--- a/src/HOL/Finite_Set.thy Sat Oct 01 19:29:48 2016 +0200
+++ b/src/HOL/Finite_Set.thy Sat Oct 01 19:30:21 2016 +0200
@@ -139,12 +139,12 @@
qed
qed
-lemma finite_conv_nat_seg_image: "finite A \<longleftrightarrow> (\<exists>(n::nat) f. A = f ` {i::nat. i < n})"
+lemma finite_conv_nat_seg_image: "finite A \<longleftrightarrow> (\<exists>n f. A = f ` {i::nat. i < n})"
by (blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on)
lemma finite_imp_inj_to_nat_seg:
assumes "finite A"
- shows "\<exists>f n::nat. f ` A = {i. i < n} \<and> inj_on f A"
+ shows "\<exists>f n. f ` A = {i::nat. i < n} \<and> inj_on f A"
proof -
from finite_imp_nat_seg_image_inj_on [OF \<open>finite A\<close>]
obtain f and n :: nat where bij: "bij_betw f {i. i<n} A"
--- a/src/HOL/Wellfounded.thy Sat Oct 01 19:29:48 2016 +0200
+++ b/src/HOL/Wellfounded.thy Sat Oct 01 19:30:21 2016 +0200
@@ -837,8 +837,9 @@
qed
qed
next
- case [simp]: infinite
- show ?case by (rule accI) (auto elim: max_ext.cases)
+ case infinite
+ show ?case
+ by (rule accI) (auto elim: max_ext.cases simp: infinite)
qed
qed