--- a/src/HOL/Real/RealDef.thy Mon May 14 09:27:24 2007 +0200
+++ b/src/HOL/Real/RealDef.thy Mon May 14 09:33:18 2007 +0200
@@ -72,7 +72,7 @@
real_less_def: "(x < (y::real)) == (x \<le> y & x \<noteq> y)"
- real_abs_def: "abs (r::real) == (if 0 \<le> r then r else -r)"
+ real_abs_def: "abs (r::real) == (if r < 0 then - r else r)"
@@ -293,9 +293,6 @@
show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
qed
-lemma real_mult_1_right: "z * (1::real) = z"
- by (rule OrderedGroup.mult_1_right)
-
subsection{*The @{text "\<le>"} Ordering*}
@@ -418,11 +415,6 @@
apply (simp add: right_distrib)
done
-text{*lemma for proving @{term "0<(1::real)"}*}
-lemma real_zero_le_one: "0 \<le> (1::real)"
-by (simp add: real_zero_def real_one_def real_le
- preal_self_less_add_left order_less_imp_le)
-
instance real :: distrib_lattice
"inf x y \<equiv> min x y"
"sup x y \<equiv> max x y"
@@ -435,9 +427,8 @@
proof
fix x y z :: real
show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
- show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
- show "\<bar>x\<bar> = (if x < 0 then -x else x)"
- by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
+ show "x < y ==> 0 < z ==> z * x < z * y" by (rule real_mult_less_mono2)
+ show "\<bar>x\<bar> = (if x < 0 then -x else x)" by (simp only: real_abs_def)
qed
text{*The function @{term real_of_preal} requires many proofs, but it seems
@@ -537,13 +528,6 @@
lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
-lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
- by (rule OrderedGroup.add_less_le_mono)
-
-lemma real_add_le_less_mono:
- "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
- by (rule OrderedGroup.add_le_less_mono)
-
lemma real_le_square [simp]: "(0::real) \<le> x*x"
by (rule Ring_and_Field.zero_le_square)
@@ -573,11 +557,6 @@
lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
by(simp add:mult_commute)
-text{*Only two uses?*}
-lemma real_mult_less_mono':
- "[| x < y; r1 < r2; (0::real) \<le> r1; 0 \<le> x|] ==> r1 * x < r2 * y"
- by (rule Ring_and_Field.mult_strict_mono')
-
text{*FIXME: delete or at least combine the next two lemmas*}
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
apply (drule OrderedGroup.equals_zero_I [THEN sym])
--- a/src/HOL/Real/RealPow.thy Mon May 14 09:27:24 2007 +0200
+++ b/src/HOL/Real/RealPow.thy Mon May 14 09:33:18 2007 +0200
@@ -28,9 +28,6 @@
qed
-lemma realpow_not_zero: "r \<noteq> (0::real) ==> r ^ n \<noteq> 0"
- by (rule field_power_not_zero)
-
lemma realpow_zero_zero: "r ^ n = (0::real) ==> r = 0"
by simp
@@ -59,16 +56,13 @@
apply (induct "n")
apply (auto simp add: real_of_nat_Suc)
apply (subst mult_2)
-apply (rule real_add_less_le_mono)
+apply (rule add_less_le_mono)
apply (auto simp add: two_realpow_ge_one)
done
lemma realpow_Suc_le_self: "[| 0 \<le> r; r \<le> (1::real) |] ==> r ^ Suc n \<le> r"
by (insert power_decreasing [of 1 "Suc n" r], simp)
-lemma realpow_Suc_less_one: "[| 0 < r; r < (1::real) |] ==> r ^ Suc n < 1"
-by (rule power_Suc_less_one)
-
lemma realpow_minus_mult [rule_format]:
"0 < n --> (x::real) ^ (n - 1) * x = x ^ n"
apply (simp split add: nat_diff_split)
@@ -103,21 +97,12 @@
apply (auto simp add: real_of_nat_mult zero_less_mult_iff)
done
+(* used by AFP Integration theory *)
lemma realpow_increasing:
"[|(0::real) \<le> x; 0 \<le> y; x ^ Suc n \<le> y ^ Suc n|] ==> x \<le> y"
by (rule power_le_imp_le_base)
-lemma zero_less_realpow_abs_iff [simp]:
- "(0 < (abs x)^n) = (x \<noteq> (0::real) | n=0)"
-apply (induct "n")
-apply (auto simp add: zero_less_mult_iff)
-done
-
-lemma zero_le_realpow_abs [simp]: "(0::real) \<le> (abs x)^n"
-by (rule zero_le_power_abs)
-
-
subsection{*Literal Arithmetic Involving Powers, Type @{typ real}*}
lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)"
--- a/src/HOL/Real/real_arith.ML Mon May 14 09:27:24 2007 +0200
+++ b/src/HOL/Real/real_arith.ML Mon May 14 09:33:18 2007 +0200
@@ -20,7 +20,6 @@
val real_mult_commute = thm"real_mult_commute";
val real_mult_assoc = thm"real_mult_assoc";
val real_mult_1 = thm"real_mult_1";
-val real_mult_1_right = thm"real_mult_1_right";
val preal_le_linear = thm"preal_le_linear";
val real_mult_inverse_left = thm"real_mult_inverse_left";
val real_not_refl2 = thm"real_not_refl2";
@@ -43,8 +42,6 @@
val real_less_all_real2 = thm "real_less_all_real2";
val real_of_preal_le_iff = thm "real_of_preal_le_iff";
val real_mult_order = thm "real_mult_order";
-val real_add_less_le_mono = thm "real_add_less_le_mono";
-val real_add_le_less_mono = thm "real_add_le_less_mono";
val real_add_order = thm "real_add_order";
val real_le_add_order = thm "real_le_add_order";
val real_le_square = thm "real_le_square";
@@ -54,7 +51,6 @@
val real_mult_le_cancel_iff1 = thm "real_mult_le_cancel_iff1";
val real_mult_le_cancel_iff2 = thm "real_mult_le_cancel_iff2";
val real_mult_less_mono = thm "real_mult_less_mono";
-val real_mult_less_mono' = thm "real_mult_less_mono'";
val real_sum_squares_cancel = thm "real_sum_squares_cancel";
val real_sum_squares_cancel2 = thm "real_sum_squares_cancel2";