--- a/src/HOL/Matrix_LP/Matrix.thy Thu Aug 22 22:26:36 2024 +0100
+++ b/src/HOL/Matrix_LP/Matrix.thy Sat Aug 24 14:14:44 2024 +0100
@@ -1,5 +1,5 @@
(* Title: HOL/Matrix_LP/Matrix.thy
- Author: Steven Obua
+ Author: Steven Obua; updated to Isar by LCP
*)
theory Matrix
@@ -69,43 +69,26 @@
by ((rule ext)+, simp)
lemma transpose_infmatrix: "transpose_infmatrix (\<lambda>j i. P j i) = (\<lambda>j i. P i j)"
- apply (rule ext)+
- by simp
+ by force
lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def nonzero_positions_def image_def)
proof -
let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \<noteq> 0}"
+ let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}"
let ?swap = "\<lambda>pos. (snd pos, fst pos)"
- let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}"
- have swap_image: "?swap`?A = ?B"
- apply (simp add: image_def)
- apply (rule set_eqI)
- apply (simp)
- proof
- fix y
- assume hyp: "\<exists>a b. Rep_matrix x b a \<noteq> 0 \<and> y = (b, a)"
- thus "Rep_matrix x (fst y) (snd y) \<noteq> 0"
- proof -
- from hyp obtain a b where "(Rep_matrix x b a \<noteq> 0 & y = (b,a))" by blast
- then show "Rep_matrix x (fst y) (snd y) \<noteq> 0" by (simp)
- qed
- next
- fix y
- assume hyp: "Rep_matrix x (fst y) (snd y) \<noteq> 0"
- show "\<exists> a b. (Rep_matrix x b a \<noteq> 0 & y = (b,a))"
- by (rule exI[of _ "snd y"], rule exI[of _ "fst y"]) (simp add: hyp)
- qed
- then have "finite (?swap`?A)"
- proof -
- have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions)
- then have "finite ?B" by (simp add: nonzero_positions_def)
- with swap_image show "finite (?swap`?A)" by (simp)
- qed
- moreover
- have "inj_on ?swap ?A" by (simp add: inj_on_def)
- ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A])
+ have "finite ?A"
+ proof -
+ have swap_image: "?swap`?A = ?B"
+ by (force simp add: image_def)
+ then have "finite (?swap`?A)"
+ by (metis (full_types) finite_nonzero_positions nonzero_positions_def)
+ moreover
+ have "inj_on ?swap ?A" by (simp add: inj_on_def)
+ ultimately show "finite ?A"
+ using finite_imageD by blast
+ qed
+ then show ?thesis
+ by (simp add: Abs_matrix_inverse matrix_def nonzero_positions_def)
qed
lemma infmatrixforward: "(x::'a infmatrix) = y \<Longrightarrow> \<forall> a b. x a b = y a b"
@@ -134,52 +117,38 @@
by (metis nrows nrows_transpose transpose_matrix)
lemma ncols_le: "(ncols A \<le> n) \<longleftrightarrow> (\<forall>j i. n \<le> i \<longrightarrow> (Rep_matrix A j i) = 0)" (is "_ = ?st")
-apply (auto)
-apply (simp add: ncols)
-proof (simp add: ncols_def, auto)
- let ?P = "nonzero_positions (Rep_matrix A)"
- let ?p = "snd`?P"
- have a:"finite ?p" by (simp add: finite_nonzero_positions)
- let ?m = "Max ?p"
- assume "~(Suc (?m) \<le> n)"
- then have b:"n \<le> ?m" by (simp)
- fix a b
- assume "(a,b) \<in> ?P"
- then have "?p \<noteq> {}" by (auto)
- with a have "?m \<in> ?p" by (simp)
- moreover have "\<forall>x. (x \<in> ?p \<longrightarrow> (\<exists>y. (Rep_matrix A y x) \<noteq> 0))" by (simp add: nonzero_positions_def image_def)
- ultimately have "\<exists>y. (Rep_matrix A y ?m) \<noteq> 0" by (simp)
- moreover assume ?st
- ultimately show "False" using b by (simp)
+proof -
+ have "Rep_matrix A j i = 0"
+ if "ncols A \<le> n" "n \<le> i" for j i
+ by (meson that le_trans ncols)
+ moreover have "ncols A \<le> n"
+ if "\<forall>j i. n \<le> i \<longrightarrow> Rep_matrix A j i = 0"
+ unfolding ncols_def
+ proof (clarsimp split: if_split_asm)
+ assume \<section>: "nonzero_positions (Rep_matrix A) \<noteq> {}"
+ let ?P = "nonzero_positions (Rep_matrix A)"
+ let ?p = "snd`?P"
+ have a:"finite ?p" by (simp add: finite_nonzero_positions)
+ let ?m = "Max ?p"
+ show "Suc (Max (snd ` nonzero_positions (Rep_matrix A))) \<le> n"
+ using \<section> that obtains_MAX [OF finite_nonzero_positions]
+ by (metis (mono_tags, lifting) mem_Collect_eq nonzero_positions_def not_less_eq_eq)
+ qed
+ ultimately show ?thesis
+ by auto
qed
-lemma less_ncols: "(n < ncols A) = (\<exists>j i. n \<le> i & (Rep_matrix A j i) \<noteq> 0)"
-proof -
- have a: "!! (a::nat) b. (a < b) = (~(b \<le> a))" by arith
- show ?thesis by (simp add: a ncols_le)
-qed
+lemma less_ncols: "(n < ncols A) = (\<exists>j i. n \<le> i \<and> (Rep_matrix A j i) \<noteq> 0)"
+ by (meson linorder_not_le ncols_le)
lemma le_ncols: "(n \<le> ncols A) = (\<forall> m. (\<forall> j i. m \<le> i \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n \<le> m)"
-apply (auto)
-apply (subgoal_tac "ncols A \<le> m")
-apply (simp)
-apply (simp add: ncols_le)
-apply (drule_tac x="ncols A" in spec)
-by (simp add: ncols)
+ by (meson le_trans ncols ncols_le)
lemma nrows_le: "(nrows A \<le> n) = (\<forall>j i. n \<le> j \<longrightarrow> (Rep_matrix A j i) = 0)" (is ?s)
-proof -
- have "(nrows A \<le> n) = (ncols (transpose_matrix A) \<le> n)" by (simp)
- also have "\<dots> = (\<forall>j i. n \<le> i \<longrightarrow> (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le)
- also have "\<dots> = (\<forall>j i. n \<le> i \<longrightarrow> (Rep_matrix A i j) = 0)" by (simp)
- finally show "(nrows A \<le> n) = (\<forall>j i. n \<le> j \<longrightarrow> (Rep_matrix A j i) = 0)" by (auto)
-qed
+ by (metis ncols_le ncols_transpose transpose_matrix)
-lemma less_nrows: "(m < nrows A) = (\<exists>j i. m \<le> j & (Rep_matrix A j i) \<noteq> 0)"
-proof -
- have a: "!! (a::nat) b. (a < b) = (~(b \<le> a))" by arith
- show ?thesis by (simp add: a nrows_le)
-qed
+lemma less_nrows: "(m < nrows A) = (\<exists>j i. m \<le> j \<and> (Rep_matrix A j i) \<noteq> 0)"
+ by (meson linorder_not_le nrows_le)
lemma le_nrows: "(n \<le> nrows A) = (\<forall> m. (\<forall> j i. m \<le> j \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n \<le> m)"
by (meson order.trans nrows nrows_le)
@@ -191,33 +160,31 @@
by (meson leI ncols)
lemma finite_natarray1: "finite {x. x < (n::nat)}"
- by (induct n) auto
+ by simp
-lemma finite_natarray2: "finite {(x, y). x < (m::nat) & y < (n::nat)}"
+lemma finite_natarray2: "finite {(x, y). x < (m::nat) \<and> y < (n::nat)}"
by simp
lemma RepAbs_matrix:
- assumes aem: "\<exists>m. \<forall>j i. m \<le> j \<longrightarrow> x j i = 0" (is ?em) and aen:"\<exists>n. \<forall>j i. (n \<le> i \<longrightarrow> x j i = 0)" (is ?en)
+ assumes "\<exists>m. \<forall>j i. m \<le> j \<longrightarrow> x j i = 0"
+ and "\<exists>n. \<forall>j i. (n \<le> i \<longrightarrow> x j i = 0)"
shows "(Rep_matrix (Abs_matrix x)) = x"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def nonzero_positions_def)
proof -
- from aem obtain m where a: "\<forall>j i. m \<le> j \<longrightarrow> x j i = 0" by (blast)
- from aen obtain n where b: "\<forall>j i. n \<le> i \<longrightarrow> x j i = 0" by (blast)
- let ?u = "{(i, j). x i j \<noteq> 0}"
- let ?v = "{(i, j). i < m & j < n}"
- have c: "!! (m::nat) a. ~(m \<le> a) \<Longrightarrow> a < m" by (arith)
- from a b have "(?u \<inter> (-?v)) = {}"
- apply (simp)
- apply (rule set_eqI)
- apply (simp)
- apply auto
- by (rule c, auto)+
- then have d: "?u \<subseteq> ?v" by blast
- moreover have "finite ?v" by (simp add: finite_natarray2)
- moreover have "{pos. x (fst pos) (snd pos) \<noteq> 0} = ?u" by auto
- ultimately show "finite {pos. x (fst pos) (snd pos) \<noteq> 0}"
- by (metis (lifting) finite_subset)
+ have "finite {pos. x (fst pos) (snd pos) \<noteq> 0}"
+ proof -
+ from assms obtain m n where a: "\<forall>j i. m \<le> j \<longrightarrow> x j i = 0"
+ and b: "\<forall>j i. n \<le> i \<longrightarrow> x j i = 0" by (blast)
+ let ?u = "{(i, j). x i j \<noteq> 0}"
+ let ?v = "{(i, j). i < m \<and> j < n}"
+ have c: "\<And>(m::nat) a. ~(m \<le> a) \<Longrightarrow> a < m" by (arith)
+ with a b have d: "?u \<subseteq> ?v" by blast
+ moreover have "finite ?v" by (simp add: finite_natarray2)
+ moreover have "{pos. x (fst pos) (snd pos) \<noteq> 0} = ?u" by auto
+ ultimately show "finite {pos. x (fst pos) (snd pos) \<noteq> 0}"
+ by (metis (lifting) finite_subset)
+ qed
+ then show ?thesis
+ by (simp add: Abs_matrix_inverse matrix_def nonzero_positions_def)
qed
definition apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix" where
@@ -277,10 +244,9 @@
lemma combine_infmatrix_closed [simp]:
"f 0 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def)
-apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \<union> (nonzero_positions (Rep_matrix B))"])
-by (simp_all)
+ apply (rule Abs_matrix_inverse)
+ apply (simp add: matrix_def)
+ by (meson finite_Un finite_nonzero_positions_Rep finite_subset nonzero_positions_combine_infmatrix)
text \<open>We need the next two lemmas only later, but it is analog to the above one, so we prove them now:\<close>
lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \<Longrightarrow> nonzero_positions (apply_infmatrix f A) \<subseteq> nonzero_positions A"
@@ -290,31 +256,25 @@
"f 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)"
apply (rule Abs_matrix_inverse)
apply (simp add: matrix_def)
-apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"])
-by (simp_all)
+ by (meson finite_nonzero_positions_Rep finite_subset nonzero_positions_apply_infmatrix)
lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_infmatrix f)"
by (simp add: associative_def combine_infmatrix_def)
-lemma comb: "f = g \<Longrightarrow> x = y \<Longrightarrow> f x = g y"
- by (auto)
-
lemma combine_matrix_assoc: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_matrix f)"
-apply (simp(no_asm) add: associative_def combine_matrix_def, auto)
-apply (rule comb [of Abs_matrix Abs_matrix])
-by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def)
+ by (smt (verit) associative_def combine_infmatrix_assoc combine_infmatrix_closed combine_matrix_def)
lemma Rep_apply_matrix[simp]: "f 0 = 0 \<Longrightarrow> Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)"
-by (simp add: apply_matrix_def)
+ by (simp add: apply_matrix_def)
lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \<Longrightarrow> Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)"
by(simp add: combine_matrix_def)
lemma combine_nrows_max: "f 0 0 = 0 \<Longrightarrow> nrows (combine_matrix f A B) \<le> max (nrows A) (nrows B)"
-by (simp add: nrows_le)
+ by (simp add: nrows_le)
lemma combine_ncols_max: "f 0 0 = 0 \<Longrightarrow> ncols (combine_matrix f A B) \<le> max (ncols A) (ncols B)"
-by (simp add: ncols_le)
+ by (simp add: ncols_le)
lemma combine_nrows: "f 0 0 = 0 \<Longrightarrow> nrows A \<le> q \<Longrightarrow> nrows B \<le> q \<Longrightarrow> nrows(combine_matrix f A B) \<le> q"
by (simp add: nrows_le)
@@ -329,7 +289,7 @@
"zero_l_neutral f == \<forall>a. f 0 a = a"
definition zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool" where
- "zero_closed f == (\<forall>x. f x 0 = 0) & (\<forall>y. f 0 y = 0)"
+ "zero_closed f == (\<forall>x. f x 0 = 0) \<and> (\<forall>y. f 0 y = 0)"
primrec foldseq :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
where
@@ -341,74 +301,61 @@
"foldseq_transposed f s 0 = s 0"
| "foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))"
-lemma foldseq_assoc : "associative f \<Longrightarrow> foldseq f = foldseq_transposed f"
+lemma foldseq_assoc:
+ assumes a:"associative f"
+ shows "associative f \<Longrightarrow> foldseq f = foldseq_transposed f"
proof -
- assume a:"associative f"
- then have sublemma: "\<And>n. \<forall>N s. N \<le> n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- proof -
- fix n
- show "\<forall>N s. N \<le> n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- proof (induct n)
- show "\<forall>N s. N \<le> 0 \<longrightarrow> foldseq f s N = foldseq_transposed f s N" by simp
+ have "N \<le> n \<Longrightarrow> foldseq f s N = foldseq_transposed f s N" for N s n
+ proof (induct n arbitrary: N s)
+ case 0
+ then show ?case
+ by auto
+ next
+ case (Suc n)
+ show ?case
+ proof cases
+ assume "N \<le> n"
+ then show ?thesis
+ by (simp add: Suc.hyps)
next
- fix n
- assume b: "\<forall>N s. N \<le> n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- have c:"\<And>N s. N \<le> n \<Longrightarrow> foldseq f s N = foldseq_transposed f s N" by (simp add: b)
- show "\<forall>N t. N \<le> Suc n \<longrightarrow> foldseq f t N = foldseq_transposed f t N"
- proof (auto)
- fix N t
- assume Nsuc: "N \<le> Suc n"
- show "foldseq f t N = foldseq_transposed f t N"
- proof cases
- assume "N \<le> n"
- then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b)
- next
- assume "~(N \<le> n)"
- with Nsuc have Nsuceq: "N = Suc n" by simp
- have neqz: "n \<noteq> 0 \<Longrightarrow> \<exists>m. n = Suc m & Suc m \<le> n" by arith
- have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def)
- show "foldseq f t N = foldseq_transposed f t N"
- apply (simp add: Nsuceq)
- apply (subst c)
- apply (simp)
- apply (case_tac "n = 0")
- apply (simp)
- apply (drule neqz)
- apply (erule exE)
- apply (simp)
- apply (subst assocf)
- proof -
- fix m
- assume "n = Suc m & Suc m \<le> n"
- then have mless: "Suc m \<le> n" by arith
- then have step1: "foldseq_transposed f (\<lambda>k. t (Suc k)) m = foldseq f (\<lambda>k. t (Suc k)) m" (is "?T1 = ?T2")
- apply (subst c)
- by simp+
- have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp
- have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4")
- apply (subst c)
- by (simp add: mless)+
- have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp
- from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp
- qed
- qed
- qed
+ assume "~(N \<le> n)"
+ then have Nsuceq: "N = Suc n"
+ using Suc.prems by linarith
+ have neqz: "n \<noteq> 0 \<Longrightarrow> \<exists>m. n = Suc m \<and> Suc m \<le> n"
+ by arith
+ have assocf: "!! x y z. f x (f y z) = f (f x y) z"
+ by (metis a associative_def)
+ have "f (f (s 0) (foldseq_transposed f (\<lambda>k. s (Suc k)) m)) (s (Suc (Suc m))) =
+ f (f (foldseq_transposed f s m) (s (Suc m))) (s (Suc (Suc m)))"
+ if "n = Suc m" for m
+ proof -
+ have \<section>: "foldseq_transposed f (\<lambda>k. s (Suc k)) m = foldseq f (\<lambda>k. s (Suc k)) m" (is "?T1 = ?T2")
+ by (simp add: Suc.hyps that)
+ have "f (s 0) ?T2 = foldseq f s (Suc m)" by simp
+ also have "\<dots> = foldseq_transposed f s (Suc m)"
+ using Suc.hyps that by blast
+ also have "\<dots> = f (foldseq_transposed f s m) (s (Suc m))"
+ by simp
+ finally show ?thesis
+ by (simp add: \<section>)
qed
+ then show "foldseq f s N = foldseq_transposed f s N"
+ unfolding Nsuceq using assocf Suc.hyps neqz by force
qed
- show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto)
qed
+ then show ?thesis
+ by blast
+qed
-lemma foldseq_distr: "\<lbrakk>associative f; commutative f\<rbrakk> \<Longrightarrow> foldseq f (\<lambda>k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)"
+lemma foldseq_distr:
+ assumes assoc: "associative f" and comm: "commutative f"
+ shows "foldseq f (\<lambda>k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)"
proof -
- assume assoc: "associative f"
- assume comm: "commutative f"
from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def)
from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def)
from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def)
- have "\<And>n. (\<forall>u v. foldseq f (\<lambda>k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))"
- apply (induct_tac n)
- apply (simp+, auto)
- by (simp add: a b c)
+ have "(\<forall>u v. foldseq f (\<lambda>k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))" for n
+ by (induct n) (simp_all add: assoc b c foldseq_assoc)
then show "foldseq f (\<lambda>k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp
qed
@@ -431,76 +378,60 @@
*)
lemma foldseq_zero:
-assumes fz: "f 0 0 = 0" and sz: "\<forall>i. i \<le> n \<longrightarrow> s i = 0"
-shows "foldseq f s n = 0"
+ assumes fz: "f 0 0 = 0" and sz: "\<forall>i. i \<le> n \<longrightarrow> s i = 0"
+ shows "foldseq f s n = 0"
proof -
- have "\<And>n. \<forall>s. (\<forall>i. i \<le> n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s n = 0"
- apply (induct_tac n)
- apply (simp)
- by (simp add: fz)
- then show "foldseq f s n = 0" by (simp add: sz)
+ have "\<forall>s. (\<forall>i. i \<le> n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s n = 0" for n
+ by (induct n) (simp_all add: fz)
+ then show ?thesis
+ by (simp add: sz)
qed
lemma foldseq_significant_positions:
assumes p: "\<forall>i. i \<le> N \<longrightarrow> S i = T i"
shows "foldseq f S N = foldseq f T N"
-proof -
- have "\<And>m. \<forall>s t. (\<forall>i. i<=m \<longrightarrow> s i = t i) \<longrightarrow> foldseq f s m = foldseq f t m"
- apply (induct_tac m)
- apply (simp)
- apply (simp)
- apply (auto)
- proof -
- fix n
- fix s::"nat\<Rightarrow>'a"
- fix t::"nat\<Rightarrow>'a"
- assume a: "\<forall>s t. (\<forall>i\<le>n. s i = t i) \<longrightarrow> foldseq f s n = foldseq f t n"
- assume b: "\<forall>i\<le>Suc n. s i = t i"
- have c:"!! a b. a = b \<Longrightarrow> f (t 0) a = f (t 0) b" by blast
- have d:"!! s t. (\<forall>i\<le>n. s i = t i) \<Longrightarrow> foldseq f s n = foldseq f t n" by (simp add: a)
- show "f (t 0) (foldseq f (\<lambda>k. s (Suc k)) n) = f (t 0) (foldseq f (\<lambda>k. t (Suc k)) n)" by (rule c, simp add: d b)
- qed
- with p show ?thesis by simp
+ using assms
+proof (induction N arbitrary: S T)
+ case 0
+ then show ?case by simp
+next
+ case (Suc N)
+ then show ?case
+ unfolding foldseq.simps by (metis not_less_eq_eq le0)
qed
lemma foldseq_tail:
assumes "M \<le> N"
shows "foldseq f S N = foldseq f (\<lambda>k. (if k < M then (S k) else (foldseq f (\<lambda>k. S(k+M)) (N-M)))) M"
-proof -
- have suc: "\<And>a b. \<lbrakk>a \<le> Suc b; a \<noteq> Suc b\<rbrakk> \<Longrightarrow> a \<le> b" by arith
- have a: "\<And>a b c . a = b \<Longrightarrow> f c a = f c b" by blast
- have "\<And>n. \<forall>m s. m \<le> n \<longrightarrow> foldseq f s n = foldseq f (\<lambda>k. (if k < m then (s k) else (foldseq f (\<lambda>k. s(k+m)) (n-m)))) m"
- apply (induct_tac n)
- apply (simp)
- apply (simp)
- apply (auto)
- apply (case_tac "m = Suc na")
- apply (simp)
- apply (rule a)
- apply (rule foldseq_significant_positions)
- apply (auto)
- apply (drule suc, simp+)
- proof -
- fix na m s
- assume suba:"\<forall>m\<le>na. \<forall>s. foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m"
- assume subb:"m \<le> na"
- from suba have subc:"!! m s. m \<le> na \<Longrightarrow>foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m" by simp
- have subd: "foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m =
- foldseq f (\<lambda>k. s(Suc k)) na"
- by (rule subc[of m "\<lambda>k. s(Suc k)", THEN sym], simp add: subb)
- from subb have sube: "m \<noteq> 0 \<Longrightarrow> \<exists>mm. m = Suc mm & mm \<le> na" by arith
- show "f (s 0) (foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m) =
- foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (Suc na - m)) m"
- apply (simp add: subd)
- apply (cases "m = 0")
- apply simp
- apply (drule sube)
- apply auto
- apply (rule a)
- apply (simp add: subc cong del: if_weak_cong)
- done
+ using assms
+proof (induction N arbitrary: M S)
+ case 0
+ then show ?case by auto
+next
+ case (Suc N)
+ show ?case
+ proof (cases "M = Suc N")
+ case True
+ then show ?thesis
+ by (auto intro!: arg_cong [of concl: "f (S 0)"] foldseq_significant_positions)
+ next
+ case False
+ then have "M\<le>N"
+ using Suc.prems by force
+ show ?thesis
+ proof (cases "M = 0")
+ case True
+ then show ?thesis
+ by auto
+ next
+ case False
+ then obtain M' where M': "M = Suc M'" "M' \<le> N"
+ by (metis Suc_leD \<open>M \<le> N\<close> nat.nchotomy)
+ then show ?thesis
+ apply (simp add: Suc.IH [OF \<open>M'\<le>N\<close>])
+ using add_Suc_right diff_Suc_Suc by presburger
qed
- then show ?thesis using assms by simp
+ qed
qed
lemma foldseq_zerotail:
@@ -513,99 +444,73 @@
assumes "\<forall>x. f x 0 = x"
and "\<forall>i. n < i \<longrightarrow> s i = 0"
and nm: "n \<le> m"
- shows "foldseq f s n = foldseq f s m"
+shows "foldseq f s n = foldseq f s m"
proof -
- have "f 0 0 = 0" by (simp add: assms)
- have b: "\<And>m n. n \<le> m \<Longrightarrow> m \<noteq> n \<Longrightarrow> \<exists>k. m-n = Suc k" by arith
- have c: "0 \<le> m" by simp
- have d: "\<And>k. k \<noteq> 0 \<Longrightarrow> \<exists>l. k = Suc l" by arith
- show ?thesis
- apply (subst foldseq_tail[OF nm])
- apply (rule foldseq_significant_positions)
- apply (auto)
- apply (case_tac "m=n")
- apply (simp+)
- apply (drule b[OF nm])
- apply (auto)
- apply (case_tac "k=0")
- apply (simp add: assms)
- apply (drule d)
- apply (auto)
- apply (simp add: assms foldseq_zero)
- done
+ have "s i = (if i < n then s i else foldseq f (\<lambda>k. s (k + n)) (m - n))"
+ if "i\<le>n" for i
+ proof (cases "m=n")
+ case True
+ then show ?thesis
+ using that by auto
+ next
+ case False
+ then obtain k where "m-n = Suc k"
+ by (metis Suc_diff_Suc le_neq_implies_less nm)
+ then show ?thesis
+ apply simp
+ by (simp add: assms(1,2) foldseq_zero nat_less_le that)
+ qed
+ then show ?thesis
+ unfolding foldseq_tail[OF nm]
+ by (auto intro: foldseq_significant_positions)
qed
lemma foldseq_zerostart:
- "\<forall>x. f 0 (f 0 x) = f 0 x \<Longrightarrow> \<forall>i. i \<le> n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
-proof -
- assume f00x: "\<forall>x. f 0 (f 0 x) = f 0 x"
- have "\<forall>s. (\<forall>i. i<=n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
- apply (induct n)
- apply (simp)
- apply (rule allI, rule impI)
- proof -
- fix n
- fix s
- have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (\<lambda>k. s(Suc k)) (Suc n))" by simp
- assume b: "\<forall>s. ((\<forall>i\<le>n. s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n)))"
- from b have c:"!! s. (\<forall>i\<le>n. s i = 0) \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
- assume d: "\<forall>i. i \<le> Suc n \<longrightarrow> s i = 0"
- show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))"
- apply (subst a)
- apply (subst c)
- by (simp add: d f00x)+
- qed
- then show "\<forall>i. i \<le> n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
+ assumes f00x: "\<forall>x. f 0 (f 0 x) = f 0 x" and 0: "\<forall>i. i \<le> n \<longrightarrow> s i = 0"
+ shows "foldseq f s (Suc n) = f 0 (s (Suc n))"
+ using 0
+proof (induction n arbitrary: s)
+ case 0
+ then show ?case by auto
+next
+ case (Suc n s)
+ then show ?case
+ apply (simp add: le_Suc_eq)
+ by (smt (verit, ccfv_threshold) Suc.prems Suc_le_mono f00x foldseq_significant_positions le0)
qed
lemma foldseq_zerostart2:
- "\<forall>x. f 0 x = x \<Longrightarrow> \<forall>i. i < n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s n = s n"
+ assumes x: "\<forall>x. f 0 x = x" and 0: "\<forall>i. i < n \<longrightarrow> s i = 0"
+ shows "foldseq f s n = s n"
proof -
- assume a: "\<forall>i. i<n \<longrightarrow> s i = 0"
- assume x: "\<forall>x. f 0 x = x"
- from x have f00x: "\<forall>x. f 0 (f 0 x) = f 0 x" by blast
- have b: "\<And>i l. i < Suc l = (i \<le> l)" by arith
- have d: "\<And>k. k \<noteq> 0 \<Longrightarrow> \<exists>l. k = Suc l" by arith
show "foldseq f s n = s n"
- apply (case_tac "n=0")
- apply (simp)
- apply (insert a)
- apply (drule d)
- apply (auto)
- apply (simp add: b)
- apply (insert f00x)
- apply (drule foldseq_zerostart)
- by (simp add: x)+
+ proof (cases n)
+ case 0
+ then show ?thesis
+ by auto
+ next
+ case (Suc n')
+ then show ?thesis
+ by (metis "0" foldseq_zerostart le_imp_less_Suc x)
+ qed
qed
lemma foldseq_almostzero:
assumes f0x: "\<forall>x. f 0 x = x" and fx0: "\<forall>x. f x 0 = x" and s0: "\<forall>i. i \<noteq> j \<longrightarrow> s i = 0"
shows "foldseq f s n = (if (j \<le> n) then (s j) else 0)"
-proof -
- from s0 have a: "\<forall>i. i < j \<longrightarrow> s i = 0" by simp
- from s0 have b: "\<forall>i. j < i \<longrightarrow> s i = 0" by simp
- show ?thesis
- apply auto
- apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym])
- apply simp
- apply (subst foldseq_zerostart2)
- apply (simp add: f0x a)+
- apply (subst foldseq_zero)
- by (simp add: s0 f0x)+
-qed
+ by (smt (verit, ccfv_SIG) f0x foldseq_zerostart2 foldseq_zerotail2 fx0 le_refl nat_less_le s0)
lemma foldseq_distr_unary:
- assumes "!! a b. g (f a b) = f (g a) (g b)"
+ assumes "\<And>a b. g (f a b) = f (g a) (g b)"
shows "g(foldseq f s n) = foldseq f (\<lambda>x. g(s x)) n"
-proof -
- have "\<forall>s. g(foldseq f s n) = foldseq f (\<lambda>x. g(s x)) n"
- apply (induct_tac n)
- apply (simp)
- apply (simp)
- apply (auto)
- apply (drule_tac x="\<lambda>k. s (Suc k)" in spec)
- by (simp add: assms)
- then show ?thesis by simp
+proof (induction n arbitrary: s)
+ case 0
+ then show ?case
+ by auto
+next
+ case (Suc n)
+ then show ?case
+ using assms by fastforce
qed
definition mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix" where
@@ -615,14 +520,15 @@
"mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B"
lemma mult_matrix_n:
- assumes "ncols A \<le> n" (is ?An) "nrows B \<le> n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0"
- shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B"
+ assumes "ncols A \<le> n" "nrows B \<le> n" "fadd 0 0 = 0" "fmul 0 0 = 0"
+ shows "mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B"
proof -
- show ?thesis using assms
- apply (simp add: mult_matrix_def mult_matrix_n_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
- apply (rule foldseq_zerotail, simp_all add: nrows_le ncols_le assms)
- done
+ have "foldseq fadd (\<lambda>k. fmul (Rep_matrix A j k) (Rep_matrix B k i))
+ (max (ncols A) (nrows B)) =
+ foldseq fadd (\<lambda>k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n" for i j
+ using assms by (simp add: foldseq_zerotail nrows_le ncols_le)
+ then show ?thesis
+ by (simp add: mult_matrix_def mult_matrix_n_def)
qed
lemma mult_matrix_nm:
@@ -643,7 +549,7 @@
"l_distributive fmul fadd == \<forall>a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)"
definition distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" where
- "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd"
+ "distributive fmul fadd == l_distributive fmul fadd \<and> r_distributive fmul fadd"
lemma max1: "!! a x y. (a::nat) \<le> x \<Longrightarrow> a \<le> max x y" by (arith)
lemma max2: "!! b x y. (b::nat) \<le> y \<Longrightarrow> b \<le> max x y" by (arith)
@@ -675,7 +581,7 @@
apply (simp add: max1 max2 combine_nrows combine_ncols)+
apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd])
apply (simp add: combine_matrix_def combine_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+ apply (intro ext arg_cong[of concl: "Abs_matrix"])
apply (simplesubst RepAbs_matrix)
apply (simp, auto)
apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero)
@@ -715,7 +621,7 @@
apply (simp add: max1 max2 combine_nrows combine_ncols)+
apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd])
apply (simp add: combine_matrix_def combine_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+ apply (intro ext arg_cong[of concl: "Abs_matrix"])
apply (simplesubst RepAbs_matrix)
apply (simp, auto)
apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero)
@@ -738,21 +644,13 @@
end
lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0"
- apply (simp add: zero_matrix_def)
- apply (subst RepAbs_matrix)
- by (auto)
+ by (simp add: RepAbs_matrix zero_matrix_def)
lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0"
-proof -
- have a:"!! (x::nat). x \<le> 0 \<Longrightarrow> x = 0" by (arith)
- show "nrows 0 = 0" by (rule a, subst nrows_le, simp)
-qed
+ using nrows_le by force
lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0"
-proof -
- have a:"!! (x::nat). x \<le> 0 \<Longrightarrow> x = 0" by (arith)
- show "ncols 0 = 0" by (rule a, subst ncols_le, simp)
-qed
+ using ncols_le by fastforce
lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \<Longrightarrow> zero_l_neutral (combine_matrix f)"
by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def)
@@ -762,42 +660,34 @@
lemma mult_matrix_zero_closed: "\<lbrakk>fadd 0 0 = 0; zero_closed fmul\<rbrakk> \<Longrightarrow> zero_closed (mult_matrix fmul fadd)"
apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def)
- apply (auto)
- by (subst foldseq_zero, (simp add: zero_matrix_def)+)+
+ by (simp add: foldseq_zero zero_matrix_def)
lemma mult_matrix_n_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; \<forall>a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd A 0 = 0"
- apply (simp add: mult_matrix_n_def)
- apply (subst foldseq_zero)
- by (simp_all add: zero_matrix_def)
+ by (simp add: RepAbs_matrix foldseq_zero matrix_eqI mult_matrix_n_def)
lemma mult_matrix_n_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; \<forall>a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd 0 A = 0"
- apply (simp add: mult_matrix_n_def)
- apply (subst foldseq_zero)
- by (simp_all add: zero_matrix_def)
+ by (simp add: RepAbs_matrix foldseq_zero matrix_eqI mult_matrix_n_def)
lemma mult_matrix_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; \<forall>a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd 0 A = 0"
-by (simp add: mult_matrix_def)
+ by (simp add: mult_matrix_def)
lemma mult_matrix_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; \<forall>a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd A 0 = 0"
-by (simp add: mult_matrix_def)
+ by (simp add: mult_matrix_def)
lemma apply_matrix_zero[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f 0 = 0"
- apply (simp add: apply_matrix_def apply_infmatrix_def)
- by (simp add: zero_matrix_def)
+ by (simp add: matrix_eqI)
lemma combine_matrix_zero: "f 0 0 = 0 \<Longrightarrow> combine_matrix f 0 0 = 0"
- apply (simp add: combine_matrix_def combine_infmatrix_def)
- by (simp add: zero_matrix_def)
+ by (simp add: matrix_eqI)
lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0"
- by (simp add: transpose_matrix_def zero_matrix_def RepAbs_matrix transpose_infmatrix)
+ by (simp add: matrix_eqI)
lemma apply_zero_matrix_def[simp]: "apply_matrix (\<lambda>x. 0) A = 0"
- apply (simp add: apply_matrix_def apply_infmatrix_def)
- by (simp add: zero_matrix_def)
+ by (simp add: matrix_eqI)
definition singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix" where
- "singleton_matrix j i a == Abs_matrix(\<lambda>m n. if j = m & i = n then a else 0)"
+ "singleton_matrix j i a == Abs_matrix(\<lambda>m n. if j = m \<and> i = n then a else 0)"
definition move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix" where
"move_matrix A y x == Abs_matrix(\<lambda>j i. if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))"
@@ -814,13 +704,9 @@
definition row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" where
