--- a/src/HOL/Predicate.thy Fri Nov 19 14:58:49 2010 +0000
+++ b/src/HOL/Predicate.thy Fri Nov 19 14:59:11 2010 +0000
@@ -377,14 +377,17 @@
"Pred (eval x) = x"
by (cases x) simp
-lemma eval_inject: "eval x = eval y \<longleftrightarrow> x = y"
- by (cases x) auto
+lemma pred_eqI:
+ "(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q"
+ by (cases P, cases Q) (auto simp add: fun_eq_iff)
-definition single :: "'a \<Rightarrow> 'a pred" where
- "single x = Pred ((op =) x)"
+lemma eval_mem [simp]:
+ "x \<in> eval P \<longleftrightarrow> eval P x"
+ by (simp add: mem_def)
-definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
- "P \<guillemotright>= f = Pred (\<lambda>x. (\<exists>y. eval P y \<and> eval (f y) x))"
+lemma eq_mem [simp]:
+ "x \<in> (op =) y \<longleftrightarrow> x = y"
+ by (auto simp add: mem_def)
instantiation pred :: (type) "{complete_lattice, boolean_algebra}"
begin
@@ -398,97 +401,146 @@
definition
"\<bottom> = Pred \<bottom>"
+lemma eval_bot [simp]:
+ "eval \<bottom> = \<bottom>"
+ by (simp add: bot_pred_def)
+
definition
"\<top> = Pred \<top>"
+lemma eval_top [simp]:
+ "eval \<top> = \<top>"
+ by (simp add: top_pred_def)
+
definition
"P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)"
+lemma eval_inf [simp]:
+ "eval (P \<sqinter> Q) = eval P \<sqinter> eval Q"
+ by (simp add: inf_pred_def)
+
definition
"P \<squnion> Q = Pred (eval P \<squnion> eval Q)"
+lemma eval_sup [simp]:
+ "eval (P \<squnion> Q) = eval P \<squnion> eval Q"
+ by (simp add: sup_pred_def)
+
definition
"\<Sqinter>A = Pred (INFI A eval)"
+lemma eval_Inf [simp]:
+ "eval (\<Sqinter>A) = INFI A eval"
+ by (simp add: Inf_pred_def)
+
definition
"\<Squnion>A = Pred (SUPR A eval)"
+lemma eval_Sup [simp]:
+ "eval (\<Squnion>A) = SUPR A eval"
+ by (simp add: Sup_pred_def)
+
definition
"- P = Pred (- eval P)"
+lemma eval_compl [simp]:
+ "eval (- P) = - eval P"
+ by (simp add: uminus_pred_def)
+
definition
"P - Q = Pred (eval P - eval Q)"
+lemma eval_minus [simp]:
+ "eval (P - Q) = eval P - eval Q"
+ by (simp add: minus_pred_def)
+
instance proof
-qed (auto simp add: less_eq_pred_def less_pred_def
- inf_pred_def sup_pred_def bot_pred_def top_pred_def
- Inf_pred_def Sup_pred_def uminus_pred_def minus_pred_def fun_Compl_def bool_Compl_def,
- auto simp add: le_fun_def less_fun_def le_bool_def less_bool_def
- eval_inject mem_def)
+qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def
+ fun_Compl_def fun_diff_def bool_Compl_def bool_diff_def)
end
+lemma eval_INFI [simp]:
+ "eval (INFI A f) = INFI A (eval \<circ> f)"
+ by (unfold INFI_def) simp
+
+lemma eval_SUPR [simp]:
+ "eval (SUPR A f) = SUPR A (eval \<circ> f)"
+ by (unfold SUPR_def) simp
+
+definition single :: "'a \<Rightarrow> 'a pred" where
+ "single x = Pred ((op =) x)"
+
+lemma eval_single [simp]:
+ "eval (single x) = (op =) x"
+ by (simp add: single_def)
+
+definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
+ "P \<guillemotright>= f = (SUPR (Predicate.eval P) f)"
+
+lemma eval_bind [simp]:
+ "eval (P \<guillemotright>= f) = Predicate.eval (SUPR (Predicate.eval P) f)"
+ by (simp add: bind_def)
+
lemma bind_bind:
"(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)"
- by (auto simp add: bind_def fun_eq_iff)
+ by (rule pred_eqI) simp
lemma bind_single:
"P \<guillemotright>= single = P"
- by (simp add: bind_def single_def)
+ by (rule pred_eqI) auto
lemma single_bind:
"single x \<guillemotright>= P = P x"
- by (simp add: bind_def single_def)
+ by (rule pred_eqI) auto
lemma bottom_bind:
"\<bottom> \<guillemotright>= P = \<bottom>"
- by (auto simp add: bot_pred_def bind_def fun_eq_iff)
+ by (rule pred_eqI) simp
lemma sup_bind:
"(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
- by (auto simp add: bind_def sup_pred_def fun_eq_iff)
+ by (rule pred_eqI) simp
-lemma Sup_bind: "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
- by (auto simp add: bind_def Sup_pred_def SUP1_iff fun_eq_iff)
+lemma Sup_bind:
+ "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
+ by (rule pred_eqI) simp
lemma pred_iffI:
assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
and "\<And>x. eval B x \<Longrightarrow> eval A x"
shows "A = B"
-proof -
- from assms have "\<And>x. eval A x \<longleftrightarrow> eval B x" by blast
- then show ?thesis by (cases A, cases B) (simp add: fun_eq_iff)
-qed
+ using assms by (auto intro: pred_eqI)
lemma singleI: "eval (single x) x"
- unfolding single_def by simp
+ by simp
lemma singleI_unit: "eval (single ()) x"
- by simp (rule singleI)
+ by simp
lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P"
- unfolding single_def by simp
+ by simp
lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
- by (erule singleE) simp
+ by simp
lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y"
- unfolding bind_def by auto
+ by auto
lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P"
- unfolding bind_def by auto
+ by auto
lemma botE: "eval \<bottom> x \<Longrightarrow> P"
- unfolding bot_pred_def by auto
+ by auto
lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x"
- unfolding sup_pred_def by (simp add: sup_fun_eq sup_bool_eq)
+ by auto
lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x"
- unfolding sup_pred_def by (simp add: sup_fun_eq sup_bool_eq)
+ by auto
lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P"
- unfolding sup_pred_def by auto
+ by auto
lemma single_not_bot [simp]:
"single x \<noteq> \<bottom>"
@@ -497,8 +549,8 @@
lemma not_bot:
assumes "A \<noteq> \<bottom>"
obtains x where "eval A x"
-using assms by (cases A)
- (auto simp add: bot_pred_def, auto simp add: mem_def)
+ using assms by (cases A)
+ (auto simp add: bot_pred_def, auto simp add: mem_def)
subsubsection {* Emptiness check and definite choice *}
@@ -518,7 +570,7 @@
"is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B"
by (auto simp add: is_empty_def)
-definition singleton :: "(unit => 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where
+definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where
"singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())"
lemma singleton_eqI:
@@ -544,7 +596,9 @@
by (rule singleton_eqI)
ultimately have "eval (single (singleton dfault A)) = eval A"
by (simp (no_asm_use) add: single_def fun_eq_iff) blast
- then show ?thesis by (simp add: eval_inject)
+ then have "\<And>x. eval (single (singleton dfault A)) x = eval A x"
+ by simp
+ then show ?thesis by (rule pred_eqI)
qed
lemma singleton_undefinedI: