--- a/src/HOL/Library/Library.thy Fri Jan 16 08:05:03 2009 +0100
+++ b/src/HOL/Library/Library.thy Fri Jan 16 08:28:53 2009 +0100
@@ -1,4 +1,3 @@
-(* $Id$ *)
(*<*)
theory Library
imports
@@ -38,6 +37,7 @@
Ramsey
RBT
State_Monad
+ Univ_Poly
While_Combinator
Word
Zorn
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Univ_Poly.thy Fri Jan 16 08:28:53 2009 +0100
@@ -0,0 +1,1050 @@
+(* Title: Univ_Poly.thy
+ Author: Amine Chaieb
+*)
+
+header {* Univariate Polynomials *}
+
+theory Univ_Poly
+imports Plain List
+begin
+
+text{* Application of polynomial as a function. *}
+
+primrec (in semiring_0) poly :: "'a list => 'a => 'a" where
+ poly_Nil: "poly [] x = 0"
+| poly_Cons: "poly (h#t) x = h + x * poly t x"
+
+
+subsection{*Arithmetic Operations on Polynomials*}
+
+text{*addition*}
+
+primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "+++" 65)
+where
+ padd_Nil: "[] +++ l2 = l2"
+| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
+ else (h + hd l2)#(t +++ tl l2))"
+
+text{*Multiplication by a constant*}
+primrec (in semiring_0) cmult :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "%*" 70) where
+ cmult_Nil: "c %* [] = []"
+| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)"
+
+text{*Multiplication by a polynomial*}
+primrec (in semiring_0) pmult :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "***" 70)
+where
+ pmult_Nil: "[] *** l2 = []"
+| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2
+ else (h %* l2) +++ ((0) # (t *** l2)))"
+
+text{*Repeated multiplication by a polynomial*}
+primrec (in semiring_0) mulexp :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+ mulexp_zero: "mulexp 0 p q = q"
+| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q"
+
+text{*Exponential*}
+primrec (in semiring_1) pexp :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list" (infixl "%^" 80) where
+ pexp_0: "p %^ 0 = [1]"
+| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)"
+
+text{*Quotient related value of dividing a polynomial by x + a*}
+(* Useful for divisor properties in inductive proofs *)
+primrec (in field) "pquot" :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where
+ pquot_Nil: "pquot [] a= []"
+| pquot_Cons: "pquot (h#t) a = (if t = [] then [h]
+ else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))"
+
+text{*normalization of polynomials (remove extra 0 coeff)*}
+primrec (in semiring_0) pnormalize :: "'a list \<Rightarrow> 'a list" where
+ pnormalize_Nil: "pnormalize [] = []"
+| pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = [])
+ then (if (h = 0) then [] else [h])
+ else (h#(pnormalize p)))"
+
+definition (in semiring_0) "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])"
+definition (in semiring_0) "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))"
+text{*Other definitions*}
+
+definition (in ring_1)
+ poly_minus :: "'a list => 'a list" ("-- _" [80] 80) where
+ "-- p = (- 1) %* p"
+
+definition (in semiring_0)
+ divides :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "divides" 70) where
+ [code del]: "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
+
+ --{*order of a polynomial*}
+definition (in ring_1) order :: "'a => 'a list => nat" where
+ "order a p = (SOME n. ([-a, 1] %^ n) divides p &
+ ~ (([-a, 1] %^ (Suc n)) divides p))"
+
+ --{*degree of a polynomial*}
+definition (in semiring_0) degree :: "'a list => nat" where
+ "degree p = length (pnormalize p) - 1"
+
+ --{*squarefree polynomials --- NB with respect to real roots only.*}
+definition (in ring_1)
+ rsquarefree :: "'a list => bool" where
+ "rsquarefree p = (poly p \<noteq> poly [] &
+ (\<forall>a. (order a p = 0) | (order a p = 1)))"
+
+context semiring_0
+begin
+
+lemma padd_Nil2[simp]: "p +++ [] = p"
+by (induct p) auto
+
+lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"
+by auto
+
+lemma pminus_Nil[simp]: "-- [] = []"
+by (simp add: poly_minus_def)
+
+lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp
+end
+
+lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" by (induct "t", auto)
+
+lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ ((0)#t) = (a#t)"
+by simp
+
+text{*Handy general properties*}
+
+lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b"
+proof(induct b arbitrary: a)
+ case Nil thus ?case by auto
+next
+ case (Cons b bs a) thus ?case by (cases a, simp_all add: add_commute)
+qed
+
+lemma (in comm_semiring_0) padd_assoc: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)"
+apply (induct a arbitrary: b c)
+apply (simp, clarify)
+apply (case_tac b, simp_all add: add_ac)
+done
+
+lemma (in semiring_0) poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)"
+apply (induct p arbitrary: q,simp)
+apply (case_tac q, simp_all add: right_distrib)
+done
+
+lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)"
+apply (induct "t", simp)
+apply (auto simp add: mult_zero_left poly_ident_mult padd_commut)
+apply (case_tac t, auto)
+done
+
+text{*properties of evaluation of polynomials.*}
+
+lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
+proof(induct p1 arbitrary: p2)
+ case Nil thus ?case by simp
+next
+ case (Cons a as p2) thus ?case
+ by (cases p2, simp_all add: add_ac right_distrib)
+qed
+
+lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
+apply (induct "p")
+apply (case_tac [2] "x=zero")
+apply (auto simp add: right_distrib mult_ac)
+done
+
+lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x"
+ by (induct p, auto simp add: right_distrib mult_ac)
+
+lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)"
+apply (simp add: poly_minus_def)
+apply (auto simp add: poly_cmult minus_mult_left[symmetric])
+done
+
+lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
+proof(induct p1 arbitrary: p2)
+ case Nil thus ?case by simp
+next
+ case (Cons a as p2)
+ thus ?case by (cases as,
+ simp_all add: poly_cmult poly_add left_distrib right_distrib mult_ac)
+qed
+
+class recpower_semiring = semiring + recpower
+class recpower_semiring_1 = semiring_1 + recpower
+class recpower_semiring_0 = semiring_0 + recpower
+class recpower_ring = ring + recpower
+class recpower_ring_1 = ring_1 + recpower
+subclass (in recpower_ring_1) recpower_ring ..
+class recpower_comm_semiring_1 = recpower + comm_semiring_1
+class recpower_comm_ring_1 = recpower + comm_ring_1
+subclass (in recpower_comm_ring_1) recpower_comm_semiring_1 ..
+class recpower_idom = recpower + idom
+subclass (in recpower_idom) recpower_comm_ring_1 ..
+class idom_char_0 = idom + ring_char_0
+class recpower_idom_char_0 = recpower + idom_char_0
+subclass (in recpower_idom_char_0) recpower_idom ..
+
+lemma (in recpower_comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n"
+apply (induct "n")
+apply (auto simp add: poly_cmult poly_mult power_Suc)
+done
+
+text{*More Polynomial Evaluation Lemmas*}
+
+lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x"
+by simp
+
+lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x"
+ by (simp add: poly_mult mult_assoc)
+
+lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0"
+by (induct "p", auto)
+
+lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x"
+apply (induct "n")
+apply (auto simp add: poly_mult mult_assoc)
+done
+
+subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides
+ @{term "p(x)"} *}
+
+lemma (in comm_ring_1) lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q"
+proof(induct t)
+ case Nil
+ {fix h have "[h] = [h] +++ [- a, 1] *** []" by simp}
+ thus ?case by blast
+next
+ case (Cons x xs)
+ {fix h
+ from Cons.hyps[rule_format, of x]
+ obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
+ have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
+ using qr by(cases q, simp_all add: ring_simps diff_def[symmetric]
+ minus_mult_left[symmetric] right_minus)
+ hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
+ thus ?case by blast
+qed
+
+lemma (in comm_ring_1) poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q"
+by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto)
+
+
+lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"
+proof-
+ {assume p: "p = []" hence ?thesis by simp}
+ moreover
+ {fix x xs assume p: "p = x#xs"
+ {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
+ by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
+ moreover
+ {assume p0: "poly p a = 0"
+ from poly_linear_rem[of x xs a] obtain q r
+ where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
+ have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp
+ hence "\<exists>q. p = [- a, 1] *** q" using p qr apply - apply (rule exI[where x=q])apply auto apply (cases q) apply auto done}
+ ultimately have ?thesis using p by blast}
+ ultimately show ?thesis by (cases p, auto)
+qed
+
+lemma (in semiring_0) lemma_poly_length_mult[simp]: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)"
+by (induct "p", auto)
+
+lemma (in semiring_0) lemma_poly_length_mult2[simp]: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)"
+by (induct "p", auto)
+
+lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)"
+by auto
+
+subsection{*Polynomial length*}
+
+lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p"
+by (induct "p", auto)
+
+lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)"
+apply (induct p1 arbitrary: p2, simp_all)
+apply arith
+done
+
+lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)"
+by (simp add: poly_add_length)
+
+lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
+ "poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x"
+by (auto simp add: poly_mult)
+
+lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0"
+by (auto simp add: poly_mult)
+
+text{*Normalisation Properties*}
+
+lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"
+by (induct "p", auto)
+
+text{*A nontrivial polynomial of degree n has no more than n roots*}
+lemma (in idom) poly_roots_index_lemma:
+ assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n"
+ shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)"
+ using p n
+proof(induct n arbitrary: p x)
+ case 0 thus ?case by simp
+next
+ case (Suc n p x)
+ {assume C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)"
+ from Suc.prems have p0: "poly p x \<noteq> 0" "p\<noteq> []" by auto
+ from p0(1)[unfolded poly_linear_divides[of p x]]
+ have "\<forall>q. p \<noteq> [- x, 1] *** q" by blast
+ from C obtain a where a: "poly p a = 0" by blast
+ from a[unfolded poly_linear_divides[of p a]] p0(2)
+ obtain q where q: "p = [-a, 1] *** q" by blast
+ have lg: "length q = n" using q Suc.prems(2) by simp
+ from q p0 have qx: "poly q x \<noteq> poly [] x"
+ by (auto simp add: poly_mult poly_add poly_cmult)
+ from Suc.hyps[OF qx lg] obtain i where
+ i: "\<forall>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" by blast
+ let ?i = "\<lambda>m. if m = Suc n then a else i m"
+ from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m"
+ by blast
+ from y have "y = a \<or> poly q y = 0"
+ by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: ring_simps)
+ with i[rule_format, of y] y(1) y(2) have False apply auto
+ apply (erule_tac x="m" in allE)
+ apply auto
+ done}
+ thus ?case by blast
+qed
+
+
+lemma (in idom) poly_roots_index_length: "poly p x \<noteq> poly [] x ==>
+ \<exists>i. \<forall>x. (poly p x = 0) --> (\<exists>n. n \<le> length p & x = i n)"
+by (blast intro: poly_roots_index_lemma)
+
+lemma (in idom) poly_roots_finite_lemma1: "poly p x \<noteq> poly [] x ==>
+ \<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"
+apply (drule poly_roots_index_length, safe)
+apply (rule_tac x = "Suc (length p)" in exI)
+apply (rule_tac x = i in exI)
+apply (simp add: less_Suc_eq_le)
+done
+
+
+lemma (in idom) idom_finite_lemma:
+ assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)"
+ shows "finite {x. P x}"
+proof-
+ let ?M = "{x. P x}"
+ let ?N = "set j"
+ have "?M \<subseteq> ?N" using P by auto
+ thus ?thesis using finite_subset by auto
+qed
+
+
+lemma (in idom) poly_roots_finite_lemma2: "poly p x \<noteq> poly [] x ==>
+ \<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i"
+apply (drule poly_roots_index_length, safe)
+apply (rule_tac x="map (\<lambda>n. i n) [0 ..< Suc (length p)]" in exI)
+apply (auto simp add: image_iff)
+apply (erule_tac x="x" in allE, clarsimp)
+by (case_tac "n=length p", auto simp add: order_le_less)
+
+lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)"
+ unfolding finite_conv_nat_seg_image
+proof(auto simp add: expand_set_eq image_iff)
+ fix n::nat and f:: "nat \<Rightarrow> nat"
+ let ?N = "{i. i < n}"
+ let ?fN = "f ` ?N"
+ let ?y = "Max ?fN + 1"
+ from nat_seg_image_imp_finite[of "?fN" "f" n]
+ have thfN: "finite ?fN" by simp
+ {assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto}
+ moreover
+ {assume nz: "n \<noteq> 0"
+ hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv)
+ have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto
+ hence "\<forall>x\<in> ?fN. ?y > x" by auto
+ hence "?y \<notin> ?fN" by auto
+ hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto }
+ ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast
+qed
+
+lemma (in ring_char_0) UNIV_ring_char_0_infinte:
+ "\<not> (finite (UNIV:: 'a set))"
+proof
+ assume F: "finite (UNIV :: 'a set)"
+ have "finite (UNIV :: nat set)"
+ proof (rule finite_imageD)
+ have "of_nat ` UNIV \<subseteq> UNIV" by simp
+ then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset)
+ show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: inj_on_def)
+ qed
+ with UNIV_nat_infinite show False ..
+qed
+
+lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
+ finite {x. poly p x = 0}"
+proof
+ assume H: "poly p \<noteq> poly []"
+ show "finite {x. poly p x = (0::'a)}"
+ using H
+ apply -
+ apply (erule contrapos_np, rule ext)
+ apply (rule ccontr)
+ apply (clarify dest!: poly_roots_finite_lemma2)
+ using finite_subset
+ proof-
+ fix x i
+ assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}"
+ and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"
+ let ?M= "{x. poly p x = (0\<Colon>'a)}"
+ from P have "?M \<subseteq> set i" by auto
+ with finite_subset F show False by auto
+ qed
+next
+ assume F: "finite {x. poly p x = (0\<Colon>'a)}"
+ show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto
+qed
+
+text{*Entirety and Cancellation for polynomials*}
+
+lemma (in idom_char_0) poly_entire_lemma2:
+ assumes p0: "poly p \<noteq> poly []" and q0: "poly q \<noteq> poly []"
+ shows "poly (p***q) \<noteq> poly []"
+proof-
+ let ?S = "\<lambda>p. {x. poly p x = 0}"
+ have "?S (p *** q) = ?S p \<union> ?S q" by (auto simp add: poly_mult)
+ with p0 q0 show ?thesis unfolding poly_roots_finite by auto
+qed
+
+lemma (in idom_char_0) poly_entire:
+ "poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
+using poly_entire_lemma2[of p q]
+by auto (rule ext, simp add: poly_mult)+
+
+lemma (in idom_char_0) poly_entire_neg: "(poly (p *** q) \<noteq> poly []) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
+by (simp add: poly_entire)
+
+lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)"
+by (auto intro!: ext)
+
+lemma (in comm_ring_1) poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)"
+by (auto simp add: ring_simps poly_add poly_minus_def fun_eq poly_cmult minus_mult_left[symmetric])
+
+lemma (in comm_ring_1) poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
+by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult right_distrib minus_mult_left[symmetric] minus_mult_right[symmetric])
+
+subclass (in idom_char_0) comm_ring_1 ..
+lemma (in idom_char_0) poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly [] | poly q = poly r)"
+proof-
+ have "poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly (p *** q +++ -- (p *** r)) = poly []" by (simp only: poly_add_minus_zero_iff)
+ also have "\<dots> \<longleftrightarrow> poly p = poly [] | poly q = poly r"
+ by (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
+ finally show ?thesis .
+qed
+
+lemma (in recpower_idom) poly_exp_eq_zero[simp]:
+ "(poly (p %^ n) = poly []) = (poly p = poly [] & n \<noteq> 0)"
+apply (simp only: fun_eq add: all_simps [symmetric])
+apply (rule arg_cong [where f = All])
+apply (rule ext)
+apply (induct n)
+apply (auto simp add: poly_exp poly_mult)
+done
+
+lemma (in semiring_1) one_neq_zero[simp]: "1 \<noteq> 0" using zero_neq_one by blast
+lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \<noteq> poly []"
+apply (simp add: fun_eq)
+apply (rule_tac x = "minus one a" in exI)
+apply (unfold diff_minus)
+apply (subst add_commute)
+apply (subst add_assoc)
+apply simp
+done
+
+lemma (in recpower_idom) poly_exp_prime_eq_zero: "(poly ([a, 1] %^ n) \<noteq> poly [])"
+by auto
+
+text{*A more constructive notion of polynomials being trivial*}
+
+lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"
+apply(simp add: fun_eq)
+apply (case_tac "h = zero")
+apply (drule_tac [2] x = zero in spec, auto)
+apply (cases "poly t = poly []", simp)
+proof-
+ fix x
+ assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []"
+ let ?S = "{x. poly t x = 0}"
+ from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast
+ hence th: "?S \<supseteq> UNIV - {0}" by auto
+ from poly_roots_finite pnz have th': "finite ?S" by blast
+ from finite_subset[OF th th'] UNIV_ring_char_0_infinte
+ show "poly t x = (0\<Colon>'a)" by simp
+ qed
+
+lemma (in idom_char_0) poly_zero: "(poly p = poly []) = list_all (%c. c = 0) p"
+apply (induct "p", simp)
+apply (rule iffI)
+apply (drule poly_zero_lemma', auto)
+done
+
+lemma (in idom_char_0) poly_0: "list_all (\<lambda>c. c = 0) p \<Longrightarrow> poly p x = 0"
+ unfolding poly_zero[symmetric] by simp
+
+
+
+text{*Basics of divisibility.*}
+
+lemma (in idom) poly_primes: "([a, 1] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)"
+apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult left_distrib [symmetric])
+apply (drule_tac x = "uminus a" in spec)
+apply (simp add: poly_linear_divides poly_add poly_cmult left_distrib [symmetric])
+apply (cases "p = []")
+apply (rule exI[where x="[]"])
+apply simp
+apply (cases "q = []")
+apply (erule allE[where x="[]"], simp)
+
+apply clarsimp
+apply (cases "\<exists>q\<Colon>'a list. p = a %* q +++ ((0\<Colon>'a) # q)")
+apply (clarsimp simp add: poly_add poly_cmult)
+apply (rule_tac x="qa" in exI)
+apply (simp add: left_distrib [symmetric])
+apply clarsimp
+
+apply (auto simp add: right_minus poly_linear_divides poly_add poly_cmult left_distrib [symmetric])
+apply (rule_tac x = "pmult qa q" in exI)
+apply (rule_tac [2] x = "pmult p qa" in exI)
+apply (auto simp add: poly_add poly_mult poly_cmult mult_ac)
+done
+
+lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p"
+apply (simp add: divides_def)
+apply (rule_tac x = "[one]" in exI)
+apply (auto simp add: poly_mult fun_eq)
+done
+
+lemma (in comm_semiring_1) poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r"