"row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1"
-lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)"
-apply (simp add: singleton_matrix_def)
-apply (auto)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc m"], simp)
-apply (rule exI[of _ "Suc n"], simp+)
-by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+
+lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m \<and> i = n then e else 0)"
+ unfolding singleton_matrix_def
+ by (smt (verit, del_insts) RepAbs_matrix Suc_n_not_le_n)
lemma apply_singleton_matrix[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))"
by (simp add: matrix_eqI)
@@ -829,47 +715,20 @@
by (simp add: singleton_matrix_def zero_matrix_def)
lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)"
-proof-
- have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
-from th show ?thesis
-apply (auto)
-apply (rule le_antisym)
-apply (subst nrows_le)
-apply (simp add: singleton_matrix_def, auto)
-apply (subst RepAbs_matrix)
-apply auto
-apply (simp add: Suc_le_eq)
-apply (rule not_le_imp_less)
-apply (subst nrows_le)
-by simp
+proof -
+ have "e \<noteq> 0 \<Longrightarrow> Suc j \<le> nrows (singleton_matrix j i e)"
+ by (metis Rep_singleton_matrix not_less_eq_eq nrows)
+ then show ?thesis
+ by (simp add: le_antisym nrows_le)
qed
lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)"
-proof-
-have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
-from th show ?thesis
-apply (auto)
-apply (rule le_antisym)
-apply (subst ncols_le)
-apply (simp add: singleton_matrix_def, auto)
-apply (subst RepAbs_matrix)
-apply auto
-apply (simp add: Suc_le_eq)
-apply (rule not_le_imp_less)
-apply (subst ncols_le)
-by simp
-qed
+ by (simp add: Suc_leI le_antisym ncols_le ncols_notzero)
lemma combine_singleton: "f 0 0 = 0 \<Longrightarrow> combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)"
-apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc j"], simp)
-apply (rule exI[of _ "Suc i"], simp)
-apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc j"], simp)
-apply (rule exI[of _ "Suc i"], simp)
-by simp
+ apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def)
+ apply (intro ext arg_cong[of concl: "Abs_matrix"])
+ by (metis Rep_singleton_matrix singleton_matrix_def)
lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a"
by (simp add: matrix_eqI)
@@ -877,14 +736,13 @@
lemma Rep_move_matrix[simp]:
"Rep_matrix (move_matrix A y x) j i =
(if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))"
-apply (simp add: move_matrix_def)
-apply (auto)
+ apply (simp add: move_matrix_def)
by (subst RepAbs_matrix,
rule exI[of _ "(nrows A)+(nat \<bar>y\<bar>)"], auto, rule nrows, arith,
rule exI[of _ "(ncols A)+(nat \<bar>x\<bar>)"], auto, rule ncols, arith)+
lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A"
-by (simp add: move_matrix_def)
+ by (simp add: move_matrix_def)
lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i"
by (simp add: matrix_eqI)
@@ -895,28 +753,17 @@
lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i =
(if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))"
- apply (intro matrix_eqI)
- apply (split if_split)
- apply (auto simp: split: if_split_asm)
- done
+ by (auto intro!: matrix_eqI split: if_split_asm)
lemma Rep_take_columns[simp]:
- "Rep_matrix (take_columns A c) j i =
- (if i < c then (Rep_matrix A j i) else 0)"
-apply (simp add: take_columns_def)
-apply (simplesubst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
-apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
-done
+ "Rep_matrix (take_columns A c) j i = (if i < c then (Rep_matrix A j i) else 0)"
+ unfolding take_columns_def
+ by (smt (verit, best) RepAbs_matrix leD nrows)
lemma Rep_take_rows[simp]:
- "Rep_matrix (take_rows A r) j i =
- (if j < r then (Rep_matrix A j i) else 0)"
-apply (simp add: take_rows_def)
-apply (simplesubst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
-apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
-done
+ "Rep_matrix (take_rows A r) j i = (if j < r then (Rep_matrix A j i) else 0)"
+ unfolding take_rows_def
+ by (smt (verit, best) RepAbs_matrix leD ncols)
lemma Rep_column_of_matrix[simp]:
"Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)"
@@ -933,22 +780,14 @@
by (simp add: matrix_eqI nrows)
lemma mult_matrix_singleton_right[simp]:
- assumes
- "\<forall>x. fmul x 0 = 0"
- "\<forall>x. fmul 0 x = 0"
- "\<forall>x. fadd 0 x = x"
- "\<forall>x. fadd x 0 = x"
+ assumes "\<forall>x. fmul x 0 = 0" "\<forall>x. fmul 0 x = 0" "\<forall>x. fadd 0 x = x" "\<forall>x. fadd x 0 = x"
shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (\<lambda>x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))"
- apply (simp add: mult_matrix_def)
- apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"])
- apply (auto)
- apply (simp add: assms)+
- apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+)
- apply (subst foldseq_almostzero[of _ j])
- apply (simp add: assms)+
- apply (auto)
- done
+ using assms
+ unfolding mult_matrix_def
+ apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"];
+ simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def)
+ apply (intro ext arg_cong[of concl: "Abs_matrix"])
+ by (simp add: max_def assms foldseq_almostzero[of _ j])
lemma mult_matrix_ext:
assumes
@@ -961,12 +800,10 @@
"\<forall>a. fadd 0 a = a"
and contraprems: "mult_matrix fmul fadd A = mult_matrix fmul fadd B"
shows "A = B"
-proof(rule contrapos_np[of "False"], simp)
- assume a: "A \<noteq> B"
- have b: "\<And>f g. (\<forall>x y. f x y = g x y) \<Longrightarrow> f = g" by ((rule ext)+, auto)
- have "\<exists>j i. (Rep_matrix A j i) \<noteq> (Rep_matrix B j i)"
- using Rep_matrix_inject a by blast
- then obtain J I where c:"(Rep_matrix A J I) \<noteq> (Rep_matrix B J I)" by blast
+proof(rule ccontr)
+ assume "A \<noteq> B"
+ then obtain J I where ne: "(Rep_matrix A J I) \<noteq> (Rep_matrix B J I)"
+ by (meson matrix_eqI)
from eprem obtain e where eprops:"(\<forall>a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)" by blast
let ?S = "singleton_matrix I 0 e"
let ?comp = "mult_matrix fmul fadd"
@@ -975,8 +812,8 @@
