new file containing simproc invocations, from NatBin.ML
authorpaulson
Fri, 21 Apr 2000 11:29:57 +0200
changeset 8759 49154c960140
parent 8758 5a5189330337
child 8760 9139453d7033
new file containing simproc invocations, from NatBin.ML
src/HOL/Integ/NatSimprocs.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Integ/NatSimprocs.ML	Fri Apr 21 11:29:57 2000 +0200
@@ -0,0 +1,387 @@
+(*  Title:      HOL/NatSimprocs.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   2000  University of Cambridge
+
+Simprocs for nat numerals
+*)
+
+Goal "number_of v + (number_of v' + (k::nat)) = \
+\        (if neg (number_of v) then number_of v' + k \
+\         else if neg (number_of v') then number_of v + k \
+\         else number_of (bin_add v v') + k)";
+by (Simp_tac 1);
+qed "add_nat_number_of_add";
+
+
+(** For cancel_numerals **)
+
+Goal "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)";
+by (asm_simp_tac (simpset() addsplits [nat_diff_split'] 
+		            addsimps [add_mult_distrib]) 1);
+qed "diff_add_eq1";
+
+Goal "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))";
+by (asm_simp_tac (simpset() addsplits [nat_diff_split'] 
+		            addsimps [add_mult_distrib]) 1);
+qed "diff_add_eq2";
+
+Goal "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "eq_add_iff1";
+
+Goal "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "eq_add_iff2";
+
+Goal "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "less_add_iff1";
+
+Goal "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "less_add_iff2";
+
+Goal "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "le_add_iff1";
+
+Goal "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)";
+by (auto_tac (claset(), simpset() addsplits [nat_diff_split'] 
+                                  addsimps [add_mult_distrib]));
+qed "le_add_iff2";
+
+structure Nat_Numeral_Simprocs =
+struct
+
+(*Utilities for simproc inverse_fold*)
+
+fun mk_numeral n = HOLogic.number_of_const $ NumeralSyntax.mk_bin n;
+
+(*Decodes a unary or binary numeral to a NATURAL NUMBER*)
+fun dest_numeral (Const ("0", _)) = 0
+  | dest_numeral (Const ("Suc", _) $ t) = 1 + dest_numeral t
+  | dest_numeral (Const("Numeral.number_of", _) $ w) = 
+        BasisLibrary.Int.max (0, NumeralSyntax.dest_bin w)
+  | dest_numeral t = raise TERM("dest_numeral", [t]);
+
+fun find_first_numeral past (t::terms) =
+	((dest_numeral t, t, rev past @ terms)
+	 handle TERM _ => find_first_numeral (t::past) terms)
+  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
+
+val zero = mk_numeral 0;
+val mk_plus = HOLogic.mk_binop "op +";
+
+fun mk_sum []        = zero
+  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
+
+val dest_plus = HOLogic.dest_bin "op +" HOLogic.natT;
+
+(*extract the outer Sucs from a term and convert them to a binary numeral*)
+fun dest_Sucs (k, Const ("Suc", _) $ t) = dest_Sucs (k+1, t)
+  | dest_Sucs (0, t) = t
+  | dest_Sucs (k, t) = mk_plus (mk_numeral k, t);
+
+fun dest_sum t =
+      let val (t,u) = dest_plus t 
+      in  dest_sum t @ dest_sum u  end
+      handle TERM _ => [t];
+
+fun dest_Sucs_sum t = dest_sum (dest_Sucs (0,t));
+
+val mk_diff = HOLogic.mk_binop "op -";