+apply (simp add: divides_def, safe)
+apply (rule_tac x = "pmult qa qaa" in exI)
+apply (auto simp add: poly_mult fun_eq mult_assoc)
+done
+
+
+lemma (in recpower_comm_semiring_1) poly_divides_exp: "m \<le> n ==> (p %^ m) divides (p %^ n)"
+apply (auto simp add: le_iff_add)
+apply (induct_tac k)
+apply (rule_tac [2] poly_divides_trans)
+apply (auto simp add: divides_def)
+apply (rule_tac x = p in exI)
+apply (auto simp add: poly_mult fun_eq mult_ac)
+done
+
+lemma (in recpower_comm_semiring_1) poly_exp_divides: "[| (p %^ n) divides q; m\<le>n |] ==> (p %^ m) divides q"
+by (blast intro: poly_divides_exp poly_divides_trans)
+
+lemma (in comm_semiring_0) poly_divides_add:
+ "[| p divides q; p divides r |] ==> p divides (q +++ r)"
+apply (simp add: divides_def, auto)
+apply (rule_tac x = "padd qa qaa" in exI)
+apply (auto simp add: poly_add fun_eq poly_mult right_distrib)
+done
+
+lemma (in comm_ring_1) poly_divides_diff:
+ "[| p divides q; p divides (q +++ r) |] ==> p divides r"
+apply (simp add: divides_def, auto)
+apply (rule_tac x = "padd qaa (poly_minus qa)" in exI)
+apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib compare_rls add_ac)
+done
+
+lemma (in comm_ring_1) poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q"
+apply (erule poly_divides_diff)
+apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac)
+done
+
+lemma (in semiring_0) poly_divides_zero: "poly p = poly [] ==> q divides p"
+apply (simp add: divides_def)
+apply (rule exI[where x="[]"])
+apply (auto simp add: fun_eq poly_mult)
+done
+
+lemma (in semiring_0) poly_divides_zero2[simp]: "q divides []"
+apply (simp add: divides_def)
+apply (rule_tac x = "[]" in exI)
+apply (auto simp add: fun_eq)
+done
+
+text{*At last, we can consider the order of a root.*}
+
+lemma (in idom_char_0) poly_order_exists_lemma:
+ assumes lp: "length p = d" and p: "poly p \<noteq> poly []"
+ shows "\<exists>n q. p = mulexp n [-a, 1] q \<and> poly q a \<noteq> 0"
+using lp p
+proof(induct d arbitrary: p)
+ case 0 thus ?case by simp
+next
+ case (Suc n p)
+ {assume p0: "poly p a = 0"
+ from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" by auto
+ hence pN: "p \<noteq> []" by auto
+ from p0[unfolded poly_linear_divides] pN obtain q where
+ q: "p = [-a, 1] *** q" by blast
+ from q h p0 have qh: "length q = n" "poly q \<noteq> poly []"
+ apply -
+ apply simp
+ apply (simp only: fun_eq)
+ apply (rule ccontr)
+ apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
+ done
+ from Suc.hyps[OF qh] obtain m r where
+ mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
+ from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" by simp
+ hence ?case by blast}
+ moreover
+ {assume p0: "poly p a \<noteq> 0"
+ hence ?case using Suc.prems apply simp by (rule exI[where x="0::nat"], simp)}
+ ultimately show ?case by blast
+qed
+
+
+lemma (in recpower_comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x"
+by(induct n, auto simp add: poly_mult power_Suc mult_ac)
+
+lemma (in comm_semiring_1) divides_left_mult:
+ assumes d:"(p***q) divides r" shows "p divides r \<and> q divides r"
+proof-
+ from d obtain t where r:"poly r = poly (p***q *** t)"
+ unfolding divides_def by blast
+ hence "poly r = poly (p *** (q *** t))"
+ "poly r = poly (q *** (p***t))" by(auto simp add: fun_eq poly_mult mult_ac)
+ thus ?thesis unfolding divides_def by blast
+qed
+
+
+
+(* FIXME: Tidy up *)
+
+lemma (in recpower_semiring_1)
+ zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
+ by (induct n, simp_all add: power_Suc)
+
+lemma (in recpower_idom_char_0) poly_order_exists:
+ assumes lp: "length p = d" and p0: "poly p \<noteq> poly []"
+ shows "\<exists>n. ([-a, 1] %^ n) divides p & ~(([-a, 1] %^ (Suc n)) divides p)"
+proof-
+let ?poly = poly
+let ?mulexp = mulexp
+let ?pexp = pexp
+from lp p0
+show ?thesis
+apply -
+apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
+apply (rule_tac x = n in exI, safe)
+apply (unfold divides_def)
+apply (rule_tac x = q in exI)
+apply (induct_tac "n", simp)
+apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)
+apply safe
+apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)")
+apply simp
+apply (induct_tac "n")
+apply (simp del: pmult_Cons pexp_Suc)
+apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
+apply (simp add: poly_add poly_cmult minus_mult_left[symmetric])
+apply (rule pexp_Suc [THEN ssubst])
+apply (rule ccontr)
+apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc)
+done
+qed
+
+
+lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p"
+by (simp add: divides_def, auto)
+
+lemma (in recpower_idom_char_0) poly_order: "poly p \<noteq> poly []
+ ==> EX! n. ([-a, 1] %^ n) divides p &
+ ~(([-a, 1] %^ (Suc n)) divides p)"
+apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc)
+apply (cut_tac x = y and y = n in less_linear)
+apply (drule_tac m = n in poly_exp_divides)
+apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides]
+ simp del: pmult_Cons pexp_Suc)
+done
+
+text{*Order*}
+
+lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n"
+by (blast intro: someI2)
+
+lemma (in recpower_idom_char_0) order:
+ "(([-a, 1] %^ n) divides p &
+ ~(([-a, 1] %^ (Suc n)) divides p)) =
+ ((n = order a p) & ~(poly p = poly []))"
+apply (unfold order_def)
+apply (rule iffI)
+apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order)
+apply (blast intro!: poly_order [THEN [2] some1_equalityD])
+done
+
+lemma (in recpower_idom_char_0) order2: "[| poly p \<noteq> poly [] |]
+ ==> ([-a, 1] %^ (order a p)) divides p &
+ ~(([-a, 1] %^ (Suc(order a p))) divides p)"
+by (simp add: order del: pexp_Suc)
+
+lemma (in recpower_idom_char_0) order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
+ ~(([-a, 1] %^ (Suc n)) divides p)
+ |] ==> (n = order a p)"
+by (insert order [of a n p], auto)
+
+lemma (in recpower_idom_char_0) order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
+ ~(([-a, 1] %^ (Suc n)) divides p))
+ ==> (n = order a p)"
+by (blast intro: order_unique)
+
+lemma (in ring_1) order_poly: "poly p = poly q ==> order a p = order a q"
+by (auto simp add: fun_eq divides_def poly_mult order_def)
+
+lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p"
+apply (induct "p")
+apply (auto simp add: numeral_1_eq_1)
+done
+
+lemma (in comm_ring_1) lemma_order_root:
+ " 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p
+ \<Longrightarrow> poly p a = 0"
+apply (induct n arbitrary: a p, blast)
+apply (auto simp add: divides_def poly_mult simp del: pmult_Cons)
+done
+
+lemma (in recpower_idom_char_0) order_root: "(poly p a = 0) = ((poly p = poly []) | order a p \<noteq> 0)"
+proof-
+ let ?poly = poly
+ show ?thesis
+apply (case_tac "?poly p = ?poly []", auto)
+apply (simp add: poly_linear_divides del: pmult_Cons, safe)
+apply (drule_tac [!] a = a in order2)
+apply (rule ccontr)
+apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)
+using neq0_conv
+apply (blast intro: lemma_order_root)
+done
+qed
+
+lemma (in recpower_idom_char_0) order_divides: "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
+proof-
+ let ?poly = poly
+ show ?thesis
+apply (case_tac "?poly p = ?poly []", auto)
+apply (simp add: divides_def fun_eq poly_mult)
+apply (rule_tac x = "[]" in exI)
+apply (auto dest!: order2 [where a=a]
+ intro: poly_exp_divides simp del: pexp_Suc)
+done
+qed
+
+lemma (in recpower_idom_char_0) order_decomp:
+ "poly p \<noteq> poly []
+ ==> \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) &
+ ~([-a, 1] divides q)"
+apply (unfold divides_def)
+apply (drule order2 [where a = a])
+apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe)
+apply (rule_tac x = q in exI, safe)
+apply (drule_tac x = qa in spec)
+apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons)
+done
+
+text{*Important composition properties of orders.*}
+lemma order_mult: "poly (p *** q) \<noteq> poly []
+ ==> order a (p *** q) = order a p + order (a::'a::{recpower_idom_char_0}) q"
+apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order)
+apply (auto simp add: poly_entire simp del: pmult_Cons)
+apply (drule_tac a = a in order2)+
+apply safe
+apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)
+apply (rule_tac x = "qa *** qaa" in exI)
+apply (simp add: poly_mult mult_ac del: pmult_Cons)
+apply (drule_tac a = a in order_decomp)+
+apply safe
+apply (subgoal_tac "[-a,1] divides (qa *** qaa) ")
+apply (simp add: poly_primes del: pmult_Cons)
+apply (auto simp add: divides_def simp del: pmult_Cons)
+apply (rule_tac x = qb in exI)
+apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")
+apply (drule poly_mult_left_cancel [THEN iffD1], force)
+apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
+apply (drule poly_mult_left_cancel [THEN iffD1], force)
+apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
+done
+
+lemma (in recpower_idom_char_0) order_mult:
+ assumes pq0: "poly (p *** q) \<noteq> poly []"
+ shows "order a (p *** q) = order a p + order a q"
+proof-
+ let ?order = order
+ let ?divides = "op divides"
+ let ?poly = poly
+from pq0
+show ?thesis
+apply (cut_tac a = a and p = "pmult p q" and n = "?order a p + ?order a q" in order)
+apply (auto simp add: poly_entire simp del: pmult_Cons)
+apply (drule_tac a = a in order2)+
+apply safe
+apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)
+apply (rule_tac x = "pmult qa qaa" in exI)
+apply (simp add: poly_mult mult_ac del: pmult_Cons)
+apply (drule_tac a = a in order_decomp)+
+apply safe
