < d \<longrightarrow> f x' = g x'"
+  assumes "(f has_vector_derivative f') (at x)"
   shows "(g has_vector_derivative f') (at x)"
-  using assms unfolding has_vector_derivative_def by(rule has_derivative_transform_at)
+  using assms unfolding has_vector_derivative_def
+  by (rule has_derivative_transform_at)
 
 lemma has_vector_derivative_transform_within_open:
-  assumes "open s" "x \<in> s" "\<forall>y\<in>s. f y = g y" "(f has_vector_derivative f') (at x)"
+  assumes "open s" and "x \<in> s" and "\<forall>y\<in>s. f y = g y"
+  assumes "(f has_vector_derivative f') (at x)"
   shows "(g has_vector_derivative f') (at x)"
-  using assms unfolding has_vector_derivative_def by(rule has_derivative_transform_within_open)
+  using assms unfolding has_vector_derivative_def
+  by (rule has_derivative_transform_within_open)
 
 lemma vector_diff_chain_at:
-  assumes "(f has_vector_derivative f') (at x)" "(g has_vector_derivative g') (at (f x))"
+  assumes "(f has_vector_derivative f') (at x)"
+  assumes "(g has_vector_derivative g') (at (f x))"
   shows "((g \<circ> f) has_vector_derivative (f' *\<^sub>R g')) (at x)"
-  using assms(2) unfolding has_vector_derivative_def apply- apply(drule diff_chain_at[OF assms(1)[unfolded has_vector_derivative_def]])
+  using assms(2) unfolding has_vector_derivative_def apply-
+  apply(drule diff_chain_at[OF assms(1)[unfolded has_vector_derivative_def]])
   unfolding o_def scaleR.scaleR_left by auto
 
 lemma vector_diff_chain_within:
-  assumes "(f has_vector_derivative f') (at x within s)" "(g has_vector_derivative g') (at (f x) within f ` s)"
+  assumes "(f has_vector_derivative f') (at x within s)"
+  assumes "(g has_vector_derivative g') (at (f x) within f ` s)"
   shows "((g o f) has_vector_derivative (f' *\<^sub>R g')) (at x within s)"
-  using assms(2) unfolding has_vector_derivative_def apply- apply(drule diff_chain_within[OF assms(1)[unfolded has_vector_derivative_def]])
+  using assms(2) unfolding has_vector_derivative_def apply-
+  apply(drule diff_chain_within[OF assms(1)[unfolded has_vector_derivative_def]])
   unfolding o_def scaleR.scaleR_left by auto
 
 end
--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -1582,119 +1582,50 @@
 
 subsection{* Euclidean Spaces as Typeclass*}
 
-class real_basis = real_vector +
+class euclidean_space = real_inner +
+  fixes dimension :: "'a itself \<Rightarrow> nat"
   fixes basis :: "nat \<Rightarrow> 'a"
-  assumes span_basis: "span (range basis) = UNIV"
-  assumes dimension_exists: "\<exists>d>0.
-    basis ` {d..} = {0} \<and>
-    independent (basis ` {..<d}) \<and>
-    inj_on basis {..<d}"
-
-definition (in real_basis) dimension :: "'a itself \<Rightarrow> nat" where
-  "dimension x =
-    (THE d. basis ` {d..} = {0} \<and> independent (basis ` {..<d}) \<and> inj_on basis {..<d})"
+  assumes DIM_positive [intro]:
+    "0 < dimension TYPE('a)"
+  assumes basis_zero [simp]:
+    "dimension TYPE('a) \<le> i \<Longrightarrow> basis i = 0"
+  assumes basis_orthonormal:
+    "\<forall>i<dimension TYPE('a). \<forall>j<dimension TYPE('a).
+      inner (basis i) (basis j) = (if i = j then 1 else 0)"
+  assumes euclidean_all_zero:
+    "(\<forall>i<dimension TYPE('a). inner (basis i) x = 0) \<longleftrightarrow> (x = 0)"
 
 syntax "_type_dimension" :: "type => nat" ("(1DIM/(1'(_')))")
 
 translations "DIM('t)" == "CONST dimension (TYPE('t))"
 
-lemma (in real_basis) dimensionI:
-  assumes "\<And>d. \<lbrakk> 0 < d; basis ` {d..} = {0}; independent (basis ` {..<d});
-    inj_on basis {..<d} \<rbrakk> \<Longrightarrow> P d"
-  shows "P DIM('a)"
-proof -
-  obtain d where "0 < d" and d: "basis ` {d..} = {0} \<and>
-      independent (basis ` {..<d}) \<and> inj_on basis {..<d}" (is "?P d")
-    using dimension_exists by auto
-  show ?thesis unfolding dimension_def
-  proof (rule theI2)
-    fix d' assume "?P d'"
-    with d have "basis d' = 0" "basis d = 0" and
-      "d < d' \<Longrightarrow> basis d \<noteq> 0"
-      "d' < d \<Longrightarrow> basis d' \<noteq> 0"
-      using dependent_0 by auto
-    thus "d' = d" by (cases rule: linorder_cases) auto
-    moreover have "P d" using assms[of d] `0 < d` d by auto
-    ultimately show "P d'" by simp
-  next show "?P d" using `?P d` .
-  qed
-qed
-
-lemma (in real_basis) dimension_eq:
-  assumes "\<And>i. i < d \<Longrightarrow> basis i \<noteq> 0"
-  assumes "\<And>i. d \<le> i \<Longrightarrow> basis i = 0"
-  shows "DIM('a) = d"
-proof (rule dimensionI)
-  let ?b = "basis :: nat \<Rightarrow> 'a"
-  fix d' assume *: "?b ` {d'..} = {0}" "independent (?b ` {..<d'})"
-  show "d' = d"
-  proof (cases rule: linorder_cases)
-    assume "d' < d" hence "basis d' \<noteq> 0" using assms by auto
-    with * show ?thesis by auto
-  next
-    assume "d < d'" hence "basis d \<noteq> 0" using * dependent_0 by auto
-    with assms(2) `d < d'` show ?thesis by auto
-  qed
+lemma (in euclidean_space) dot_basis:
+  "inner (basis i) (basis j) = (if i = j \<and> i < DIM('a) then 1 else 0)"
+proof (cases "(i < DIM('a) \<and> j < DIM('a))")
+  case False
+  hence "inner (basis i) (basis j) = 0" by auto
+  thus ?thesis using False by auto
+next
+  case True thus ?thesis using basis_orthonormal by auto
 qed
 
-lemma (in real_basis)
-  shows basis_finite: "basis ` {DIM('a)..} = {0}"
-  and independent_basis: "independent (basis ` {..<DIM('a)})"
-  and DIM_positive[intro]: "(DIM('a) :: nat) > 0"
-  and basis_inj[simp, intro]: "inj_on basis {..<DIM('a)}"
-  by (auto intro!: dimensionI)
-
-lemma (in real_basis) basis_eq_0_iff: "basis j = 0 \<longleftrightarrow> DIM('a) \<le> j"
-proof
-  show "DIM('a) \<le> j \<Longrightarrow> basis j = 0" using basis_finite by auto
-next
-  have "j < DIM('a) \<Longrightarrow> basis j \<noteq> 0"
-    using independent_basis by (auto intro!: dependent_0)
-  thus "basis j = 0 \<Longrightarrow> DIM('a) \<le> j" unfolding not_le[symmetric] by blast
-qed
-
-lemma (in real_basis) range_basis:
-    "range basis = insert 0 (basis ` {..<DIM('a)})"
+lemma (in euclidean_space) basis_eq_0_iff [simp]:
+  "basis i = 0 \<longleftrightarrow> DIM('a) \<le> i"
 proof -
-  have *: "UNIV = {..<DIM('a)} \<union> {DIM('a)..}" by auto
-  show ?thesis unfolding * image_Un basis_finite by auto
+  have "inner (basis i) (basis i) = 0 \<longleftrightarrow> DIM('a) \<le> i"
+    by (simp add: dot_basis)
+  thus ?thesis by simp
 qed
 
-lemma (in real_basis) range_basis_finite[intro]:
-    "finite (range basis)"
-  unfolding range_basis by auto
-
-lemma (in real_basis) basis_neq_0[intro]:
-  assumes "i<DIM('a)" shows "(basis i) \<noteq> 0"
-proof(rule ccontr) assume "\<not> basis i \<noteq> (0::'a)"
-  hence "(0::'a) \<in> basis ` {..<DIM('a)}" using assms by auto
-  from dependent_0[OF this] show False using independent_basis by auto
-qed
-
-lemma (in real_basis) basis_zero[simp]:
-  assumes"i \<ge> DIM('a)" shows "basis i = 0"
-proof-
-  have "(basis i::'a) \<in> basis ` {DIM('a)..}" using assms by auto
-  thus ?thesis unfolding basis_finite by fastsimp
-qed
-
-lemma basis_representation:
-  "\<exists>u. x = (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R (v\<Colon>'a\<Colon>real_basis))"
-proof -
-  have "x\<in>UNIV" by auto from this[unfolded span_basis[THEN sym]]
-  have "\<exists>u. (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R v) = x"
-    unfolding range_basis span_insert_0 apply(subst (asm) span_finite) by auto
-  thus ?thesis by fastsimp
-qed
-
-lemma span_basis'[simp]:"span ((basis::nat=>'a) ` {..<DIM('a::real_basis)}) = UNIV"
-  apply(subst span_basis[symmetric]) unfolding range_basis by auto
-
-lemma card_basis[simp]:"card ((basis::nat=>'a) ` {..<DIM('a::real_basis)}) = DIM('a)"
-  apply(subst card_image) using basis_inj by auto
-
-lemma in_span_basis: "(x::'a::real_basis) \<in> span (basis ` {..<DIM('a)})"
-  unfolding span_basis' ..
+lemma (in euclidean_space) norm_basis [simp]:
+  "norm (basis i) = (if i < DIM('a) then 1 else 0)"
+  unfolding norm_eq_sqrt_inner dot_basis by simp
+
+lemma (in euclidean_space) basis_inj[simp, intro]: "inj_on basis {..<DIM('a)}"
+  by (rule inj_onI, rule ccontr, cut_tac i=x and j=y in dot_basis, simp)
+
+lemma (in euclidean_space) basis_finite: "basis ` {DIM('a)..} = {0}"
+  by (auto intro: image_eqI [where x="DIM('a)"])
 
 lemma independent_eq_inj_on:
   fixes D :: nat and f :: "nat \<Rightarrow> 'c::real_vector" assumes *: "inj_on f {..<D}"
@@ -1708,54 +1639,98 @@
     by (auto simp: eq setsum_reindex[OF inj])
 qed
 
-class real_basis_with_inner = real_inner + real_basis
-begin
-
-definition euclidean_component (infixl "$$" 90) where
-  "x $$ i = inner (basis i) x"
-
-definition Chi (binder "\<chi>\<chi> " 10) where
-  "(\<chi>\<chi> i. f i) = (\<Sum>i<DIM('a). f i *\<^sub>R basis i)"
-
-lemma basis_at_neq_0[intro]:
+lemma independent_basis:
+  "independent (basis ` {..<DIM('a)} :: 'a::euclidean_space set)"
+  unfolding independent_eq_inj_on [OF basis_inj]
+  apply clarify
+  apply (drule_tac f="inner (basis a)" in arg_cong)
+  apply (simp add: inner_right.setsum dot_basis)
+  done
+
+lemma dimensionI:
+  assumes "\<And>d. \<lbrakk> 0 < d; basis ` {d..} = {0::'a::euclidean_space};
+    independent (basis ` {..<d} :: 'a set);
+    inj_on (basis :: nat \<Rightarrow> 'a) {..<d} \<rbrakk> \<Longrightarrow> P d"
+  shows "P DIM('a::euclidean_space)"
+  using DIM_positive basis_finite independent_basis basis_inj
+  by (rule assms)
+
+lemma (in euclidean_space) dimension_eq:
+  assumes "\<And>i. i < d \<Longrightarrow> basis i \<noteq> 0"
+  assumes "\<And>i. d \<le> i \<Longrightarrow> basis i = 0"
+  shows "DIM('a) = d"
+proof (rule linorder_cases [of "DIM('a)" d])
+  assume "DIM('a) < d"
+  hence "basis DIM('a) \<noteq> 0" by (rule assms)
+  thus ?thesis by simp
+next
+  assume "d < DIM('a)"
+  hence "basis d \<noteq> 0" by simp
+  thus ?thesis by (simp add: assms)
+next
+  assume "DIM('a) = d" thus ?thesis .
+qed
+
+lemma (in euclidean_space) range_basis:
+    "range basis = insert 0 (basis ` {..<DIM('a)})"
+proof -
+  have *: "UNIV = {..<DIM('a)} \<union> {DIM('a)..}" by auto
+  show ?thesis unfolding * image_Un basis_finite by auto
+qed
+
+lemma (in euclidean_space) range_basis_finite[intro]:
+    "finite (range basis)"
+  unfolding range_basis by auto
+
+lemma (in euclidean_space) basis_neq_0 [intro]:
+  assumes "i<DIM('a)" shows "(basis i) \<noteq> 0"
+  using assms by simp
+
+subsubsection {* Projecting components *}
+
+definition (in euclidean_space) euclidean_component (infixl "$$" 90)
+  where "x $$ i = inner (basis i) x"
+
+lemma bounded_linear_euclidean_component:
+  "bounded_linear (\<lambda>x. euclidean_component x i)"
+  unfolding euclidean_component_def
+  by (rule inner.bounded_linear_right)
+
+interpretation euclidean_component:
+  bounded_linear "\<lambda>x. euclidean_component x i"
+  by (rule bounded_linear_euclidean_component)
+
+lemma euclidean_eqI:
+  fixes x y :: "'a::euclidean_space"
+  assumes "\<And>i. i < DIM('a) \<Longrightarrow> x $$ i = y $$ i" shows "x = y"
+proof -
+  from assms have "\<forall>i<DIM('a). (x - y) $$ i = 0"
+    by (simp add: euclidean_component.diff)
+  then show "x = y"
+    unfolding euclidean_component_def euclidean_all_zero by simp
+qed
+
+lemma euclidean_eq:
+  fixes x y :: "'a::euclidean_space"
+  shows "x = y \<longleftrightarrow> (\<forall>i<DIM('a). x $$ i = y $$ i)"
+  by (auto intro: euclidean_eqI)
+
+lemma (in euclidean_space) basis_component [simp]:
+  "basis i $$ j = (if i = j \<and> i < DIM('a) then 1 else 0)"
+  unfolding euclidean_component_def dot_basis by auto
+
+lemma (in euclidean_space) basis_at_neq_0 [intro]:
   "i < DIM('a) \<Longrightarrow> basis i $$ i \<noteq> 0"
-  unfolding euclidean_component_def by (auto intro!: basis_neq_0)
-
-lemma euclidean_component_ge[simp]:
+  by simp
+
+lemma (in euclidean_space) euclidean_component_ge [simp]:
   assumes "i \<ge> DIM('a)" shows "x $$ i = 0"
-  unfolding euclidean_component_def basis_zero[OF assms] by auto
+  unfolding euclidean_component_def basis_zero[OF assms] by simp
 
 lemma euclidean_scaleR:
   shows "(a *\<^sub>R x) $$ i = a * (x$$i)"
   unfolding euclidean_component_def by auto
 