+val dest_diff = HOLogic.dest_bin "op -" HOLogic.natT;
+
+val mk_eqv = HOLogic.mk_Trueprop o HOLogic.mk_eq;
+
+fun prove_conv tacs sg (t, u) =
+  if t aconv u then None
+  else
+  Some
+     (mk_meta_eq (prove_goalw_cterm [] (cterm_of sg (mk_eqv (t, u)))
+	(K tacs))
+      handle ERROR => error 
+	  ("The error(s) above occurred while trying to prove " ^
+	   (string_of_cterm (cterm_of sg (mk_eqv (t, u))))));
+
+fun all_simp_tac ss rules = ALLGOALS (simp_tac (ss addsimps rules));
+
+val add_norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps add_ac));
+
+(****combine_coeffs will make this obsolete****)
+structure FoldSucData =
+  struct
+  val mk_numeral	= mk_numeral
+  val dest_numeral	= dest_numeral
+  val find_first_numeral = find_first_numeral []
+  val mk_sum		= mk_sum
+  val dest_sum		= dest_Sucs_sum
+  val mk_diff    	= HOLogic.mk_binop "op -"
+  val dest_diff		= HOLogic.dest_bin "op -" HOLogic.natT
+  val dest_Suc		= HOLogic.dest_Suc
+  val double_diff_eq	= diff_add_assoc_diff
+  val move_diff_eq	= diff_add_assoc2
+  val prove_conv	= prove_conv
+  val numeral_simp_tac	= all_simp_tac (simpset()
+					  addsimps [Suc_nat_number_of_add])
+  val add_norm_tac	= ALLGOALS (simp_tac (simpset() addsimps Suc_eq_add_numeral_1::add_ac))
+  end;
+
+structure FoldSuc = FoldSucFun (FoldSucData);
+
+fun prep_simproc (name, pats, proc) = Simplifier.mk_simproc name pats proc;
+fun prep_pat s = Thm.read_cterm (Theory.sign_of Arith.thy) (s, HOLogic.termT);
+val prep_pats = map prep_pat;
+
+val fold_Suc = 
+    prep_simproc ("fold_Suc", 
+		  [prep_pat "Suc (i + j)"], 
+		  FoldSuc.proc);
+
+(*** Now for CancelNumerals ***)
+
+val one = mk_numeral 1;
+val mk_times = HOLogic.mk_binop "op *";
+
+fun mk_prod [] = one
+  | mk_prod [t] = t
+  | mk_prod (t :: ts) = if t = one then mk_prod ts
+                        else mk_times (t, mk_prod ts);
+
+val dest_times = HOLogic.dest_bin "op *" HOLogic.natT;
+
+fun dest_prod t =
+      let val (t,u) = dest_times t 
+      in  dest_prod t @ dest_prod u  end
+      handle TERM _ => [t];
+
+(*DON'T do the obvious simplifications; that would create special cases*) 
+fun mk_coeff (k, ts) = mk_times (mk_numeral k, ts);
+
+(*Express t as a product of (possibly) a numeral with other sorted terms*)
+fun dest_coeff t =
+    let val ts = sort Term.term_ord (dest_prod t)
+	val (n, _, ts') = find_first_numeral [] ts
+                          handle TERM _ => (1, one, ts)
+    in (n, mk_prod ts') end;
+
+(*Find first coefficient-term THAT MATCHES u*)
+fun find_first_coeff past u [] = raise TERM("find_first_coeff", []) 
+  | find_first_coeff past u (t::terms) =
+	let val (n,u') = dest_coeff t
+	in  if u aconv u' then (n, rev past @ terms)
+			  else find_first_coeff (t::past) u terms
+	end
+	handle TERM _ => find_first_coeff (t::past) u terms;
+
+
+(*Simplify #1*n and n*#1 to n*)
+val add_0s = map (rename_numerals NatBin.thy) [add_0, add_0_right];
+val mult_1s = map (rename_numerals NatBin.thy) [mult_1, mult_1_right];
+
+val bin_simps = [add_nat_number_of, add_nat_number_of_add] @ 
+                bin_arith_simps @ bin_rel_simps;
+
+structure CancelNumeralsCommon =
+  struct