+apply (subgoal_tac "?divides [uminus a,one ] (pmult qa qaa) ")
+apply (simp add: poly_primes del: pmult_Cons)
+apply (auto simp add: divides_def simp del: pmult_Cons)
+apply (rule_tac x = qb in exI)
+apply (subgoal_tac "?poly (pmult (pexp [uminus a, one] (?order a p)) (pmult qa qaa)) = ?poly (pmult (pexp [uminus a, one] (?order a p)) (pmult [uminus a, one] qb))")
+apply (drule poly_mult_left_cancel [THEN iffD1], force)
+apply (subgoal_tac "?poly (pmult (pexp [uminus a, one ] (order a q)) (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) = ?poly (pmult (pexp [uminus a, one] (order a q)) (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb))) ")
+apply (drule poly_mult_left_cancel [THEN iffD1], force)
+apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
+done
+qed
+
+lemma (in recpower_idom_char_0) order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order a p \<noteq> 0)"
+by (rule order_root [THEN ssubst], auto)
+
+lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" by auto
+
+lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]"
+by (simp add: fun_eq)
+
+lemma (in recpower_idom_char_0) rsquarefree_decomp:
+ "[| rsquarefree p; poly p a = 0 |]
+ ==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0"
+apply (simp add: rsquarefree_def, safe)
+apply (frule_tac a = a in order_decomp)
+apply (drule_tac x = a in spec)
+apply (drule_tac a = a in order_root2 [symmetric])
+apply (auto simp del: pmult_Cons)
+apply (rule_tac x = q in exI, safe)
+apply (simp add: poly_mult fun_eq)
+apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1])
+apply (simp add: divides_def del: pmult_Cons, safe)
+apply (drule_tac x = "[]" in spec)
+apply (auto simp add: fun_eq)
+done
+
+
+text{*Normalization of a polynomial.*}
+
+lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p"
+apply (induct "p")
+apply (auto simp add: fun_eq)
+done
+
+text{*The degree of a polynomial.*}
+
+lemma (in semiring_0) lemma_degree_zero:
+ "list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []"
+by (induct "p", auto)
+
+lemma (in idom_char_0) degree_zero:
+ assumes pN: "poly p = poly []" shows"degree p = 0"
+proof-
+ let ?pn = pnormalize
+ from pN
+ show ?thesis
+ apply (simp add: degree_def)
+ apply (case_tac "?pn p = []")
+ apply (auto simp add: poly_zero lemma_degree_zero )
+ done
+qed
+
+lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
+lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
+lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
+ unfolding pnormal_def by simp
+lemma (in semiring_0) pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
+ unfolding pnormal_def
+ apply (cases "pnormalize p = []", auto)
+ by (cases "c = 0", auto)
+
+
+lemma (in semiring_0) pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
+proof(induct p)
+ case Nil thus ?case by (simp add: pnormal_def)
+next
+ case (Cons a as) thus ?case
+ apply (simp add: pnormal_def)
+ apply (cases "pnormalize as = []", simp_all)
+ apply (cases "as = []", simp_all)
+ apply (cases "a=0", simp_all)
+ apply (cases "a=0", simp_all)
+ done
+qed
+
+lemma (in semiring_0) pnormal_length: "pnormal p \<Longrightarrow> 0 < length p"
+ unfolding pnormal_def length_greater_0_conv by blast
+
+lemma (in semiring_0) pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p"
+ apply (induct p, auto)
+ apply (case_tac "p = []", auto)
+ apply (simp add: pnormal_def)
+ by (rule pnormal_cons, auto)
+
+lemma (in semiring_0) pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)"
+ using pnormal_last_length pnormal_length pnormal_last_nonzero by blast
+
+lemma (in idom_char_0) poly_Cons_eq: "poly (c#cs) = poly (d#ds) \<longleftrightarrow> c=d \<and> poly cs = poly ds" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+ assume eq: ?lhs
+ hence "\<And>x. poly ((c#cs) +++ -- (d#ds)) x = 0"
+ by (simp only: poly_minus poly_add ring_simps) simp
+ hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by - (rule ext, simp)
+ hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
+ unfolding poly_zero by (simp add: poly_minus_def ring_simps minus_mult_left[symmetric])
+ hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
+ unfolding poly_zero[symmetric] by simp
+ thus ?rhs apply (simp add: poly_minus poly_add ring_simps) apply (rule ext, simp) done
+next
+ assume ?rhs then show ?lhs by - (rule ext,simp)
+qed
+
+lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
+proof(induct q arbitrary: p)
+ case Nil thus ?case by (simp only: poly_zero lemma_degree_zero) simp
+next
+ case (Cons c cs p)
+ thus ?case
+ proof(induct p)
+ case Nil
+ hence "poly [] = poly (c#cs)" by blast
+ then have "poly (c#cs) = poly [] " by simp
+ thus ?case by (simp only: poly_zero lemma_degree_zero) simp
+ next
+ case (Cons d ds)
+ hence eq: "poly (d # ds) = poly (c # cs)" by blast
+ hence eq': "\<And>x. poly (d # ds) x = poly (c # cs) x" by simp
+ hence "poly (d # ds) 0 = poly (c # cs) 0" by blast
+ hence dc: "d = c" by auto
+ with eq have "poly ds = poly cs"
+ unfolding poly_Cons_eq by simp
+ with Cons.prems have "pnormalize ds = pnormalize cs" by blast
+ with dc show ?case by simp
+ qed
+qed
+
+lemma (in idom_char_0) degree_unique: assumes pq: "poly p = poly q"
+ shows "degree p = degree q"
+using pnormalize_unique[OF pq] unfolding degree_def by simp
+
+lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" by (induct p, auto)
+
+lemma (in semiring_0) last_linear_mul_lemma:
+ "last ((a %* p) +++ (x#(b %* p))) = (if p=[] then x else b*last p)"
+
+apply (induct p arbitrary: a x b, auto)
+apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \<noteq> []", simp)
+apply (induct_tac p, auto)
+done
+
+lemma (in semiring_1) last_linear_mul: assumes p:"p\<noteq>[]" shows "last ([a,1] *** p) = last p"
+proof-
+ from p obtain c cs where cs: "p = c#cs" by (cases p, auto)
+ from cs have eq:"[a,1] *** p = (a %* (c#cs)) +++ (0#(1 %* (c#cs)))"
+ by (simp add: poly_cmult_distr)
+ show ?thesis using cs
+ unfolding eq last_linear_mul_lemma by simp
+qed
+
+lemma (in semiring_0) pnormalize_eq: "last p \<noteq> 0 \<Longrightarrow> pnormalize p = p"
+ apply (induct p, auto)
+ apply (case_tac p, auto)+
+ done
+
+lemma (in semiring_0) last_pnormalize: "pnormalize p \<noteq> [] \<Longrightarrow> last (pnormalize p) \<noteq> 0"
+ by (induct p, auto)
+
+lemma (in semiring_0) pnormal_degree: "last p \<noteq> 0 \<Longrightarrow> degree p = length p - 1"
+ using pnormalize_eq[of p] unfolding degree_def by simp
+
+lemma (in semiring_0) poly_Nil_ext: "poly [] = (\<lambda>x. 0)" by (rule ext) simp
+
+lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \<noteq> poly []"
+ shows "degree ([a,1] *** p) = degree p + 1"
+proof-
+ from p have pnz: "pnormalize p \<noteq> []"
+ unfolding poly_zero lemma_degree_zero .
+
+ from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
+ have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp
+ from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
+ pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
+
+
+ have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
+ by (auto simp add: poly_length_mult)
+
+ have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
+ by (rule ext) (simp add: poly_mult poly_add poly_cmult)
+ from degree_unique[OF eqs] th
+ show ?thesis by (simp add: degree_unique[OF poly_normalize])
+qed
+
+lemma (in idom_char_0) linear_pow_mul_degree:
+ "degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)"
+proof(induct n arbitrary: a p)
+ case (0 a p)
+ {assume p: "poly p = poly []"
+ hence ?case using degree_unique[OF p] by (simp add: degree_def)}
+ moreover
+ {assume p: "poly p \<noteq> poly []" hence ?case by (auto simp add: poly_Nil_ext) }
+ ultimately show ?case by blast
+next
+ case (Suc n a p)
+ have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))"
+ apply (rule ext, simp add: poly_mult poly_add poly_cmult)
+ by (simp add: mult_ac add_ac right_distrib)
+ note deq = degree_unique[OF eq]
+ {assume p: "poly p = poly []"
+ with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []"
+ by - (rule ext,simp add: poly_mult poly_cmult poly_add)
+ from degree_unique[OF eq'] p have ?case by (simp add: degree_def)}
+ moreover
+ {assume p: "poly p \<noteq> poly []"
+ from p have ap: "poly ([a,1] *** p) \<noteq> poly []"
+ using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
+ have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))"
+ by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult mult_ac add_ac right_distrib)
+ from ap have ap': "(poly ([a,1] *** p) = poly []) = False" by blast
+ have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n"
+ apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
+ by simp
+
+ from degree_unique[OF eq] ap p th0 linear_mul_degree[OF p, of a]
+ have ?case by (auto simp del: poly.simps)}
+ ultimately show ?case by blast
+qed
+
+lemma (in recpower_idom_char_0) order_degree:
+ assumes p0: "poly p \<noteq> poly []"
+ shows "order a p \<le> degree p"
+proof-
+ from order2[OF p0, unfolded divides_def]
+ obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast
+ {assume "poly q = poly []"
+ with q p0 have False by (simp add: poly_mult poly_entire)}
+ with degree_unique[OF q, unfolded linear_pow_mul_degree]
+ show ?thesis by auto
+qed
+
+text{*Tidier versions of finiteness of roots.*}
+
+lemma (in idom_char_0) poly_roots_finite_set: "poly p \<noteq> poly [] ==> finite {x. poly p x = 0}"
+unfolding poly_roots_finite .