-end
-
-interpretation euclidean_component: additive "\<lambda>x. euclidean_component x i"
-proof qed (simp add: euclidean_component_def inner_right.add)
-
-subsection{* Euclidean Spaces as Typeclass *}
-
-class euclidean_space = real_basis_with_inner +
-  assumes basis_orthonormal: "\<forall>i<DIM('a). \<forall>j<DIM('a).
-    inner (basis i) (basis j) = (if i = j then 1 else 0)"
-
-lemma (in euclidean_space) dot_basis:
-  "inner (basis i) (basis j) = (if i = j \<and> i<DIM('a) then 1 else 0)"
-proof (cases "(i < DIM('a) \<and> j < DIM('a))")
-  case False
-  hence "basis i = 0 \<or> basis j = 0"
-    using basis_finite by fastsimp
-  hence "inner (basis i) (basis j) = 0" by (rule disjE) simp_all
-  thus ?thesis using False by auto
-next
-  case True thus ?thesis using basis_orthonormal by auto
-qed
-
-lemma (in euclidean_space) basis_component[simp]:
-  "basis i $$ j = (if i = j \<and> i < DIM('a) then 1 else 0)"
-  unfolding euclidean_component_def dot_basis by auto
-
 lemmas euclidean_simps =
   euclidean_component.add
   euclidean_component.diff
@@ -1765,34 +1740,22 @@
   basis_component
 
 lemma euclidean_representation:
-  "(x\<Colon>'a\<Colon>euclidean_space) = (\<Sum>i\<in>{..<DIM('a)}. (x$$i) *\<^sub>R basis i)"
-proof-
-  from basis_representation[of x] guess u ..
-  hence *:"x = (\<Sum>i\<in>{..<DIM('a)}. u (basis i) *\<^sub>R (basis i))"
-    by (simp add: setsum_reindex)
-  show ?thesis apply(subst *)
-  proof(safe intro!: setsum_cong2)
-    fix i assume i: "i < DIM('a)"
-    hence "x$$i = (\<Sum>x<DIM('a). (if i = x then u (basis x) else 0))"
-      by (auto simp: euclidean_simps * intro!: setsum_cong)
-    also have "... = u (basis i)" using i by (auto simp: setsum_cases)
-    finally show "u (basis i) *\<^sub>R basis i = x $$ i *\<^sub>R basis i" by simp
-  qed
-qed
-
-lemma euclidean_eq:
-  fixes x y :: "'a\<Colon>euclidean_space"
-  shows "x = y \<longleftrightarrow> (\<forall>i<DIM('a). x$$i = y$$i)" (is "?l = ?r")
-proof safe
-  assume "\<forall>i<DIM('a). x $$ i = y $$ i"
-  thus "x = y"
-    by (subst (1 2) euclidean_representation) auto
-qed
-
-lemma euclidean_lambda_beta[simp]:
+  fixes x :: "'a::euclidean_space"
+  shows "x = (\<Sum>i<DIM('a). (x$$i) *\<^sub>R basis i)"
+  apply (rule euclidean_eqI)
+  apply (simp add: euclidean_component.setsum euclidean_component.scaleR)
+  apply (simp add: if_distrib setsum_delta cong: if_cong)
+  done
+
+subsubsection {* Binder notation for vectors *}
+
+definition (in euclidean_space) Chi (binder "\<chi>\<chi> " 10) where
+  "(\<chi>\<chi> i. f i) = (\<Sum>i<DIM('a). f i *\<^sub>R basis i)"
+
+lemma euclidean_lambda_beta [simp]:
   "((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ j = (if j < DIM('a) then f j else 0)"
-  by (auto simp: euclidean_simps Chi_def if_distrib setsum_cases
-           intro!: setsum_cong)
+  by (auto simp: euclidean_component.setsum euclidean_component.scaleR
+    Chi_def if_distrib setsum_cases intro!: setsum_cong)
 
 lemma euclidean_lambda_beta':
   "j < DIM('a) \<Longrightarrow> ((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ j = f j"
@@ -1803,7 +1766,7 @@
 
 lemma euclidean_beta_reduce[simp]:
   "(\<chi>\<chi> i. x $$ i) = (x::'a::euclidean_space)"
-  by (subst euclidean_eq) (simp add: euclidean_lambda_beta)
+  by (simp add: euclidean_eq)
 
 lemma euclidean_lambda_beta_0[simp]:
     "((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ 0 = f 0"
@@ -1821,6 +1784,34 @@
   finally show ?thesis .
 qed
 
+lemma span_basis: "span (range basis) = (UNIV :: 'a::euclidean_space set)"
+proof -
+  { fix x :: 'a
+    have "(\<Sum>i<DIM('a). (x $$ i) *\<^sub>R basis i) \<in> span (range basis :: 'a set)"
+      by (simp add: span_setsum span_mul span_superset)
+    hence "x \<in> span (range basis)"
+      by (simp only: euclidean_representation [symmetric])
+  } thus ?thesis by auto
+qed
+
+lemma basis_representation:
+  "\<exists>u. x = (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R (v\<Colon>'a\<Colon>euclidean_space))"
+proof -
+  have "x\<in>UNIV" by auto from this[unfolded span_basis[THEN sym]]
+  have "\<exists>u. (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R v) = x"
+    unfolding range_basis span_insert_0 apply(subst (asm) span_finite) by auto
+  thus ?thesis by fastsimp
+qed
+
+lemma span_basis'[simp]:"span ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = UNIV"
+  apply(subst span_basis[symmetric]) unfolding range_basis by auto
+
+lemma card_basis[simp]:"card ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = DIM('a)"
+  apply(subst card_image) using basis_inj by auto
+
+lemma in_span_basis: "(x::'a::euclidean_space) \<in> span (basis ` {..<DIM('a)})"
+  unfolding span_basis' ..
+
 lemma norm_basis[simp]:"norm (basis i::'a::euclidean_space) = (if i<DIM('a) then 1 else 0)"
   unfolding norm_eq_sqrt_inner dot_basis by auto
 
@@ -3299,31 +3290,27 @@
 
 subsection "Instantiate @{typ real} and @{typ complex} as typeclass @{text ordered_euclidean_space}."
 
-instantiation real :: real_basis_with_inner
+instantiation real :: euclidean_space
 begin
-definition [simp]: "basis i = (if i = 0 then (1::real) else 0)"
+
+definition
+  "dimension (t::real itself) = 1"
+
+definition [simp]:
+  "basis i = (if i = 0 then 1 else (0::real))"
+
+lemma DIM_real [simp]: "DIM(real) = 1"
+  by (rule dimension_real_def)
+
+instance
+  by default simp+
+
+end
 
 lemma basis_real_range: "basis ` {..<1} = {1::real}" by auto
 
-instance proof
-  let ?b = "basis::nat \<Rightarrow> real"
-
-  from basis_real_range have "independent (?b ` {..<1})" by auto
-  thus "\<exists>d>0. ?b ` {d..} = {0} \<and> independent (?b ` {..<d}) \<and> inj_on ?b {..<d}"
-    by (auto intro!: exI[of _ 1] inj_onI)
-
-  { fix x::real
-    have "x \<in> span (range ?b)"
-      using span_mul[of 1 "range ?b" x] span_clauses(1)[of 1 "range ?b"]
-      by auto }
-  thus "span (range ?b) = UNIV" by auto
-qed
-end
-
-lemma DIM_real[simp]: "DIM(real) = 1"
-  by (rule dimension_eq) (auto simp: basis_real_def)
-
-instance real::ordered_euclidean_space proof qed(auto simp add:euclidean_component_def)
+instance real::ordered_euclidean_space
+  by default (auto simp add: euclidean_component_def)
 
 lemma Eucl_real_simps[simp]:
   "(x::real) $$ 0 = x"
@@ -3333,177 +3320,89 @@
   unfolding euclidean_lambda_beta'
   unfolding euclidean_component_def by auto
 