+  val mk_sum    	= mk_sum
+  val dest_sum		= dest_Sucs_sum
+  val mk_coeff		= mk_coeff
+  val dest_coeff	= dest_coeff
+  val find_first_coeff	= find_first_coeff []
+  val prove_conv	= prove_conv
+  val numeral_simp_tac	= ALLGOALS (simp_tac (simpset() addsimps [numeral_0_eq_0 RS sym]))
+  val norm_tac = ALLGOALS
+                   (simp_tac (HOL_ss addsimps add_0s@mult_1s@bin_simps@
+                                              [Suc_eq_add_numeral_1]@add_ac))
+                 THEN ALLGOALS (simp_tac (HOL_ss addsimps mult_ac))
+  end;
+
+
+(* nat eq *)
+structure EqCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val mk_bal   = HOLogic.mk_eq
+  val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
+  val bal_add1	= eq_add_iff1 RS trans
+  val bal_add2	= eq_add_iff2 RS trans
+);
+
+(* nat less *)
+structure LessCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val mk_bal   = HOLogic.mk_binrel "op <"
+  val dest_bal = HOLogic.dest_bin "op <" HOLogic.natT
+  val bal_add1	= less_add_iff1 RS trans
+  val bal_add2	= less_add_iff2 RS trans
+);
+
+(* nat le *)
+structure LeCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val mk_bal   = HOLogic.mk_binrel "op <="
+  val dest_bal = HOLogic.dest_bin "op <=" HOLogic.natT
+  val bal_add1	= le_add_iff1 RS trans
+  val bal_add2	= le_add_iff2 RS trans
+);
+
+(* nat diff *)
+structure DiffCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val mk_bal   = HOLogic.mk_binop "op -"
+  val dest_bal = HOLogic.dest_bin "op -" HOLogic.natT
+  val bal_add1	= diff_add_eq1 RS trans
+  val bal_add2	= diff_add_eq2 RS trans
+);
+
+
+val cancel_numerals = 
+  map prep_simproc
+   [("nateq_cancel_numerals",
+     prep_pats ["(l::nat) + m = n", "(l::nat) = m + n", 
+		"(l::nat) * m = n", "(l::nat) = m * n", 
+		"Suc m = n", "m = Suc n"], 
+     EqCancelNumerals.proc),
+    ("natless_cancel_numerals", 
+     prep_pats ["(l::nat) + m < n", "(l::nat) < m + n", 
+		"(l::nat) * m < n", "(l::nat) < m * n", 
+		"Suc m < n", "m < Suc n"], 
+     LessCancelNumerals.proc),
+    ("natle_cancel_numerals", 
+     prep_pats ["(l::nat) + m <= n", "(l::nat) <= m + n", 
+		"(l::nat) * m <= n", "(l::nat) <= m * n", 
+		"Suc m <= n", "m <= Suc n"], 
+     LeCancelNumerals.proc),
+    ("natdiff_cancel_numerals", 
+     prep_pats ["((l::nat) + m) - n", "(l::nat) - (m + n)", 
+		"(l::nat) * m - n", "(l::nat) - m * n", 
+		"Suc m - n", "m - Suc n"], 
+     DiffCancelNumerals.proc)];
+
+
+end;
+
+
+Addsimprocs [Nat_Numeral_Simprocs.fold_Suc];
+Addsimprocs Nat_Numeral_Simprocs.cancel_numerals;
+
+(*examples:
+print_depth 22;
+set proof_timing;
+set trace_simp;
+fun test s = (Goal s; by (Simp_tac 1)); 
+
+(*cancel_numerals*)
+test "(#2*length xs < #2*length xs + j)";
+test "(#2*length xs < length xs * #2 + j)";
+test "#2*u = (u::nat)";
+test "#2*u = Suc (u)";
+test "(i + j + #12 + (k::nat)) - #15 = y";
+test "(i + j + #12 + (k::nat)) - #5 = y";
+test "Suc u - #2 = y";
+test "Suc (Suc (Suc u)) - #2 = y";
+(*Unary*)
+test "(i + j + #2 + (k::nat)) - 1 = y";
+test "(i + j + #1 + (k::nat)) - 2 = y";
+
+test "(#2*x + (u*v) + y) - v*#3*u = (w::nat)";
+test "(#2*x*u*v + (u*v)*#4 + y) - v*u*#4 = (w::nat)";
