--- a/src/HOL/Lifting.thy Wed Apr 04 16:05:52 2012 +0200
+++ b/src/HOL/Lifting.thy Wed Apr 04 16:48:39 2012 +0200
@@ -283,6 +283,54 @@
show "transp (invariant P)" by (auto intro: transpI simp: invariant_def)
qed
+text {* Generating transfer rules for a type defined with @{text "typedef"}. *}
+
+lemma typedef_bi_unique:
+ assumes type: "type_definition Rep Abs A"
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "bi_unique T"
+ unfolding bi_unique_def T_def
+ by (simp add: type_definition.Rep_inject [OF type])
+
+lemma typedef_right_total:
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "right_total T"
+ unfolding right_total_def T_def by simp
+
+lemma copy_type_bi_total:
+ assumes type: "type_definition Rep Abs UNIV"
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "bi_total T"
+ unfolding bi_total_def T_def
+ by (metis type_definition.Abs_inverse [OF type] UNIV_I)
+
+lemma typedef_transfer_All:
+ assumes type: "type_definition Rep Abs A"
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "((T ===> op =) ===> op =) (Ball A) All"
+ unfolding T_def fun_rel_def
+ by (metis type_definition.Rep [OF type]
+ type_definition.Abs_inverse [OF type])
+
+lemma typedef_transfer_Ex:
+ assumes type: "type_definition Rep Abs A"
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "((T ===> op =) ===> op =) (Bex A) Ex"
+ unfolding T_def fun_rel_def
+ by (metis type_definition.Rep [OF type]
+ type_definition.Abs_inverse [OF type])
+
+lemma typedef_transfer_bforall:
+ assumes type: "type_definition Rep Abs A"
+ assumes T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
+ shows "((T ===> op =) ===> op =)
+ (transfer_bforall (\<lambda>x. x \<in> A)) transfer_forall"
+ unfolding transfer_bforall_def transfer_forall_def Ball_def [symmetric]
+ by (rule typedef_transfer_All [OF assms])
+
+text {* Generating the correspondence rule for a constant defined with
+ @{text "lift_definition"}. *}
+
lemma Quotient_to_transfer:
assumes "Quotient R Abs Rep T" and "R c c" and "c' \<equiv> Abs c"
shows "T c c'"