-instantiation complex :: real_basis_with_inner
+instantiation complex :: euclidean_space
 begin
-definition "basis i = (if i = 0 then 1 else if i = 1 then ii else 0)"
-
-lemma complex_basis[simp]:"basis 0 = (1::complex)" "basis 1 = ii" "basis (Suc 0) = ii"
+
+definition
+  "dimension (t::complex itself) = 2"
+
+definition
+  "basis i = (if i = 0 then 1 else if i = 1 then ii else 0)"
+
+lemma all_less_Suc: "(\<forall>i<Suc n. P i) \<longleftrightarrow> (\<forall>i<n. P i) \<and> P n"
+  by (auto simp add: less_Suc_eq)
+
+instance proof
+  show "0 < DIM(complex)"
+    unfolding dimension_complex_def by simp
+next
+  fix i :: nat
+  assume "DIM(complex) \<le> i" thus "basis i = (0::complex)"
+    unfolding dimension_complex_def basis_complex_def by simp
+next
+  show "\<forall>i<DIM(complex). \<forall>j<DIM(complex).
+    inner (basis i::complex) (basis j) = (if i = j then 1 else 0)"
+    unfolding dimension_complex_def basis_complex_def inner_complex_def
+    by (simp add: numeral_2_eq_2 all_less_Suc)
+next
+  fix x :: complex
+  show "(\<forall>i<DIM(complex). inner (basis i) x = 0) \<longleftrightarrow> x = 0"
+    unfolding dimension_complex_def basis_complex_def inner_complex_def
+    by (simp add: numeral_2_eq_2 all_less_Suc complex_eq_iff)
+qed
+
+end
+
+lemma complex_basis[simp]:
+  shows "basis 0 = (1::complex)" and "basis 1 = ii" and "basis (Suc 0) = ii"
   unfolding basis_complex_def by auto
 
-instance
-proof
-  let ?b = "basis::nat \<Rightarrow> complex"
-  have [simp]: "(range ?b) = {0, basis 0, basis 1}"
-    by (auto simp: basis_complex_def split: split_if_asm)
-  { fix z::complex
-    have "z \<in> span (range ?b)"
-      by (auto simp: span_finite complex_equality
-        intro!: exI[of _ "\<lambda>i. if i = 1 then Re z else if i = ii then Im z else 0"]) }
-  thus "span (range ?b) = UNIV" by auto
-
-  have "{..<2} = {0, 1::nat}" by auto
-  hence *: "?b ` {..<2} = {1, ii}"
-    by (auto simp add: basis_complex_def)
-  moreover have "1 \<notin> span {\<i>}"
-    by (simp add: span_finite complex_equality complex_scaleR_def)
-  hence "independent (?b ` {..<2})"
-    by (simp add: * basis_complex_def independent_empty independent_insert)
-  ultimately show "\<exists>d>0. ?b ` {d..} = {0} \<and> independent (?b ` {..<d}) \<and> inj_on ?b {..<d}"
-    by (auto intro!: exI[of _ 2] inj_onI simp: basis_complex_def split: split_if_asm)
-qed
-end
-
 lemma DIM_complex[simp]: "DIM(complex) = 2"
-  by (rule dimension_eq) (auto simp: basis_complex_def)
-
-instance complex :: euclidean_space
-  proof qed (auto simp add: basis_complex_def inner_complex_def)
+  by (rule dimension_complex_def)
 
 section {* Products Spaces *}
 
-instantiation prod :: (real_basis, real_basis) real_basis
+instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
 begin
 