+test "(#2*x*u*v + (u*v)*#4 + y) - v*u = (w::nat)";
+test "Suc (Suc (#2*x*u*v + u*#4 + y)) - u = w";
+test "Suc ((u*v)*#4) - v*#3*u = w";
+test "Suc (Suc ((u*v)*#3)) - v*#3*u = w";
+
+test "(i + j + #12 + (k::nat)) = u + #15 + y";
+test "(i + j + #32 + (k::nat)) - (u + #15 + y) = zz";
+test "(i + j + #12 + (k::nat)) = u + #5 + y";
+(*Suc*)
+test "(i + j + #12 + k) = Suc (u + y)";
+test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + #41 + k)";
+test "(i + j + #5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))";
+test "Suc (Suc (Suc (Suc (Suc (u + y))))) - #5 = v";
+test "(i + j + #5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))";
+test "#2*y + #3*z + #2*u = Suc (u)";
+test "#2*y + #3*z + #6*w + #2*y + #3*z + #2*u = Suc (u)";
+test "#2*y + #3*z + #6*w + #2*y + #3*z + #2*u = #2*y' + #3*z' + #6*w' + #2*y' + #3*z' + u + (vv::nat)";
+test "#6 + #2*y + #3*z + #4*u = Suc (vv + #2*u + z)";
+
+(*negative numerals: FAIL*)
+test "(i + j + #-23 + (k::nat)) < u + #15 + y";
+test "(i + j + #3 + (k::nat)) < u + #-15 + y";
+test "(i + j + #-12 + (k::nat)) - #15 = y";
+test "(i + j + #12 + (k::nat)) - #-15 = y";
+test "(i + j + #-12 + (k::nat)) - #-15 = y";
+
+(*fold_Suc*)
+test "Suc (i + j + #3 + k) = u";
+(*negative numerals*)
+test "Suc (i + j + #-3 + k) = u";
+*)
+
+
+(*** Prepare linear arithmetic for nat numerals ***)
+
+let
+
+(* reduce contradictory <= to False *)
+val add_rules =
+  [add_nat_number_of, diff_nat_number_of, mult_nat_number_of,
+   eq_nat_number_of, less_nat_number_of, le_nat_number_of_eq_not_less,
+   le_Suc_number_of,le_number_of_Suc,
+   less_Suc_number_of,less_number_of_Suc,
+   Suc_eq_number_of,eq_number_of_Suc,
+   eq_number_of_0, eq_0_number_of, less_0_number_of,
+   nat_number_of, Let_number_of, if_True, if_False];
+
+val simprocs = [Nat_Plus_Assoc.conv,Nat_Times_Assoc.conv];
+
+in
+LA_Data_Ref.ss_ref := !LA_Data_Ref.ss_ref addsimps add_rules
+                      addsimprocs simprocs
+end;
+
+
+
+(** For simplifying  Suc m - #n **)
+
+Goal "#0 < n ==> Suc m - n = m - (n - #1)";
+by (asm_full_simp_tac (numeral_ss addsplits [nat_diff_split']) 1);
+qed "Suc_diff_eq_diff_pred";
+
+(*Now just instantiating n to (number_of v) does the right simplification,
+  but with some redundant inequality tests.*)
+
+Goal "neg (number_of (bin_pred v)) = (number_of v = 0)";
+by (subgoal_tac "neg (number_of (bin_pred v)) = (number_of v < 1)" 1);
+by (Asm_simp_tac 1);
+by (stac less_number_of_Suc 1);
+by (Simp_tac 1);
+qed "neg_number_of_bin_pred_iff_0";
+
+Goal "neg (number_of (bin_minus v)) ==> \
+\     Suc m - (number_of v) = m - (number_of (bin_pred v))";
+by (stac Suc_diff_eq_diff_pred 1);
+by (Simp_tac 1);
+by (Simp_tac 1);
+by (asm_full_simp_tac
+    (simpset_of Int.thy addsimps [less_0_number_of RS sym, 
+				  neg_number_of_bin_pred_iff_0]) 1);
+qed "Suc_diff_number_of";
+
+(* now redundant because of the inverse_fold simproc
+    Addsimps [Suc_diff_number_of]; *)
+
+
+(** For simplifying  #m - Suc n **)
+
+Goal "m - Suc n = (m - #1) - n";
+by (simp_tac (numeral_ss addsplits [nat_diff_split']) 1);
+qed "diff_Suc_eq_diff_pred";
+
+Addsimps [inst "m" "number_of ?v" diff_Suc_eq_diff_pred];