+
+text{*bound for polynomial.*}
+
+lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{ordered_idom})) \<le> poly (map abs p) k"
+apply (induct "p", auto)
+apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans)
+apply (rule abs_triangle_ineq)
+apply (auto intro!: mult_mono simp add: abs_mult)
+done
+
+lemma (in semiring_0) poly_Sing: "poly [c] x = c" by simp
+
+end
--- a/src/HOL/Univ_Poly.thy Fri Jan 16 08:05:03 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1050 +0,0 @@
-(* Title: Univ_Poly.thy
- Author: Amine Chaieb
-*)
-
-header {* Univariate Polynomials *}
-
-theory Univ_Poly
-imports Plain List
-begin
-
-text{* Application of polynomial as a function. *}
-
-primrec (in semiring_0) poly :: "'a list => 'a => 'a" where
- poly_Nil: "poly [] x = 0"
-| poly_Cons: "poly (h#t) x = h + x * poly t x"
-
-
-subsection{*Arithmetic Operations on Polynomials*}
-
-text{*addition*}
-
-primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "+++" 65)
-where
- padd_Nil: "[] +++ l2 = l2"
-| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
- else (h + hd l2)#(t +++ tl l2))"
-
-text{*Multiplication by a constant*}
-primrec (in semiring_0) cmult :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "%*" 70) where
- cmult_Nil: "c %* [] = []"
-| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)"
-
-text{*Multiplication by a polynomial*}
-primrec (in semiring_0) pmult :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "***" 70)
-where
- pmult_Nil: "[] *** l2 = []"
-| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2
- else (h %* l2) +++ ((0) # (t *** l2)))"
-
-text{*Repeated multiplication by a polynomial*}
-primrec (in semiring_0) mulexp :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
- mulexp_zero: "mulexp 0 p q = q"
-| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q"
-
-text{*Exponential*}
-primrec (in semiring_1) pexp :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list" (infixl "%^" 80) where
- pexp_0: "p %^ 0 = [1]"
-| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)"
-
-text{*Quotient related value of dividing a polynomial by x + a*}
-(* Useful for divisor properties in inductive proofs *)
-primrec (in field) "pquot" :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where
- pquot_Nil: "pquot [] a= []"
-| pquot_Cons: "pquot (h#t) a = (if t = [] then [h]
- else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))"
-
-text{*normalization of polynomials (remove extra 0 coeff)*}
-primrec (in semiring_0) pnormalize :: "'a list \<Rightarrow> 'a list" where
- pnormalize_Nil: "pnormalize [] = []"
-| pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = [])
- then (if (h = 0) then [] else [h])
- else (h#(pnormalize p)))"
-
-definition (in semiring_0) "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])"
-definition (in semiring_0) "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))"
-text{*Other definitions*}
-
-definition (in ring_1)
- poly_minus :: "'a list => 'a list" ("-- _" [80] 80) where
- "-- p = (- 1) %* p"
-
-definition (in semiring_0)
- divides :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "divides" 70) where
- [code del]: "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
-
- --{*order of a polynomial*}
-definition (in ring_1) order :: "'a => 'a list => nat" where
- "order a p = (SOME n. ([-a, 1] %^ n) divides p &
- ~ (([-a, 1] %^ (Suc n)) divides p))"
-
- --{*degree of a polynomial*}
-definition (in semiring_0) degree :: "'a list => nat" where
- "degree p = length (pnormalize p) - 1"
-
- --{*squarefree polynomials --- NB with respect to real roots only.*}
-definition (in ring_1)
- rsquarefree :: "'a list => bool" where
- "rsquarefree p = (poly p \<noteq> poly [] &
- (\<forall>a. (order a p = 0) | (order a p = 1)))"
-
-context semiring_0
-begin
-
-lemma padd_Nil2[simp]: "p +++ [] = p"
-by (induct p) auto
-
-lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"
-by auto
-
-lemma pminus_Nil[simp]: "-- [] = []"
-by (simp add: poly_minus_def)
-
-lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp
-end
-
-lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" by (induct "t", auto)
-
-lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ ((0)#t) = (a#t)"
-by simp
-
-text{*Handy general properties*}
-
-lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b"
-proof(induct b arbitrary: a)
- case Nil thus ?case by auto
-next
- case (Cons b bs a) thus ?case by (cases a, simp_all add: add_commute)
-qed
-
-lemma (in comm_semiring_0) padd_assoc: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)"
-apply (induct a arbitrary: b c)
-apply (simp, clarify)
-apply (case_tac b, simp_all add: add_ac)
-done
-
-lemma (in semiring_0) poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)"
-apply (induct p arbitrary: q,simp)
-apply (case_tac q, simp_all add: right_distrib)
-done
-
-lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)"
-apply (induct "t", simp)
-apply (auto simp add: mult_zero_left poly_ident_mult padd_commut)
-apply (case_tac t, auto)
-done
-
-text{*properties of evaluation of polynomials.*}
-
-lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
-proof(induct p1 arbitrary: p2)
- case Nil thus ?case by simp
-next
- case (Cons a as p2) thus ?case
- by (cases p2, simp_all add: add_ac right_distrib)
-qed
-
-lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
-apply (induct "p")
-apply (case_tac [2] "x=zero")
-apply (auto simp add: right_distrib mult_ac)
-done
-
-lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x"
- by (induct p, auto simp add: right_distrib mult_ac)
-
-lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)"
-apply (simp add: poly_minus_def)
-apply (auto simp add: poly_cmult minus_mult_left[symmetric])
-done
-
-lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
-proof(induct p1 arbitrary: p2)
- case Nil thus ?case by simp
-next
- case (Cons a as p2)
- thus ?case by (cases as,
- simp_all add: poly_cmult poly_add left_distrib right_distrib mult_ac)
-qed
-
-class recpower_semiring = semiring + recpower
-class recpower_semiring_1 = semiring_1 + recpower
-class recpower_semiring_0 = semiring_0 + recpower
-class recpower_ring = ring + recpower
-class recpower_ring_1 = ring_1 + recpower
-subclass (in recpower_ring_1) recpower_ring ..
-class recpower_comm_semiring_1 = recpower + comm_semiring_1
-class recpower_comm_ring_1 = recpower + comm_ring_1
-subclass (in recpower_comm_ring_1) recpower_comm_semiring_1 ..
-class recpower_idom = recpower + idom
-subclass (in recpower_idom) recpower_comm_ring_1 ..
-class idom_char_0 = idom + ring_char_0
-class recpower_idom_char_0 = recpower + idom_char_0
-subclass (in recpower_idom_char_0) recpower_idom ..
-
-lemma (in recpower_comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n"
-apply (induct "n")
-apply (auto simp add: poly_cmult poly_mult power_Suc)
-done
-
-text{*More Polynomial Evaluation Lemmas*}
-
-lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x"
-by simp
-
-lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x"
- by (simp add: poly_mult mult_assoc)
-
-lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0"
-by (induct "p", auto)
-
-lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x"
-apply (induct "n")
-apply (auto simp add: poly_mult mult_assoc)
-done
-
-subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides
- @{term "p(x)"} *}
-
-lemma (in comm_ring_1) lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q"
-proof(induct t)
- case Nil
- {fix h have "[h] = [h] +++ [- a, 1] *** []" by simp}
- thus ?case by blast
-next
- case (Cons x xs)
- {fix h
- from Cons.hyps[rule_format, of x]
- obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
- have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
- using qr by(cases q, simp_all add: ring_simps diff_def[symmetric]
- minus_mult_left[symmetric] right_minus)
- hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
- thus ?case by blast
-qed
-
-lemma (in comm_ring_1) poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q"
-by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto)
-
-
-lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"
-proof-
- {assume p: "p = []" hence ?thesis by simp}
- moreover
- {fix x xs assume p: "p = x#xs"
- {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
- by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
- moreover
- {assume p0: "poly p a = 0"
- from poly_linear_rem[of x xs a] obtain q r
- where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
- have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp
- hence "\<exists>q. p = [- a, 1] *** q" using p qr apply - apply (rule exI[where x=q])apply auto apply (cases q) apply auto done}
- ultimately have ?thesis using p by blast}
- ultimately show ?thesis by (cases p, auto)
-qed
-
-lemma (in semiring_0) lemma_poly_length_mult[simp]: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)"
-by (induct "p", auto)
-
-lemma (in semiring_0) lemma_poly_length_mult2[simp]: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)"
-by (induct "p", auto)
-
-lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)"
-by auto
-
-subsection{*Polynomial length*}
-
-lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p"
-by (induct "p", auto)
-
-lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)"
-apply (induct p1 arbitrary: p2, simp_all)
-apply arith
-done
-
-lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)"
-by (simp add: poly_add_length)
-
-lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
- "poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x"