-definition "basis i = (if i < DIM('a) then (basis i, 0) else (0, basis (i - DIM('a))))"
-
-instance
-proof
-  let ?b = "basis :: nat \<Rightarrow> 'a \<times> 'b"
-  let ?b_a = "basis :: nat \<Rightarrow> 'a"
-  let ?b_b = "basis :: nat \<Rightarrow> 'b"
-
-  note image_range =
-    image_add_atLeastLessThan[symmetric, of 0 "DIM('a)" "DIM('b)", simplified]
-
-  have split_range:
-    "{..<DIM('b) + DIM('a)} = {..<DIM('a)} \<union> {DIM('a)..<DIM('b) + DIM('a)}"
-    by auto
-  have *: "?b ` {DIM('a)..<DIM('b) + DIM('a)} = {0} \<times> (?b_b ` {..<DIM('b)})"
-    "?b ` {..<DIM('a)} = (?b_a ` {..<DIM('a)}) \<times> {0}"
-    unfolding image_range image_image basis_prod_def_raw range_basis
-    by (auto simp: zero_prod_def basis_eq_0_iff)
-  hence b_split:
-    "?b ` {..<DIM('b) + DIM('a)} = (?b_a ` {..<DIM('a)}) \<times> {0} \<union> {0} \<times> (?b_b ` {..<DIM('b)})" (is "_ = ?prod")
-    by (subst split_range) (simp add: image_Un)
-
-  have b_0: "?b ` {DIM('b) + DIM('a)..} = {0}" unfolding basis_prod_def_raw
-    by (auto simp: zero_prod_def image_iff basis_eq_0_iff elim!: ballE[of _ _ "DIM('a) + DIM('b)"])
-
-  have split_UNIV:
-    "UNIV = {..<DIM('b) + DIM('a)} \<union> {DIM('b)+DIM('a)..}"
-    by auto
-
-  have range_b: "range ?b = ?prod \<union> {0}"
-    by (subst split_UNIV) (simp add: image_Un b_split b_0)
-
-  have prod: "\<And>f A B. setsum f (A \<times> B) = (\<Sum>a\<in>A. \<Sum>b\<in>B. f (a, b))"
-    by (simp add: setsum_cartesian_product)
-
-  show "span (range ?b) = UNIV"
-    unfolding span_explicit range_b
-  proof safe
-    fix a::'a and b::'b
-    from in_span_basis[of a] in_span_basis[of b]
-    obtain Sa ua Sb ub where span:
-        "finite Sa" "Sa \<subseteq> basis ` {..<DIM('a)}" "a = (\<Sum>v\<in>Sa. ua v *\<^sub>R v)"
-        "finite Sb" "Sb \<subseteq> basis ` {..<DIM('b)}" "b = (\<Sum>v\<in>Sb. ub v *\<^sub>R v)"
-      unfolding span_explicit by auto
-
-    let ?S = "((Sa - {0}) \<times> {0} \<union> {0} \<times> (Sb - {0}))"
-    have *:
-      "?S \<inter> {v. fst v = 0} \<inter> {v. snd v = 0} = {}"
-      "?S \<inter> - {v. fst v = 0} \<inter> {v. snd v = 0} = (Sa - {0}) \<times> {0}"
-      "?S \<inter> {v. fst v = 0} \<inter> - {v. snd v = 0} = {0} \<times> (Sb - {0})"
-      by (auto simp: zero_prod_def)
-    show "\<exists>S u. finite S \<and> S \<subseteq> ?prod \<union> {0} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = (a, b)"
-      apply (rule exI[of _ ?S])
-      apply (rule exI[of _ "\<lambda>(v, w). (if w = 0 then ua v else 0) + (if v = 0 then ub w else 0)"])
-      using span
-      apply (simp add: prod_case_unfold setsum_addf if_distrib cond_application_beta setsum_cases prod *)
-      by (auto simp add: setsum_prod intro!: setsum_mono_zero_cong_left)
-  qed simp
-
-  show "\<exists>d>0. ?b ` {d..} = {0} \<and> independent (?b ` {..<d}) \<and> inj_on ?b {..<d}"
-    apply (rule exI[of _ "DIM('b) + DIM('a)"]) unfolding b_0
-  proof (safe intro!: DIM_positive del: notI)
-    show inj_on: "inj_on ?b {..<DIM('b) + DIM('a)}" unfolding split_range
-      using inj_on_iff[OF basis_inj[where 'a='a]] inj_on_iff[OF basis_inj[where 'a='b]]
-      by (auto intro!: inj_onI simp: basis_prod_def basis_eq_0_iff)
-
-    show "independent (?b ` {..<DIM('b) + DIM('a)})"
-      unfolding independent_eq_inj_on[OF inj_on]
-    proof safe
-      fix i u assume i_upper: "i < DIM('b) + DIM('a)" and
-          "(\<Sum>j\<in>{..<DIM('b) + DIM('a)} - {i}. u (?b j) *\<^sub>R ?b j) = ?b i" (is "?SUM = _")
-      let ?left = "{..<DIM('a)}" and ?right = "{DIM('a)..<DIM('b) + DIM('a)}"
-      show False
-      proof cases
-        assume "i < DIM('a)"
-        hence "(basis i, 0) = ?SUM" unfolding `?SUM = ?b i` unfolding basis_prod_def by auto
-        also have "\<dots> = (\<Sum>j\<in>?left - {i}. u (?b j) *\<^sub>R ?b j) +
-          (\<Sum>j\<in>?right. u (?b j) *\<^sub>R ?b j)"
-          using `i < DIM('a)` by (subst setsum_Un_disjoint[symmetric]) (auto intro!: setsum_cong)
-        also have "\<dots> =  (\<Sum>j\<in>?left - {i}. u (?b_a j, 0) *\<^sub>R (?b_a j, 0)) +
-          (\<Sum>j\<in>?right. u (0, ?b_b (j-DIM('a))) *\<^sub>R (0, ?b_b (j-DIM('a))))"
-          unfolding basis_prod_def by auto
-        finally have "basis i = (\<Sum>j\<in>?left - {i}. u (?b_a j, 0) *\<^sub>R ?b_a j)"
-          by (simp add: setsum_prod)
-        moreover
-        note independent_basis[where 'a='a, unfolded independent_eq_inj_on[OF basis_inj]]
-        note this[rule_format, of i "\<lambda>v. u (v, 0)"]
-        ultimately show False using `i < DIM('a)` by auto
-      next
-        let ?i = "i - DIM('a)"
-        assume not: "\<not> i < DIM('a)" hence "DIM('a) \<le> i" by auto
-        hence "?i < DIM('b)" using `i < DIM('b) + DIM('a)` by auto
-
-        have inj_on: "inj_on (\<lambda>j. j - DIM('a)) {DIM('a)..<DIM('b) + DIM('a)}"
-          by (auto intro!: inj_onI)
-        with i_upper not have *: "{..<DIM('b)} - {?i} = (\<lambda>j. j-DIM('a))`(?right - {i})"
-          by (auto simp: inj_on_image_set_diff image_minus_const_atLeastLessThan_nat)
-
-        have "(0, basis ?i) = ?SUM" unfolding `?SUM = ?b i`
-          unfolding basis_prod_def using not `?i < DIM('b)` by auto
-        also have "\<dots> = (\<Sum>j\<in>?left. u (?b j) *\<^sub>R ?b j) +
-          (\<Sum>j\<in>?right - {i}. u (?b j) *\<^sub>R ?b j)"
-          using not by (subst setsum_Un_disjoint[symmetric]) (auto intro!: setsum_cong)
-        also have "\<dots> =  (\<Sum>j\<in>?left. u (?b_a j, 0) *\<^sub>R (?b_a j, 0)) +
-          (\<Sum>j\<in>?right - {i}. u (0, ?b_b (j-DIM('a))) *\<^sub>R (0, ?b_b (j-DIM('a))))"
-          unfolding basis_prod_def by auto
-        finally have "basis ?i = (\<Sum>j\<in>{..<DIM('b)} - {?i}. u (0, ?b_b j) *\<^sub>R ?b_b j)"
-          unfolding *
-          by (subst setsum_reindex[OF inj_on[THEN subset_inj_on]])
-             (auto simp: setsum_prod)
-        moreover
-        note independent_basis[where 'a='b, unfolded independent_eq_inj_on[OF basis_inj]]
-        note this[rule_format, of ?i "\<lambda>v. u (0, v)"]
-        ultimately show False using `?i < DIM('b)` by auto
-      qed
-    qed
-  qed
+definition
+  "dimension (t::('a \<times> 'b) itself) = DIM('a) + DIM('b)"
+
+definition
+  "basis i = (if i < DIM('a) then (basis i, 0) else (0, basis (i - DIM('a))))"
+
+lemma all_less_sum:
+  fixes m n :: nat
+  shows "(\<forall>i<(m + n). P i) \<longleftrightarrow> (\<forall>i<m. P i) \<and> (\<forall>i<n. P (m + i))"
+  by (induct n, simp, simp add: all_less_Suc)
+
+instance proof
+  show "0 < DIM('a \<times> 'b)"
+    unfolding dimension_prod_def by (intro add_pos_pos DIM_positive)
+next
+  fix i :: nat
+  assume "DIM('a \<times> 'b) \<le> i" thus "basis i = (0::'a \<times> 'b)"
+    unfolding dimension_prod_def basis_prod_def zero_prod_def
+    by simp
+next
+  show "\<forall>i<DIM('a \<times> 'b). \<forall>j<DIM('a \<times> 'b).
+    inner (basis i::'a \<times> 'b) (basis j) = (if i = j then 1 else 0)"
+    unfolding dimension_prod_def basis_prod_def inner_prod_def
+    unfolding all_less_sum prod_eq_iff
+    by (simp add: basis_orthonormal)
+next
+  fix x :: "'a \<times> 'b"
+  show "(\<forall>i<DIM('a \<times> 'b). inner (basis i) x = 0) \<longleftrightarrow> x = 0"
+    unfolding dimension_prod_def basis_prod_def inner_prod_def
+    unfolding all_less_sum prod_eq_iff
+    by (simp add: euclidean_all_zero)
 qed
+
 end
 
-lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('b::real_basis) + DIM('a::real_basis)"
-  by (rule dimension_eq) (auto simp: basis_prod_def zero_prod_def basis_eq_0_iff)
-
-instance prod :: (euclidean_space, euclidean_space) euclidean_space
-proof (default, safe)
-  let ?b = "basis :: nat \<Rightarrow> 'a \<times> 'b"
-  fix i j assume "i < DIM('a \<times> 'b)" "j < DIM('a \<times> 'b)"
-  thus "?b i \<bullet> ?b j = (if i = j then 1 else 0)"
-    unfolding basis_prod_def by (auto simp: dot_basis)
-qed
+lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('b::euclidean_space) + DIM('a::euclidean_space)"
+  (* FIXME: why this orientation? Why not "DIM('a) + DIM('b)" ? *)
+  unfolding dimension_prod_def by (rule add_commute)
 
 instantiation prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space
 begin
--- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -248,7 +248,7 @@
     show "eventually (\<lambda>x. a * X x \<in> S) net"
       by (rule eventually_mono[OF _ *]) auto
   qed
-qed auto
+qed (auto intro: tendsto_const)
 
 lemma ereal_lim_uminus:
   fixes X :: "'a \<Rightarrow> ereal" shows "((\<lambda>i. - X i) ---> -L) net \<longleftrightarrow> (X ---> L) net"
@@ -460,12 +460,12 @@
   assumes inc: "incseq X" and lim: "X ----> L"
   shows "X N \<le> L"
   using inc
-  by (intro ereal_lim_mono[of N, OF _ Lim_const lim]) (simp add: incseq_def)
+  by (intro ereal_lim_mono[of N, OF _ tendsto_const lim]) (simp add: incseq_def)
 
