--- a/src/HOL/Word/Num_Lemmas.thy Mon Aug 20 23:00:17 2007 +0200
+++ b/src/HOL/Word/Num_Lemmas.thy Mon Aug 20 23:35:51 2007 +0200
@@ -26,9 +26,6 @@
apply auto
done
-lemma int_number_of: "number_of (y::int) = y"
- by (simp add: number_of_eq)
-
lemma gt_or_eq_0: "0 < y \<or> 0 = (y::nat)" by auto
constdefs
--- a/src/HOL/Word/WordArith.thy Mon Aug 20 23:00:17 2007 +0200
+++ b/src/HOL/Word/WordArith.thy Mon Aug 20 23:35:51 2007 +0200
@@ -837,7 +837,7 @@
lemma iszero_word_no [simp] :
"iszero (number_of bin :: 'a :: len word) =
iszero (number_of (bintrunc (len_of TYPE('a)) bin) :: int)"
- apply (simp add: zero_bintrunc int_number_of)
+ apply (simp add: zero_bintrunc number_of_is_id)
apply (unfold iszero_def Pls_def)
apply (rule refl)
done
--- a/src/HOL/Word/WordBitwise.thy Mon Aug 20 23:00:17 2007 +0200
+++ b/src/HOL/Word/WordBitwise.thy Mon Aug 20 23:35:51 2007 +0200
@@ -30,11 +30,11 @@
lemmas word_wi_log_defs = word_no_log_defs [unfolded word_no_wi]
lemma uint_or: "uint (x OR y) = (uint x) OR (uint y)"
- by (simp add: word_or_def word_no_wi [symmetric] int_number_of
+ by (simp add: word_or_def word_no_wi [symmetric] number_of_is_id
bin_trunc_ao(2) [symmetric])
lemma uint_and: "uint (x AND y) = (uint x) AND (uint y)"
- by (simp add: word_and_def int_number_of word_no_wi [symmetric]
+ by (simp add: word_and_def number_of_is_id word_no_wi [symmetric]
bin_trunc_ao(1) [symmetric])
lemma word_ops_nth_size:
@@ -203,19 +203,19 @@
lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)"
unfolding to_bl_def word_log_defs
- by (simp add: bl_not_bin int_number_of word_no_wi [symmetric])
+ by (simp add: bl_not_bin number_of_is_id word_no_wi [symmetric])
lemma bl_word_xor: "to_bl (v XOR w) = app2 op ~= (to_bl v) (to_bl w)"
unfolding to_bl_def word_log_defs bl_xor_bin
- by (simp add: int_number_of word_no_wi [symmetric])
+ by (simp add: number_of_is_id word_no_wi [symmetric])
lemma bl_word_or: "to_bl (v OR w) = app2 op | (to_bl v) (to_bl w)"
unfolding to_bl_def word_log_defs
- by (simp add: bl_or_bin int_number_of word_no_wi [symmetric])
+ by (simp add: bl_or_bin number_of_is_id word_no_wi [symmetric])
lemma bl_word_and: "to_bl (v AND w) = app2 op & (to_bl v) (to_bl w)"
unfolding to_bl_def word_log_defs
- by (simp add: bl_and_bin int_number_of word_no_wi [symmetric])
+ by (simp add: bl_and_bin number_of_is_id word_no_wi [symmetric])
lemma word_lsb_alt: "lsb (w::'a::len0 word) = test_bit w 0"
by (auto simp: word_test_bit_def word_lsb_def)
@@ -236,7 +236,7 @@
lemma word_msb_sint: "msb w = (sint w < 0)"
unfolding word_msb_def
- by (simp add : sign_Min_lt_0 int_number_of)
+ by (simp add : sign_Min_lt_0 number_of_is_id)
lemma word_msb_no':
"w = number_of bin ==> msb (w::'a::len word) = bin_nth bin (size w - 1)"
@@ -393,7 +393,7 @@
number_of (bin_sc n (if b then bit.B1 else bit.B0) bin)"
apply (unfold word_set_bit_def word_number_of_def [symmetric])
apply (rule word_eqI)
- apply (clarsimp simp: word_size bin_nth_sc_gen int_number_of
+ apply (clarsimp simp: word_size bin_nth_sc_gen number_of_is_id
test_bit_no nth_bintr)
done
@@ -468,7 +468,7 @@
apply (rule word_ubin.norm_eq_iff [THEN iffD1])
apply (rule box_equals)
apply (rule_tac [2] bintr_ariths (1))+
- apply (clarsimp simp add : int_number_of)
+ apply (clarsimp simp add : number_of_is_id)
apply simp
done