-by (auto simp add: poly_mult)
-
-lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0"
-by (auto simp add: poly_mult)
-
-text{*Normalisation Properties*}
-
-lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"
-by (induct "p", auto)
-
-text{*A nontrivial polynomial of degree n has no more than n roots*}
-lemma (in idom) poly_roots_index_lemma:
- assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n"
- shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)"
- using p n
-proof(induct n arbitrary: p x)
- case 0 thus ?case by simp
-next
- case (Suc n p x)
- {assume C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)"
- from Suc.prems have p0: "poly p x \<noteq> 0" "p\<noteq> []" by auto
- from p0(1)[unfolded poly_linear_divides[of p x]]
- have "\<forall>q. p \<noteq> [- x, 1] *** q" by blast
- from C obtain a where a: "poly p a = 0" by blast
- from a[unfolded poly_linear_divides[of p a]] p0(2)
- obtain q where q: "p = [-a, 1] *** q" by blast
- have lg: "length q = n" using q Suc.prems(2) by simp
- from q p0 have qx: "poly q x \<noteq> poly [] x"
- by (auto simp add: poly_mult poly_add poly_cmult)
- from Suc.hyps[OF qx lg] obtain i where
- i: "\<forall>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" by blast
- let ?i = "\<lambda>m. if m = Suc n then a else i m"
- from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m"
- by blast
- from y have "y = a \<or> poly q y = 0"
- by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: ring_simps)
- with i[rule_format, of y] y(1) y(2) have False apply auto
- apply (erule_tac x="m" in allE)
- apply auto
- done}
- thus ?case by blast
-qed
-
-
-lemma (in idom) poly_roots_index_length: "poly p x \<noteq> poly [] x ==>
- \<exists>i. \<forall>x. (poly p x = 0) --> (\<exists>n. n \<le> length p & x = i n)"
-by (blast intro: poly_roots_index_lemma)
-
-lemma (in idom) poly_roots_finite_lemma1: "poly p x \<noteq> poly [] x ==>
- \<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"
-apply (drule poly_roots_index_length, safe)
-apply (rule_tac x = "Suc (length p)" in exI)
-apply (rule_tac x = i in exI)
-apply (simp add: less_Suc_eq_le)
-done
-
-
-lemma (in idom) idom_finite_lemma:
- assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)"
- shows "finite {x. P x}"
-proof-
- let ?M = "{x. P x}"
- let ?N = "set j"
- have "?M \<subseteq> ?N" using P by auto
- thus ?thesis using finite_subset by auto
-qed
-
-
-lemma (in idom) poly_roots_finite_lemma2: "poly p x \<noteq> poly [] x ==>
- \<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i"
-apply (drule poly_roots_index_length, safe)
-apply (rule_tac x="map (\<lambda>n. i n) [0 ..< Suc (length p)]" in exI)
-apply (auto simp add: image_iff)
-apply (erule_tac x="x" in allE, clarsimp)
-by (case_tac "n=length p", auto simp add: order_le_less)
-
-lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)"
- unfolding finite_conv_nat_seg_image
-proof(auto simp add: expand_set_eq image_iff)
- fix n::nat and f:: "nat \<Rightarrow> nat"
- let ?N = "{i. i < n}"
- let ?fN = "f ` ?N"
- let ?y = "Max ?fN + 1"
- from nat_seg_image_imp_finite[of "?fN" "f" n]
- have thfN: "finite ?fN" by simp
- {assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto}
- moreover
- {assume nz: "n \<noteq> 0"
- hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv)
- have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto
- hence "\<forall>x\<in> ?fN. ?y > x" by auto
- hence "?y \<notin> ?fN" by auto
- hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto }
- ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast
-qed
-
-lemma (in ring_char_0) UNIV_ring_char_0_infinte:
- "\<not> (finite (UNIV:: 'a set))"
-proof
- assume F: "finite (UNIV :: 'a set)"
- have "finite (UNIV :: nat set)"
- proof (rule finite_imageD)
- have "of_nat ` UNIV \<subseteq> UNIV" by simp
- then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset)
- show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: inj_on_def)
- qed
- with UNIV_nat_infinite show False ..
-qed
-
-lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
- finite {x. poly p x = 0}"
-proof
- assume H: "poly p \<noteq> poly []"
- show "finite {x. poly p x = (0::'a)}"
- using H
- apply -
- apply (erule contrapos_np, rule ext)
- apply (rule ccontr)
- apply (clarify dest!: poly_roots_finite_lemma2)
- using finite_subset
- proof-
- fix x i
- assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}"
- and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"
- let ?M= "{x. poly p x = (0\<Colon>'a)}"
- from P have "?M \<subseteq> set i" by auto
- with finite_subset F show False by auto
- qed
-next
- assume F: "finite {x. poly p x = (0\<Colon>'a)}"
- show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto
-qed
-
-text{*Entirety and Cancellation for polynomials*}
-
-lemma (in idom_char_0) poly_entire_lemma2:
- assumes p0: "poly p \<noteq> poly []" and q0: "poly q \<noteq> poly []"
- shows "poly (p***q) \<noteq> poly []"
-proof-
- let ?S = "\<lambda>p. {x. poly p x = 0}"
- have "?S (p *** q) = ?S p \<union> ?S q" by (auto simp add: poly_mult)
- with p0 q0 show ?thesis unfolding poly_roots_finite by auto
-qed
-
-lemma (in idom_char_0) poly_entire:
- "poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
-using poly_entire_lemma2[of p q]
-by auto (rule ext, simp add: poly_mult)+
-
-lemma (in idom_char_0) poly_entire_neg: "(poly (p *** q) \<noteq> poly []) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
-by (simp add: poly_entire)
-
-lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)"
-by (auto intro!: ext)
-
-lemma (in comm_ring_1) poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)"
-by (auto simp add: ring_simps poly_add poly_minus_def fun_eq poly_cmult minus_mult_left[symmetric])
-
-lemma (in comm_ring_1) poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
-by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult right_distrib minus_mult_left[symmetric] minus_mult_right[symmetric])
-
-subclass (in idom_char_0) comm_ring_1 ..
-lemma (in idom_char_0) poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly [] | poly q = poly r)"
-proof-
- have "poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly (p *** q +++ -- (p *** r)) = poly []" by (simp only: poly_add_minus_zero_iff)
- also have "\<dots> \<longleftrightarrow> poly p = poly [] | poly q = poly r"
- by (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
- finally show ?thesis .
-qed
-
-lemma (in recpower_idom) poly_exp_eq_zero[simp]:
- "(poly (p %^ n) = poly []) = (poly p = poly [] & n \<noteq> 0)"
-apply (simp only: fun_eq add: all_simps [symmetric])
-apply (rule arg_cong [where f = All])
-apply (rule ext)
-apply (induct n)
-apply (auto simp add: poly_exp poly_mult)
-done
-
-lemma (in semiring_1) one_neq_zero[simp]: "1 \<noteq> 0" using zero_neq_one by blast
-lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \<noteq> poly []"
-apply (simp add: fun_eq)
-apply (rule_tac x = "minus one a" in exI)
-apply (unfold diff_minus)
-apply (subst add_commute)
-apply (subst add_assoc)
-apply simp
-done
-
-lemma (in recpower_idom) poly_exp_prime_eq_zero: "(poly ([a, 1] %^ n) \<noteq> poly [])"
-by auto
-
-text{*A more constructive notion of polynomials being trivial*}
-
-lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"
-apply(simp add: fun_eq)
-apply (case_tac "h = zero")
-apply (drule_tac [2] x = zero in spec, auto)
-apply (cases "poly t = poly []", simp)
-proof-
- fix x
- assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []"
- let ?S = "{x. poly t x = 0}"
- from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast
- hence th: "?S \<supseteq> UNIV - {0}" by auto
- from poly_roots_finite pnz have th': "finite ?S" by blast
- from finite_subset[OF th th'] UNIV_ring_char_0_infinte
- show "poly t x = (0\<Colon>'a)" by simp
- qed
-
-lemma (in idom_char_0) poly_zero: "(poly p = poly []) = list_all (%c. c = 0) p"
-apply (induct "p", simp)
-apply (rule iffI)
-apply (drule poly_zero_lemma', auto)
-done
-
-lemma (in idom_char_0) poly_0: "list_all (\<lambda>c. c = 0) p \<Longrightarrow> poly p x = 0"
- unfolding poly_zero[symmetric] by simp
-
-
-
-text{*Basics of divisibility.*}
-
-lemma (in idom) poly_primes: "([a, 1] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)"
-apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult left_distrib [symmetric])
-apply (drule_tac x = "uminus a" in spec)
-apply (simp add: poly_linear_divides poly_add poly_cmult left_distrib [symmetric])
-apply (cases "p = []")
-apply (rule exI[where x="[]"])
-apply simp
-apply (cases "q = []")
-apply (erule allE[where x="[]"], simp)
-
-apply clarsimp
-apply (cases "\<exists>q\<Colon>'a list. p = a %* q +++ ((0\<Colon>'a) # q)")
-apply (clarsimp simp add: poly_add poly_cmult)
-apply (rule_tac x="qa" in exI)
-apply (simp add: left_distrib [symmetric])
-apply clarsimp
-
-apply (auto simp add: right_minus poly_linear_divides poly_add poly_cmult left_distrib [symmetric])
-apply (rule_tac x = "pmult qa q" in exI)
-apply (rule_tac [2] x = "pmult p qa" in exI)
-apply (auto simp add: poly_add poly_mult poly_cmult mult_ac)
-done
-
-lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p"
-apply (simp add: divides_def)
-apply (rule_tac x = "[one]" in exI)
-apply (auto simp add: poly_mult fun_eq)
-done
-
-lemma (in comm_semiring_1) poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r"
-apply (simp add: divides_def, safe)
-apply (rule_tac x = "pmult qa qaa" in exI)
-apply (auto simp add: poly_mult fun_eq mult_assoc)
-done
-
-