 lemma decseq_ge_ereal: assumes dec: "decseq X"
   and lim: "X ----> (L::ereal)" shows "X N >= L"
   using dec
-  by (intro ereal_lim_mono[of N, OF _ lim Lim_const]) (simp add: decseq_def)
+  by (intro ereal_lim_mono[of N, OF _ lim tendsto_const]) (simp add: decseq_def)
 
 lemma liminf_bounded_open:
   fixes x :: "nat \<Rightarrow> ereal"
@@ -519,7 +519,7 @@
 lemma lim_ereal_increasing: assumes "\<And>n m. n >= m \<Longrightarrow> f n >= f m"
   obtains l where "f ----> (l::ereal)"
 proof(cases "f = (\<lambda>x. - \<infinity>)")
-  case True then show thesis using Lim_const[of "- \<infinity>" sequentially] by (intro that[of "-\<infinity>"]) auto
+  case True then show thesis using tendsto_const[of "- \<infinity>" sequentially] by (intro that[of "-\<infinity>"]) auto
 next
   case False
   from this obtain N where N_def: "f N > (-\<infinity>)" by (auto simp: fun_eq_iff)
@@ -1138,7 +1138,7 @@
       by (induct i) (insert assms, auto) }
   note this[simp]
   show ?thesis unfolding sums_def
-    by (rule LIMSEQ_offset[of _ n]) (auto simp add: atLeast0LessThan)
+    by (rule LIMSEQ_offset[of _ n]) (auto simp add: atLeast0LessThan intro: tendsto_const)
 qed
 
 lemma suminf_finite:
@@ -1298,4 +1298,4 @@
     apply (subst SUP_commute) ..
 qed
 
-end
\ No newline at end of file
+end
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -4476,7 +4476,7 @@
   "bounded {integral {a..b} (f k) | k . k \<in> UNIV}"
   shows "g integrable_on {a..b} \<and> ((\<lambda>k. integral ({a..b}) (f k)) ---> integral ({a..b}) g) sequentially"
 proof(case_tac[!] "content {a..b} = 0") assume as:"content {a..b} = 0"
-  show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using Lim_const by auto
+  show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using tendsto_const by auto
 next assume ab:"content {a..b} \<noteq> 0"
   have fg:"\<forall>x\<in>{a..b}. \<forall> k. (f k x) $$ 0 \<le> (g x) $$ 0"
   proof safe case goal1 note assms(3)[rule_format,OF this]
@@ -4631,7 +4631,8 @@
     proof(rule monotone_convergence_interval,safe)
       case goal1 show ?case using int .
     next case goal2 thus ?case apply-apply(cases "x\<in>s") using assms(3) by auto
-    next case goal3 thus ?case apply-apply(cases "x\<in>s") using assms(4) by auto
+    next case goal3 thus ?case apply-apply(cases "x\<in>s")
+        using assms(4) by (auto intro: tendsto_const)
     next case goal4 note * = integral_nonneg
       have "\<And>k. norm (integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) \<le> norm (integral s (f k))"
         unfolding real_norm_def apply(subst abs_of_nonneg) apply(rule *[OF int])
@@ -4681,13 +4682,13 @@
   proof- case goal1 thus ?case using *[of x 0 "Suc k"] by auto
   next case goal2 thus ?case apply(rule integrable_sub) using assms(1) by auto
   next case goal3 thus ?case using *[of x "Suc k" "Suc (Suc k)"] by auto
-  next case goal4 thus ?case apply-apply(rule Lim_sub) 
-      using seq_offset[OF assms(3)[rule_format],of x 1] by auto
+  next case goal4 thus ?case apply-apply(rule tendsto_diff) 
+      using seq_offset[OF assms(3)[rule_format],of x 1] by (auto intro: tendsto_const)
   next case goal5 thus ?case using assms(4) unfolding bounded_iff
       apply safe apply(rule_tac x="a + norm (integral s (\<lambda>x. f 0 x))" in exI)
       apply safe apply(erule_tac x="integral s (\<lambda>x. f (Suc k) x)" in ballE) unfolding sub
       apply(rule order_trans[OF norm_triangle_ineq4]) by auto qed
-  note conjunctD2[OF this] note Lim_add[OF this(2) Lim_const[of "integral s (f 0)"]]
+  note conjunctD2[OF this] note tendsto_add[OF this(2) tendsto_const[of "integral s (f 0)"]]
     integrable_add[OF this(1) assms(1)[rule_format,of 0]]
   thus ?thesis unfolding sub apply-apply rule defer apply(subst(asm) integral_sub)
     using assms(1) apply auto apply(rule seq_offset_rev[where k=1]) by auto qed
@@ -4702,11 +4703,11 @@
     apply(rule_tac x=k in exI) unfolding integral_neg[OF assm(1)] by auto
   have "(\<lambda>x. - g x) integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. - f k x))
     ---> integral s (\<lambda>x. - g x))  sequentially" apply(rule monotone_convergence_increasing)
-    apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule Lim_neg)
+    apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule tendsto_minus)
     apply(rule assm,assumption) unfolding * apply(rule bounded_scaling) using assm by auto
   note * = conjunctD2[OF this]
   show ?thesis apply rule using integrable_neg[OF *(1)] defer
-    using Lim_neg[OF *(2)] apply- unfolding integral_neg[OF assm(1)]
+    using tendsto_minus[OF *(2)] apply- unfolding integral_neg[OF assm(1)]
     unfolding integral_neg[OF *(1),THEN sym] by auto qed
 
 subsection {* absolute integrability (this is the same as Lebesgue integrability). *}
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -473,29 +473,15 @@
 using islimpt_UNIV [of x]
 by (simp add: islimpt_approachable)
 
-instance real :: perfect_space
-apply default
-apply (rule islimpt_approachable [THEN iffD2])
-apply (clarify, rule_tac x="x + e/2" in bexI)
-apply (auto simp add: dist_norm)
-done
-
 instance euclidean_space \<subseteq> perfect_space
-proof fix x::'a
+proof
+  fix x :: 'a
   { fix e :: real assume "0 < e"
-    def a \<equiv> "x $$ 0"
-    have "a islimpt UNIV" by (rule islimpt_UNIV)
-    with `0 < e` obtain b where "b \<noteq> a" and "dist b a < e"
-      unfolding islimpt_approachable by auto
-    def y \<equiv> "\<chi>\<chi> i. if i = 0 then b else x$$i :: 'a"
-    from `b \<noteq> a` have "y \<noteq> x" unfolding a_def y_def apply(subst euclidean_eq) apply safe
-      apply(erule_tac x=0 in allE) using DIM_positive[where 'a='a] by auto
-
-    have *:"(\<Sum>i<DIM('a). (dist (y $$ i) (x $$ i))\<twosuperior>) = (\<Sum>i\<in>{0}. (dist (y $$ i) (x $$ i))\<twosuperior>)"
-      apply(rule setsum_mono_zero_right) unfolding y_def by auto
-    from `dist b a < e` have "dist y x < e"
-      apply(subst euclidean_dist_l2)
-      unfolding setL2_def * unfolding y_def a_def using `0 < e` by auto
+    def y \<equiv> "x + scaleR (e/2) (sgn (basis 0))"
+    from `0 < e` have "y \<noteq> x"
+      unfolding y_def by (simp add: sgn_zero_iff basis_eq_0_iff DIM_positive)
+    from `0 < e` have "dist y x < e"
+      unfolding y_def by (simp add: dist_norm norm_sgn)
     from `y \<noteq> x` and `dist y x < e`
     have "\<exists>y\<in>UNIV. y \<noteq> x \<and> dist y x < e" by auto
   }
@@ -1237,62 +1223,15 @@
   thus ?lhs unfolding islimpt_approachable by auto
 qed
 