have "Rep_matrix (apply_matrix (\<lambda>x. fmul x e) (column_of_matrix A I)) \<noteq>
Rep_matrix (apply_matrix (\<lambda>x. fmul x e) (column_of_matrix B I))"
using fprems
- by (metis Rep_apply_matrix Rep_column_of_matrix eprops c)
- then have "~(?comp A ?S = ?comp B ?S)"
+ by (metis Rep_apply_matrix Rep_column_of_matrix eprops ne)
+ then have "?comp A ?S \<noteq> ?comp B ?S"
by (simp add: fprems eprops Rep_matrix_inject)
with contraprems show "False" by simp
qed
@@ -988,95 +825,90 @@
"foldmatrix_transposed f g A m n == foldseq g (\<lambda>j. foldseq_transposed f (A j) n) m"
lemma foldmatrix_transpose:
- assumes
- "\<forall>a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
- shows
- "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
+ assumes "\<forall>a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
+ shows "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
proof -
have forall:"\<And>P x. (\<forall>x. P x) \<Longrightarrow> P x" by auto
have tworows:"\<forall>A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1"
- apply (induct n)
- apply (simp add: foldmatrix_def foldmatrix_transposed_def assms)+
- apply (auto)
- by (drule_tac x="(\<lambda>j i. A j (Suc i))" in forall, simp)
- show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
- apply (simp add: foldmatrix_def foldmatrix_transposed_def)
- apply (induct m, simp)
- apply (simp)
- apply (insert tworows)
- apply (drule_tac x="\<lambda>j i. (if j = 0 then (foldseq_transposed g (\<lambda>u. A u i) m) else (A (Suc m) i))" in spec)
+ proof (induct n)
+ case 0
+ then show ?case
+ by (simp add: foldmatrix_def foldmatrix_transposed_def)
+ next
+ case (Suc n)
+ then show ?case
+ apply (clarsimp simp: foldmatrix_def foldmatrix_transposed_def assms)
+ apply (rule arg_cong [of concl: "f _"])
+ by meson
+ qed
+ have "foldseq_transposed g (\<lambda>j. foldseq f (A j) n) m =
+ foldseq f (\<lambda>j. foldseq_transposed g (transpose_infmatrix A j) m) n"
+ proof (induct m)
+ case 0
+ then show ?case by auto
+ next
+ case (Suc m)
+ then show ?case
+ using tworows
+ apply (drule_tac x="\<lambda>j i. (if j = 0 then (foldseq_transposed g (\<lambda>u. A u i) m) else (A (Suc m) i))" in spec)
+ by (simp add: Suc foldmatrix_def foldmatrix_transposed_def)
+ qed
+ then show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
by (simp add: foldmatrix_def foldmatrix_transposed_def)
qed
lemma foldseq_foldseq:
-assumes
- "associative f"
- "associative g"
- "\<forall>a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
+assumes "associative f" "associative g" "\<forall>a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
shows
"foldseq g (\<lambda>j. foldseq f (A j) n) m = foldseq f (\<lambda>j. foldseq g ((transpose_infmatrix A) j) m) n"
- apply (insert foldmatrix_transpose[of g f A m n])
+ using foldmatrix_transpose[of g f A m n]
by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] assms)
lemma mult_n_nrows:
-assumes
-"\<forall>a. fmul 0 a = 0"
-"\<forall>a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "nrows (mult_matrix_n n fmul fadd A B) \<le> nrows A"
-apply (subst nrows_le)
-apply (simp add: mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule_tac x="nrows A" in exI)
-apply (simp add: nrows assms foldseq_zero)
-apply (rule_tac x="ncols B" in exI)
-apply (simp add: ncols assms foldseq_zero)
-apply (simp add: nrows assms foldseq_zero)
-done
+ assumes "\<forall>a. fmul 0 a = 0" "\<forall>a. fmul a 0 = 0" "fadd 0 0 = 0"
+ shows "nrows (mult_matrix_n n fmul fadd A B) \<le> nrows A"
+ unfolding nrows_le mult_matrix_n_def
+ apply (subst RepAbs_matrix)
+ apply (rule_tac x="nrows A" in exI)
+ apply (simp add: nrows assms foldseq_zero)
+ apply (rule_tac x="ncols B" in exI)
+ apply (simp add: ncols assms foldseq_zero)
+ apply (simp add: nrows assms foldseq_zero)
+ done
lemma mult_n_ncols:
-assumes
-"\<forall>a. fmul 0 a = 0"
-"\<forall>a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "ncols (mult_matrix_n n fmul fadd A B) \<le> ncols B"
-apply (subst ncols_le)
-apply (simp add: mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule_tac x="nrows A" in exI)
-apply (simp add: nrows assms foldseq_zero)
-apply (rule_tac x="ncols B" in exI)
-apply (simp add: ncols assms foldseq_zero)
-apply (simp add: ncols assms foldseq_zero)
-done
+ assumes "\<forall>a. fmul 0 a = 0" "\<forall>a. fmul a 0 = 0" "fadd 0 0 = 0"
+ shows "ncols (mult_matrix_n n fmul fadd A B) \<le> ncols B"
+ unfolding ncols_le mult_matrix_n_def
+ apply (subst RepAbs_matrix)
+ apply (rule_tac x="nrows A" in exI)
+ apply (simp add: nrows assms foldseq_zero)
+ apply (rule_tac x="ncols B" in exI)
+ apply (simp add: ncols assms foldseq_zero)
+ apply (simp add: ncols assms foldseq_zero)
+ done
lemma mult_nrows:
-assumes
-"\<forall>a. fmul 0 a = 0"
-"\<forall>a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "nrows (mult_matrix fmul fadd A B) \<le> nrows A"
-by (simp add: mult_matrix_def mult_n_nrows assms)
+ assumes
+ "\<forall>a. fmul 0 a = 0"
+ "\<forall>a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ shows "nrows (mult_matrix fmul fadd A B) \<le> nrows A"
+ by (simp add: mult_matrix_def mult_n_nrows assms)
lemma mult_ncols:
-assumes
-"\<forall>a. fmul 0 a = 0"
-"\<forall>a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "ncols (mult_matrix fmul fadd A B) \<le> ncols B"
-by (simp add: mult_matrix_def mult_n_ncols assms)
+ assumes
+ "\<forall>a. fmul 0 a = 0"
+ "\<forall>a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ shows "ncols (mult_matrix fmul fadd A B) \<le> ncols B"
+ by (simp add: mult_matrix_def mult_n_ncols assms)
lemma nrows_move_matrix_le: "nrows (move_matrix A j i) \<le> nat((int (nrows A)) + j)"
- apply (auto simp: nrows_le)
- apply (rule nrows)
- apply (arith)
- done
+ by (smt (verit) Rep_move_matrix int_nat_eq nrows nrows_le of_nat_le_iff)
lemma ncols_move_matrix_le: "ncols (move_matrix A j i) \<le> nat((int (ncols A)) + i)"
- apply (auto simp: ncols_le)
- apply (rule ncols)
- apply (arith)
- done
+ by (metis nrows_move_matrix_le nrows_transpose transpose_move_matrix)
lemma mult_matrix_assoc:
assumes
@@ -1104,78 +936,47 @@