-lemma (in recpower_comm_semiring_1) poly_divides_exp: "m \<le> n ==> (p %^ m) divides (p %^ n)"
-apply (auto simp add: le_iff_add)
-apply (induct_tac k)
-apply (rule_tac [2] poly_divides_trans)
-apply (auto simp add: divides_def)
-apply (rule_tac x = p in exI)
-apply (auto simp add: poly_mult fun_eq mult_ac)
-done
-
-lemma (in recpower_comm_semiring_1) poly_exp_divides: "[| (p %^ n) divides q; m\<le>n |] ==> (p %^ m) divides q"
-by (blast intro: poly_divides_exp poly_divides_trans)
-
-lemma (in comm_semiring_0) poly_divides_add:
- "[| p divides q; p divides r |] ==> p divides (q +++ r)"
-apply (simp add: divides_def, auto)
-apply (rule_tac x = "padd qa qaa" in exI)
-apply (auto simp add: poly_add fun_eq poly_mult right_distrib)
-done
-
-lemma (in comm_ring_1) poly_divides_diff:
- "[| p divides q; p divides (q +++ r) |] ==> p divides r"
-apply (simp add: divides_def, auto)
-apply (rule_tac x = "padd qaa (poly_minus qa)" in exI)
-apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib compare_rls add_ac)
-done
-
-lemma (in comm_ring_1) poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q"
-apply (erule poly_divides_diff)
-apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac)
-done
-
-lemma (in semiring_0) poly_divides_zero: "poly p = poly [] ==> q divides p"
-apply (simp add: divides_def)
-apply (rule exI[where x="[]"])
-apply (auto simp add: fun_eq poly_mult)
-done
-
-lemma (in semiring_0) poly_divides_zero2[simp]: "q divides []"
-apply (simp add: divides_def)
-apply (rule_tac x = "[]" in exI)
-apply (auto simp add: fun_eq)
-done
-
-text{*At last, we can consider the order of a root.*}
-
-lemma (in idom_char_0) poly_order_exists_lemma:
- assumes lp: "length p = d" and p: "poly p \<noteq> poly []"
- shows "\<exists>n q. p = mulexp n [-a, 1] q \<and> poly q a \<noteq> 0"
-using lp p
-proof(induct d arbitrary: p)
- case 0 thus ?case by simp
-next
- case (Suc n p)
- {assume p0: "poly p a = 0"
- from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" by auto
- hence pN: "p \<noteq> []" by auto
- from p0[unfolded poly_linear_divides] pN obtain q where
- q: "p = [-a, 1] *** q" by blast
- from q h p0 have qh: "length q = n" "poly q \<noteq> poly []"
- apply -
- apply simp
- apply (simp only: fun_eq)
- apply (rule ccontr)
- apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
- done
- from Suc.hyps[OF qh] obtain m r where
- mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
- from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" by simp
- hence ?case by blast}
- moreover
- {assume p0: "poly p a \<noteq> 0"
- hence ?case using Suc.prems apply simp by (rule exI[where x="0::nat"], simp)}
- ultimately show ?case by blast
-qed
-
-
-lemma (in recpower_comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x"
-by(induct n, auto simp add: poly_mult power_Suc mult_ac)
-
-lemma (in comm_semiring_1) divides_left_mult:
- assumes d:"(p***q) divides r" shows "p divides r \<and> q divides r"
-proof-
- from d obtain t where r:"poly r = poly (p***q *** t)"
- unfolding divides_def by blast
- hence "poly r = poly (p *** (q *** t))"
- "poly r = poly (q *** (p***t))" by(auto simp add: fun_eq poly_mult mult_ac)
- thus ?thesis unfolding divides_def by blast
-qed
-
-
-
-(* FIXME: Tidy up *)
-
-lemma (in recpower_semiring_1)
- zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
- by (induct n, simp_all add: power_Suc)
-
-lemma (in recpower_idom_char_0) poly_order_exists:
- assumes lp: "length p = d" and p0: "poly p \<noteq> poly []"
- shows "\<exists>n. ([-a, 1] %^ n) divides p & ~(([-a, 1] %^ (Suc n)) divides p)"
-proof-
-let ?poly = poly
-let ?mulexp = mulexp
-let ?pexp = pexp
-from lp p0
-show ?thesis
-apply -
-apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
-apply (rule_tac x = n in exI, safe)
-apply (unfold divides_def)
-apply (rule_tac x = q in exI)
-apply (induct_tac "n", simp)
-apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)
-apply safe
-apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)")
-apply simp
-apply (induct_tac "n")
-apply (simp del: pmult_Cons pexp_Suc)
-apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
-apply (simp add: poly_add poly_cmult minus_mult_left[symmetric])
-apply (rule pexp_Suc [THEN ssubst])
-apply (rule ccontr)
-apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc)
-done
-qed
-
-
-lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p"
-by (simp add: divides_def, auto)
-
-lemma (in recpower_idom_char_0) poly_order: "poly p \<noteq> poly []
- ==> EX! n. ([-a, 1] %^ n) divides p &
- ~(([-a, 1] %^ (Suc n)) divides p)"
-apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc)
-apply (cut_tac x = y and y = n in less_linear)
-apply (drule_tac m = n in poly_exp_divides)
-apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides]
- simp del: pmult_Cons pexp_Suc)
-done
-
-text{*Order*}
-
-lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n"
-by (blast intro: someI2)
-
-lemma (in recpower_idom_char_0) order:
- "(([-a, 1] %^ n) divides p &
- ~(([-a, 1] %^ (Suc n)) divides p)) =
- ((n = order a p) & ~(poly p = poly []))"
-apply (unfold order_def)
-apply (rule iffI)
-apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order)
-apply (blast intro!: poly_order [THEN [2] some1_equalityD])
-done
-
-lemma (in recpower_idom_char_0) order2: "[| poly p \<noteq> poly [] |]
- ==> ([-a, 1] %^ (order a p)) divides p &
- ~(([-a, 1] %^ (Suc(order a p))) divides p)"
-by (simp add: order del: pexp_Suc)
-
-lemma (in recpower_idom_char_0) order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
- ~(([-a, 1] %^ (Suc n)) divides p)
- |] ==> (n = order a p)"
-by (insert order [of a n p], auto)
-
-lemma (in recpower_idom_char_0) order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
- ~(([-a, 1] %^ (Suc n)) divides p))
- ==> (n = order a p)"
-by (blast intro: order_unique)
-
-lemma (in ring_1) order_poly: "poly p = poly q ==> order a p = order a q"
-by (auto simp add: fun_eq divides_def poly_mult order_def)
-
-lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p"
-apply (induct "p")
-apply (auto simp add: numeral_1_eq_1)
-done
-
-lemma (in comm_ring_1) lemma_order_root:
- " 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p
- \<Longrightarrow> poly p a = 0"
-apply (induct n arbitrary: a p, blast)
-apply (auto simp add: divides_def poly_mult simp del: pmult_Cons)
-done
-
-lemma (in recpower_idom_char_0) order_root: "(poly p a = 0) = ((poly p = poly []) | order a p \<noteq> 0)"
-proof-
- let ?poly = poly
- show ?thesis
-apply (case_tac "?poly p = ?poly []", auto)
-apply (simp add: poly_linear_divides del: pmult_Cons, safe)
-apply (drule_tac [!] a = a in order2)
-apply (rule ccontr)
-apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)
-using neq0_conv
-apply (blast intro: lemma_order_root)
-done
-qed
-
-lemma (in recpower_idom_char_0) order_divides: "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
-proof-
- let ?poly = poly
- show ?thesis
-apply (case_tac "?poly p = ?poly []", auto)
-apply (simp add: divides_def fun_eq poly_mult)
-apply (rule_tac x = "[]" in exI)
-apply (auto dest!: order2 [where a=a]
- intro: poly_exp_divides simp del: pexp_Suc)
-done
-qed
-
-lemma (in recpower_idom_char_0) order_decomp:
- "poly p \<noteq> poly []
- ==> \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) &
- ~([-a, 1] divides q)"
-apply (unfold divides_def)
-apply (drule order2 [where a = a])
-apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe)
-apply (rule_tac x = q in exI, safe)
-apply (drule_tac x = qa in spec)
-apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons)
-done
-
-text{*Important composition properties of orders.*}
-lemma order_mult: "poly (p *** q) \<noteq> poly []
- ==> order a (p *** q) = order a p + order (a::'a::{recpower_idom_char_0}) q"
-apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order)
-apply (auto simp add: poly_entire simp del: pmult_Cons)
-apply (drule_tac a = a in order2)+
-apply safe
-apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)
-apply (rule_tac x = "qa *** qaa" in exI)
-apply (simp add: poly_mult mult_ac del: pmult_Cons)
-apply (drule_tac a = a in order_decomp)+
-apply safe
-apply (subgoal_tac "[-a,1] divides (qa *** qaa) ")
-apply (simp add: poly_primes del: pmult_Cons)
-apply (auto simp add: divides_def simp del: pmult_Cons)
-apply (rule_tac x = qb in exI)
-apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")
-apply (drule poly_mult_left_cancel [THEN iffD1], force)
-apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
-apply (drule poly_mult_left_cancel [THEN iffD1], force)
-apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
-done
-
-lemma (in recpower_idom_char_0) order_mult:
- assumes pq0: "poly (p *** q) \<noteq> poly []"
- shows "order a (p *** q) = order a p + order a q"
-proof-
- let ?order = order
- let ?divides = "op divides"
- let ?poly = poly
-from pq0
-show ?thesis
-apply (cut_tac a = a and p = "pmult p q" and n = "?order a p + ?order a q" in order)
-apply (auto simp add: poly_entire simp del: pmult_Cons)
-apply (drule_tac a = a in order2)+
-apply safe
-apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)
-apply (rule_tac x = "pmult qa qaa" in exI)
-apply (simp add: poly_mult mult_ac del: pmult_Cons)
-apply (drule_tac a = a in order_decomp)+
-apply safe
-apply (subgoal_tac "?divides [uminus a,one ] (pmult qa qaa) ")
-apply (simp add: poly_primes del: pmult_Cons)
-apply (auto simp add: divides_def simp del: pmult_Cons)
-apply (rule_tac x = qb in exI)
-apply (subgoal_tac "?poly (pmult (pexp [uminus a, one] (?order a p)) (pmult qa qaa)) = ?poly (pmult (pexp [uminus a, one] (?order a p)) (pmult [uminus a, one] qb))")
-apply (drule poly_mult_left_cancel [THEN iffD1], force)
-apply (subgoal_tac "?poly (pmult (pexp [uminus a, one ] (order a q)) (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) = ?poly (pmult (pexp [uminus a, one] (order a q)) (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb))) ")
-apply (drule poly_mult_left_cancel [THEN iffD1], force)
-apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
-done
-qed
-
-lemma (in recpower_idom_char_0) order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order a p \<noteq> 0)"
-by (rule order_root [THEN ssubst], auto)
-
-lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" by auto
-
-lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]"
-by (simp add: fun_eq)
-
-lemma (in recpower_idom_char_0) rsquarefree_decomp:
- "[| rsquarefree p; poly p a = 0 |]
- ==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0"
-apply (simp add: rsquarefree_def, safe)
-apply (frule_tac a = a in order_decomp)
-apply (drule_tac x = a in spec)
-apply (drule_tac a = a in order_root2 [symmetric])
-apply (auto simp del: pmult_Cons)
-apply (rule_tac x = q in exI, safe)
-apply (simp add: poly_mult fun_eq)
-apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1])
-apply (simp add: divides_def del: pmult_Cons, safe)
-apply (drule_tac x = "[]" in spec)
-apply (auto simp add: fun_eq)
-done
-
-
-text{*Normalization of a polynomial.*}
-
-lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p"
-apply (induct "p")
-apply (auto simp add: fun_eq)
-done
-
-text{*The degree of a polynomial.*}
-
-lemma (in semiring_0) lemma_degree_zero:
- "list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []"
-by (induct "p", auto)
-
-lemma (in idom_char_0) degree_zero:
- assumes pN: "poly p = poly []" shows"degree p = 0"
-proof-
- let ?pn = pnormalize
- from pN
- show ?thesis
- apply (simp add: degree_def)
- apply (case_tac "?pn p = []")
- apply (auto simp add: poly_zero lemma_degree_zero )
- done
-qed
-
-lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
-lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
-lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
- unfolding pnormal_def by simp
-lemma (in semiring_0) pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
- unfolding pnormal_def
- apply (cases "pnormalize p = []", auto)
- by (cases "c = 0", auto)
-
-
-lemma (in semiring_0) pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
-proof(induct p)
- case Nil thus ?case by (simp add: pnormal_def)
-next
- case (Cons a as) thus ?case
- apply (simp add: pnormal_def)
- apply (cases "pnormalize as = []", simp_all)
- apply (cases "as = []", simp_all)
- apply (cases "a=0", simp_all)
- apply (cases "a=0", simp_all)
- done
-qed
-
-lemma (in semiring_0) pnormal_length: "pnormal p \<Longrightarrow> 0 < length p"
- unfolding pnormal_def length_greater_0_conv by blast
-
-lemma (in semiring_0) pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p"
- apply (induct p, auto)
- apply (case_tac "p = []", auto)
- apply (simp add: pnormal_def)
- by (rule pnormal_cons, auto)
-
-lemma (in semiring_0) pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)"
- using pnormal_last_length pnormal_length pnormal_last_nonzero by blast
-
-lemma (in idom_char_0) poly_Cons_eq: "poly (c#cs) = poly (d#ds) \<longleftrightarrow> c=d \<and> poly cs = poly ds" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
- assume eq: ?lhs
- hence "\<And>x. poly ((c#cs) +++ -- (d#ds)) x = 0"
- by (simp only: poly_minus poly_add ring_simps) simp
- hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by - (rule ext, simp)
- hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
- unfolding poly_zero by (simp add: poly_minus_def ring_simps minus_mult_left[symmetric])
- hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
- unfolding poly_zero[symmetric] by simp
- thus ?rhs apply (simp add: poly_minus poly_add ring_simps) apply (rule ext, simp) done
-next
- assume ?rhs then show ?lhs by - (rule ext,simp)
-qed
-
-lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
-proof(induct q arbitrary: p)
- case Nil thus ?case by (simp only: poly_zero lemma_degree_zero) simp
-next
- case (Cons c cs p)
- thus ?case
- proof(induct p)
- case Nil
- hence "poly [] = poly (c#cs)" by blast
- then have "poly (c#cs) = poly [] " by simp
- thus ?case by (simp only: poly_zero lemma_degree_zero) simp
- next
- case (Cons d ds)
- hence eq: "poly (d # ds) = poly (c # cs)" by blast
- hence eq': "\<And>x. poly (d # ds) x = poly (c # cs) x" by simp
- hence "poly (d # ds) 0 = poly (c # cs) 0" by blast
- hence dc: "d = c" by auto
- with eq have "poly ds = poly cs"
- unfolding poly_Cons_eq by simp
- with Cons.prems have "pnormalize ds = pnormalize cs" by blast
- with dc show ?case by simp
- qed
-qed
-
-lemma (in idom_char_0) degree_unique: assumes pq: "poly p = poly q"
- shows "degree p = degree q"
-using pnormalize_unique[OF pq] unfolding degree_def by simp
-
-lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" by (induct p, auto)
-
-lemma (in semiring_0) last_linear_mul_lemma:
- "last ((a %* p) +++ (x#(b %* p))) = (if p=[] then x else b*last p)"
-
-apply (induct p arbitrary: a x b, auto)
-apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \<noteq> []", simp)
-apply (induct_tac p, auto)
-done
-
-lemma (in semiring_1) last_linear_mul: assumes p:"p\<noteq>[]" shows "last ([a,1] *** p) = last p"
-proof-
- from p obtain c cs where cs: "p = c#cs" by (cases p, auto)
- from cs have eq:"[a,1] *** p = (a %* (c#cs)) +++ (0#(1 %* (c#cs)))"
- by (simp add: poly_cmult_distr)
- show ?thesis using cs
- unfolding eq last_linear_mul_lemma by simp
-qed
-
-lemma (in semiring_0) pnormalize_eq: "last p \<noteq> 0 \<Longrightarrow> pnormalize p = p"
- apply (induct p, auto)
- apply (case_tac p, auto)+
- done
-
-lemma (in semiring_0) last_pnormalize: "pnormalize p \<noteq> [] \<Longrightarrow> last (pnormalize p) \<noteq> 0"
- by (induct p, auto)
-
-lemma (in semiring_0) pnormal_degree: "last p \<noteq> 0 \<Longrightarrow> degree p = length p - 1"
- using pnormalize_eq[of p] unfolding degree_def by simp
-
-lemma (in semiring_0) poly_Nil_ext: "poly [] = (\<lambda>x. 0)" by (rule ext) simp
-
-lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \<noteq> poly []"
- shows "degree ([a,1] *** p) = degree p + 1"
-proof-
- from p have pnz: "pnormalize p \<noteq> []"
- unfolding poly_zero lemma_degree_zero .
-
- from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
- have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp
- from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
- pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
-
-
- have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
- by (auto simp add: poly_length_mult)
-
- have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
- by (rule ext) (simp add: poly_mult poly_add poly_cmult)
- from degree_unique[OF eqs] th
- show ?thesis by (simp add: degree_unique[OF poly_normalize])
-qed
-
-lemma (in idom_char_0) linear_pow_mul_degree:
- "degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)"
-proof(induct n arbitrary: a p)
- case (0 a p)
- {assume p: "poly p = poly []"
- hence ?case using degree_unique[OF p] by (simp add: degree_def)}
- moreover
- {assume p: "poly p \<noteq> poly []" hence ?case by (auto simp add: poly_Nil_ext) }
- ultimately show ?case by blast
-next
- case (Suc n a p)
- have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))"
- apply (rule ext, simp add: poly_mult poly_add poly_cmult)
- by (simp add: mult_ac add_ac right_distrib)
- note deq = degree_unique[OF eq]
- {assume p: "poly p = poly []"
- with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []"
- by - (rule ext,simp add: poly_mult poly_cmult poly_add)
- from degree_unique[OF eq'] p have ?case by (simp add: degree_def)}
- moreover
- {assume p: "poly p \<noteq> poly []"
- from p have ap: "poly ([a,1] *** p) \<noteq> poly []"
- using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
- have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))"
- by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult mult_ac add_ac right_distrib)
- from ap have ap': "(poly ([a,1] *** p) = poly []) = False" by blast
- have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n"
- apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
- by simp
-
- from degree_unique[OF eq] ap p th0 linear_mul_degree[OF p, of a]
- have ?case by (auto simp del: poly.simps)}
- ultimately show ?case by blast
-qed
-
-lemma (in recpower_idom_char_0) order_degree:
- assumes p0: "poly p \<noteq> poly []"
- shows "order a p \<le> degree p"
-proof-
- from order2[OF p0, unfolded divides_def]
- obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast
- {assume "poly q = poly []"
- with q p0 have False by (simp add: poly_mult poly_entire)}
- with degree_unique[OF q, unfolded linear_pow_mul_degree]
- show ?thesis by auto
-qed
-
-text{*Tidier versions of finiteness of roots.*}
-
-lemma (in idom_char_0) poly_roots_finite_set: "poly p \<noteq> poly [] ==> finite {x. poly p x = 0}"
-unfolding poly_roots_finite .
-
-text{*bound for polynomial.*}
-
-lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{ordered_idom})) \<le> poly (map abs p) k"
-apply (induct "p", auto)
-apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans)
-apply (rule abs_triangle_ineq)
-apply (auto intro!: mult_mono simp add: abs_mult)
-done
-
-lemma (in semiring_0) poly_Sing: "poly [c] x = c" by simp
-
-end