-text{* Basic arithmetical combining theorems for limits. *}
-
-lemma Lim_linear:
-  assumes "(f ---> l) net" "bounded_linear h"
-  shows "((\<lambda>x. h (f x)) ---> h l) net"
-using `bounded_linear h` `(f ---> l) net`
-by (rule bounded_linear.tendsto)
-
-lemma Lim_ident_at: "((\<lambda>x. x) ---> a) (at a)"
-  unfolding tendsto_def Limits.eventually_at_topological by fast
-
-lemma Lim_const[intro]: "((\<lambda>x. a) ---> a) net" by (rule tendsto_const)
-
-lemma Lim_cmul[intro]:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> l) net ==> ((\<lambda>x. c *\<^sub>R f x) ---> c *\<^sub>R l) net"
-  by (intro tendsto_intros)
-
-lemma Lim_neg:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> l) net ==> ((\<lambda>x. -(f x)) ---> -l) net"
-  by (rule tendsto_minus)
-
-lemma Lim_add: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" shows
- "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) + g(x)) ---> l + m) net"
-  by (rule tendsto_add)
-
-lemma Lim_sub:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) ---> l - m) net"
-  by (rule tendsto_diff)
-
-lemma Lim_mul:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  assumes "(c ---> d) net"  "(f ---> l) net"
-  shows "((\<lambda>x. c(x) *\<^sub>R f x) ---> (d *\<^sub>R l)) net"
-  using assms by (rule scaleR.tendsto)
-
-lemma Lim_inv:
+lemma Lim_inv: (* TODO: delete *)
   fixes f :: "'a \<Rightarrow> real" and A :: "'a filter"
   assumes "(f ---> l) A" and "l \<noteq> 0"
   shows "((inverse o f) ---> inverse l) A"
   unfolding o_def using assms by (rule tendsto_inverse)
 
-lemma Lim_vmul:
-  fixes c :: "'a \<Rightarrow> real" and v :: "'b::real_normed_vector"
-  shows "(c ---> d) net ==> ((\<lambda>x. c(x) *\<^sub>R v) ---> d *\<^sub>R v) net"
-  by (intro tendsto_intros)
-
 lemma Lim_null:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) ---> 0) net" by (simp add: Lim dist_norm)
-
-lemma Lim_null_norm:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> 0) net \<longleftrightarrow> ((\<lambda>x. norm(f x)) ---> 0) net"
+  shows "(f ---> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) ---> 0) net"
   by (simp add: Lim dist_norm)
 
 lemma Lim_null_comparison:
@@ -1311,16 +1250,6 @@
     using assms `e>0` unfolding tendsto_iff by auto
 qed
 
-lemma Lim_component:
-  fixes f :: "'a \<Rightarrow> ('a::euclidean_space)"
-  shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $$i) ---> l$$i) net"
-  unfolding tendsto_iff
-  apply (clarify)
-  apply (drule spec, drule (1) mp)
-  apply (erule eventually_elim1)
-  apply (erule le_less_trans [OF dist_nth_le])
-  done
-
 lemma Lim_transform_bound:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
   fixes g :: "'a \<Rightarrow> 'c::real_normed_vector"
@@ -1436,8 +1365,6 @@
   unfolding tendsto_def Limits.eventually_within eventually_at_topological
   by auto
 
-lemmas Lim_intros = Lim_add Lim_const Lim_sub Lim_cmul Lim_vmul Lim_within_id
-
 lemma Lim_at_id: "(id ---> a) (at a)"
 apply (subst within_UNIV[symmetric]) by (simp add: Lim_within_id)
 
@@ -1492,10 +1419,10 @@
 unfolding netlimit_def
 apply (rule some_equality)
 apply (rule Lim_at_within)
-apply (rule Lim_ident_at)
+apply (rule LIM_ident)
 apply (erule tendsto_unique [OF assms])
 apply (rule Lim_at_within)
-apply (rule Lim_ident_at)
+apply (rule LIM_ident)
 done
 
 lemma netlimit_at:
@@ -1512,8 +1439,8 @@
   assumes "((\<lambda>x. f x - g x) ---> 0) net" "(f ---> l) net"
   shows "(g ---> l) net"
 proof-
-  from assms have "((\<lambda>x. f x - g x - f x) ---> 0 - l) net" using Lim_sub[of "\<lambda>x. f x - g x" 0 net f l] by auto
-  thus "?thesis" using Lim_neg [of "\<lambda> x. - g x" "-l" net] by auto
+  from assms have "((\<lambda>x. f x - g x - f x) ---> 0 - l) net" using tendsto_diff[of "\<lambda>x. f x - g x" 0 net f l] by auto
+  thus "?thesis" using tendsto_minus [of "\<lambda> x. - g x" "-l" net] by auto
 qed
 
 lemma Lim_transform_eventually:
@@ -1606,7 +1533,7 @@
 proof
   assume "?lhs" moreover
   { assume "l \<in> S"
-    hence "?rhs" using Lim_const[of l sequentially] by auto
+    hence "?rhs" using tendsto_const[of l sequentially] by auto
   } moreover
   { assume "l islimpt S"
     hence "?rhs" unfolding islimpt_sequential by auto
@@ -2823,7 +2750,7 @@
         by (rule infinite_enumerate)
       then obtain r where "subseq r" and fr: "\<forall>n. f (r n) = l" by auto
       hence "subseq r \<and> ((f \<circ> r) ---> l) sequentially"
-        unfolding o_def by (simp add: fr Lim_const)
+        unfolding o_def by (simp add: fr tendsto_const)
       hence "\<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
         by - (rule exI)
       from f have "\<forall>n. f (r n) \<in> s" by simp
@@ -3611,7 +3538,7 @@
                     \<longrightarrow> ((\<lambda>n. f(x n) - f(y n)) ---> 0) sequentially)" (is "?lhs = ?rhs")
 (* BH: maybe the previous lemma should replace this one? *)
 unfolding uniformly_continuous_on_sequentially'
-unfolding dist_norm Lim_null_norm [symmetric] ..
+unfolding dist_norm tendsto_norm_zero_iff ..
 
 text{* The usual transformation theorems. *}
 
@@ -3642,34 +3569,34 @@
 text{* Combination results for pointwise continuity. *}
 
 lemma continuous_const: "continuous net (\<lambda>x. c)"
-  by (auto simp add: continuous_def Lim_const)
+  by (auto simp add: continuous_def tendsto_const)
 
 lemma continuous_cmul:
   fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   shows "continuous net f ==> continuous net (\<lambda>x. c *\<^sub>R f x)"
-  by (auto simp add: continuous_def Lim_cmul)
+  by (auto simp add: continuous_def intro: tendsto_intros)
 
 lemma continuous_neg:
   fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   shows "continuous net f ==> continuous net (\<lambda>x. -(f x))"
-  by (auto simp add: continuous_def Lim_neg)
+  by (auto simp add: continuous_def tendsto_minus)
 
 lemma continuous_add:
   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   shows "continuous net f \<Longrightarrow> continuous net g \<Longrightarrow> continuous net (\<lambda>x. f x + g x)"
-  by (auto simp add: continuous_def Lim_add)
+  by (auto simp add: continuous_def tendsto_add)
 
 lemma continuous_sub:
   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   shows "continuous net f \<Longrightarrow> continuous net g \<Longrightarrow> continuous net (\<lambda>x. f x - g x)"
-  by (auto simp add: continuous_def Lim_sub)
+  by (auto simp add: continuous_def tendsto_diff)
 
 
 text{* Same thing for setwise continuity. *}
 
 lemma continuous_on_const:
  "continuous_on s (\<lambda>x. c)"
-  unfolding continuous_on_def by auto
+  unfolding continuous_on_def by (auto intro: tendsto_intros)
 
 lemma continuous_on_cmul:
   fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
@@ -3706,11 +3633,11 @@
 proof-
   { fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
     hence "((\<lambda>n. c *\<^sub>R f (x n) - c *\<^sub>R f (y n)) ---> 0) sequentially"
-      using Lim_cmul[of "(\<lambda>n. f (x n) - f (y n))" 0 sequentially c]
+      using scaleR.tendsto [OF tendsto_const, of "(\<lambda>n. f (x n) - f (y n))" 0 sequentially c]
       unfolding scaleR_zero_right scaleR_right_diff_distrib by auto
   }
   thus ?thesis using assms unfolding uniformly_continuous_on_sequentially'
-    unfolding dist_norm Lim_null_norm [symmetric] by auto
+    unfolding dist_norm tendsto_norm_zero_iff by auto
 qed
 
 lemma dist_minus:
@@ -3732,10 +3659,10 @@
   {  fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
                     "((\<lambda>n. g (x n) - g (y n)) ---> 0) sequentially"
     hence "((\<lambda>xa. f (x xa) - f (y xa) + (g (x xa) - g (y xa))) ---> 0 + 0) sequentially"
-      using Lim_add[of "\<lambda> n. f (x n) - f (y n)" 0  sequentially "\<lambda> n. g (x n) - g (y n)" 0] by auto
+      using tendsto_add[of "\<lambda> n. f (x n) - f (y n)" 0  sequentially "\<lambda> n. g (x n) - g (y n)" 0] by auto
     hence "((\<lambda>n. f (x n) + g (x n) - (f (y n) + g (y n))) ---> 0) sequentially" unfolding Lim_sequentially and add_diff_add [symmetric] by auto  }
   thus ?thesis using assms unfolding uniformly_continuous_on_sequentially'
-    unfolding dist_norm Lim_null_norm [symmetric] by auto
+    unfolding dist_norm tendsto_norm_zero_iff by auto
 qed
 
 lemma uniformly_continuous_on_sub:
@@ -3750,11 +3677,11 @@
 
 lemma continuous_within_id:
  "continuous (at a within s) (\<lambda>x. x)"
-  unfolding continuous_within by (rule Lim_at_within [OF Lim_ident_at])
+  unfolding continuous_within by (rule Lim_at_within [OF LIM_ident])
 
 lemma continuous_at_id:
  "continuous (at a) (\<lambda>x. x)"
-  unfolding continuous_at by (rule Lim_ident_at)
+  unfolding continuous_at by (rule LIM_ident)
 
 lemma continuous_on_id:
  "continuous_on s (\<lambda>x. x)"
@@ -4117,7 +4044,7 @@
 lemma continuous_vmul:
   fixes c :: "'a::metric_space \<Rightarrow> real" and v :: "'b::real_normed_vector"
   shows "continuous net c ==> continuous net (\<lambda>x. c(x) *\<^sub>R v)"
-  unfolding continuous_def using Lim_vmul[of c] by auto
+  unfolding continuous_def by (intro tendsto_intros)
 
 lemma continuous_mul:
   fixes c :: "'a::metric_space \<Rightarrow> real"
@@ -4448,7 +4375,7 @@
 proof (rule continuous_attains_sup [OF assms])
   { fix x assume "x\<in>s"
     have "(dist a ---> dist a x) (at x within s)"
-      by (intro tendsto_dist tendsto_const Lim_at_within Lim_ident_at)
+      by (intro tendsto_dist tendsto_const Lim_at_within LIM_ident)
   }
   thus "continuous_on s (dist a)"
     unfolding continuous_on ..
@@ -4695,7 +4622,7 @@
     obtain l' r where "l'\<in>s" and r:"subseq r" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially"
       using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
     have "((\<lambda>n. snd (f (r n))) ---> l - l') sequentially"
-      using Lim_sub[OF lim_subseq[OF r as(2)] lr] and f(1) unfolding o_def by auto
+      using tendsto_diff[OF lim_subseq[OF r as(2)] lr] and f(1) unfolding o_def by auto
     hence "l - l' \<in> t"
       using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]]
       using f(3) by auto
@@ -5140,8 +5067,8 @@
       hence "((\<lambda>n. inverse (real n + 1)) ---> 0) sequentially"
         unfolding Lim_sequentially by(auto simp add: dist_norm)
       hence "(f ---> x) sequentially" unfolding f_def
-        using Lim_add[OF Lim_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
-        using Lim_vmul[of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto  }
+        using tendsto_add[OF tendsto_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
+        using scaleR.tendsto [OF _ tendsto_const, of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto  }
     ultimately have "x \<in> closure {a<..<b}"
       using as and open_interval_midpoint[OF assms] unfolding closure_def unfolding islimpt_sequential by(cases "x=?c")auto  }
   thus ?thesis using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast
@@ -6171,4 +6098,19 @@
 (** TODO move this someplace else within this theory **)
 instance euclidean_space \<subseteq> banach ..
 
+text {* Legacy theorem names *}
+
+lemmas Lim_ident_at = LIM_ident
+lemmas Lim_const = tendsto_const
+lemmas Lim_cmul = scaleR.tendsto [OF tendsto_const]
+lemmas Lim_neg = tendsto_minus
+lemmas Lim_add = tendsto_add
+lemmas Lim_sub = tendsto_diff
+lemmas Lim_mul = scaleR.tendsto
+lemmas Lim_vmul = scaleR.tendsto [OF _ tendsto_const]
+lemmas Lim_null_norm = tendsto_norm_zero_iff [symmetric]
+lemmas Lim_linear = bounded_linear.tendsto [COMP swap_prems_rl]
+lemmas Lim_component = euclidean_component.tendsto
+lemmas Lim_intros = Lim_add Lim_const Lim_sub Lim_cmul Lim_vmul Lim_within_id
+
 end
--- a/src/HOL/RealVector.thy	Tue Aug 09 23:54:17 2011 +0200
+++ b/src/HOL/RealVector.thy	Wed Aug 10 00:31:51 2011 -0700
@@ -974,6 +974,13 @@
 
 end
 
+lemma bounded_linear_intro:
+  assumes "\<And>x y. f (x + y) = f x + f y"
+  assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)"
+  assumes "\<And>x. norm (f x) \<le> norm x * K"
+  shows "bounded_linear f"
+  by default (fast intro: assms)+
+
 locale bounded_bilinear =
   fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
                  \<Rightarrow> 'c::real_normed_vector"
@@ -1030,21 +1037,19 @@
 
 lemma bounded_linear_left:
   "bounded_linear (\<lambda>a. a ** b)"
-apply (unfold_locales)
+apply (cut_tac bounded, safe)
+apply (rule_tac K="norm b * K" in bounded_linear_intro)
 apply (rule add_left)
 apply (rule scaleR_left)
-apply (cut_tac bounded, safe)
-apply (rule_tac x="norm b * K" in exI)
 apply (simp add: mult_ac)
 done
 
 lemma bounded_linear_right:
   "bounded_linear (\<lambda>b. a ** b)"
-apply (unfold_locales)
+apply (cut_tac bounded, safe)
+apply (rule_tac K="norm a * K" in bounded_linear_intro)
 apply (rule add_right)
 apply (rule scaleR_right)
-apply (cut_tac bounded, safe)
-apply (rule_tac x="norm a * K" in exI)
 apply (simp add: mult_ac)
 done