apply (intro matrix_eqI)
apply (simp add: mult_matrix_def)
apply (simplesubst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simplesubst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows assms)+
apply (simp add: mult_matrix_n_def)
apply (rule comb_left)
apply ((rule ext)+, simp)
apply (simplesubst RepAbs_matrix)
- apply (rule exI[of _ "nrows B"])
- apply (simp add: nrows assms foldseq_zero)
- apply (rule exI[of _ "ncols C"])
- apply (simp add: assms ncols foldseq_zero)
+ apply (rule exI[of _ "nrows B"])
+ apply (simp add: nrows assms foldseq_zero)
+ apply (rule exI[of _ "ncols C"])
+ apply (simp add: assms ncols foldseq_zero)
apply (subst RepAbs_matrix)
- apply (rule exI[of _ "nrows A"])
- apply (simp add: nrows assms foldseq_zero)
- apply (rule exI[of _ "ncols B"])
- apply (simp add: assms ncols foldseq_zero)
+ apply (rule exI[of _ "nrows A"])
+ apply (simp add: nrows assms foldseq_zero)
+ apply (rule exI[of _ "ncols B"])
+ apply (simp add: assms ncols foldseq_zero)
apply (simp add: fmul2fadd1fold fmul1fadd2fold assms)
apply (subst foldseq_foldseq)
- apply (simp add: assms)+
+ apply (simp add: assms)+
apply (simp add: transpose_infmatrix)
done
qed
-lemma
- assumes
- "\<forall>a. fmul1 0 a = 0"
- "\<forall>a. fmul1 a 0 = 0"
- "\<forall>a. fmul2 0 a = 0"
- "\<forall>a. fmul2 a 0 = 0"
- "fadd1 0 0 = 0"
- "fadd2 0 0 = 0"
- "\<forall>a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)"
- "associative fadd1"
- "associative fadd2"
- "\<forall>a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)"
- "\<forall>a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)"
- "\<forall>a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)"
- shows
- "(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)"
-apply (rule ext)+
-apply (simp add: comp_def )
-apply (simp add: mult_matrix_assoc assms)
-done
-
lemma mult_matrix_assoc_simple:
assumes
"\<forall>a. fmul 0 a = 0"
"\<forall>a. fmul a 0 = 0"
- "fadd 0 0 = 0"
"associative fadd"
"commutative fadd"
"associative fmul"
"distributive fmul fadd"
shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)"
-proof -
- have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)"
- using assms by (simp add: associative_def commutative_def)
- then show ?thesis
- apply (subst mult_matrix_assoc)
- using assms
- apply simp_all
- apply (simp_all add: associative_def distributive_def l_distributive_def r_distributive_def)
- done
-qed
+ by (smt (verit) assms associative_def commutative_def distributive_def l_distributive_def mult_matrix_assoc r_distributive_def)
lemma transpose_apply_matrix: "f 0 = 0 \<Longrightarrow> transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)"
by (simp add: matrix_eqI)
@@ -1184,19 +985,17 @@
by (simp add: matrix_eqI)
lemma Rep_mult_matrix:
- assumes
- "\<forall>a. fmul 0 a = 0"
- "\<forall>a. fmul a 0 = 0"
- "fadd 0 0 = 0"
+ assumes "\<forall>a. fmul 0 a = 0" "\<forall>a. fmul a 0 = 0" "fadd 0 0 = 0"
shows
- "Rep_matrix(mult_matrix fmul fadd A B) j i =
+ "Rep_matrix(mult_matrix fmul fadd A B) j i =
foldseq fadd (\<lambda>k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))"
-apply (simp add: mult_matrix_def mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], insert assms, simp add: nrows foldseq_zero)
-apply (rule exI[of _ "ncols B"], insert assms, simp add: ncols foldseq_zero)
-apply simp
-done
+ using assms
+ apply (simp add: mult_matrix_def mult_matrix_n_def)
+ apply (subst RepAbs_matrix)
+ apply (rule exI[of _ "nrows A"], simp add: nrows foldseq_zero)
+ apply (rule exI[of _ "ncols B"], simp add: ncols foldseq_zero)
+ apply simp
+ done
lemma transpose_mult_matrix:
assumes
@@ -1252,7 +1051,7 @@
lemma le_combine_matrix:
assumes
"f 0 0 = 0"
- "\<forall>a b c d. a \<le> b & c \<le> d \<longrightarrow> f a c \<le> f b d"
+ "\<forall>a b c d. a \<le> b \<and> c \<le> d \<longrightarrow> f a c \<le> f b d"
"A \<le> B"
"C \<le> D"
shows "combine_matrix f A C \<le> combine_matrix f B D"
@@ -1263,8 +1062,7 @@
"f 0 0 = 0"
"\<forall>a b c. a \<le> b \<longrightarrow> f c a \<le> f c b"
"A \<le> B"
- shows
- "combine_matrix f C A \<le> combine_matrix f C B"
+ shows "combine_matrix f C A \<le> combine_matrix f C B"
using assms by (simp add: le_matrix_def)
lemma le_right_combine_matrix:
@@ -1272,8 +1070,7 @@
"f 0 0 = 0"
"\<forall>a b c. a \<le> b \<longrightarrow> f a c \<le> f b c"
"A \<le> B"
- shows
- "combine_matrix f A C \<le> combine_matrix f B C"
+ shows "combine_matrix f A C \<le> combine_matrix f B C"
using assms by (simp add: le_matrix_def)
lemma le_transpose_matrix: "(A \<le> B) = (transpose_matrix A \<le> transpose_matrix B)"
@@ -1281,10 +1078,9 @@
lemma le_foldseq:
assumes
- "\<forall>a b c d . a \<le> b & c \<le> d \<longrightarrow> f a c \<le> f b d"
+ "\<forall>a b c d . a \<le> b \<and> c \<le> d \<longrightarrow> f a c \<le> f b d"
"\<forall>i. i \<le> n \<longrightarrow> s i \<le> t i"
- shows
- "foldseq f s n \<le> foldseq f t n"
+ shows "foldseq f s n \<le> foldseq f t n"
proof -
have "\<forall>s t. (\<forall>i. i<=n \<longrightarrow> s i \<le> t i) \<longrightarrow> foldseq f s n \<le> foldseq f t n"
by (induct n) (simp_all add: assms)
@@ -1293,18 +1089,16 @@
lemma le_left_mult:
assumes
- "\<forall>a b c d. a \<le> b & c \<le> d \<longrightarrow> fadd a c \<le> fadd b d"
- "\<forall>c a b. 0 \<le> c & a \<le> b \<longrightarrow> fmul c a \<le> fmul c b"
+ "\<forall>a b c d. a \<le> b \<and> c \<le> d \<longrightarrow> fadd a c \<le> fadd b d"
+ "\<forall>c a b. 0 \<le> c \<and> a \<le> b \<longrightarrow> fmul c a \<le> fmul c b"
"\<forall>a. fmul 0 a = 0"
"\<forall>a. fmul a 0 = 0"
"fadd 0 0 = 0"
"0 \<le> C"
"A \<le> B"
- shows
- "mult_matrix fmul fadd C A \<le> mult_matrix fmul fadd C B"
+ shows "mult_matrix fmul fadd C A \<le> mult_matrix fmul fadd C B"
using assms
- apply (simp add: le_matrix_def Rep_mult_matrix)
- apply (auto)
+ apply (auto simp: le_matrix_def Rep_mult_matrix)
apply (simplesubst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+
apply (rule le_foldseq)
apply (auto)
@@ -1312,62 +1106,70 @@
lemma le_right_mult:
assumes
- "\<forall>a b c d. a \<le> b & c \<le> d \<longrightarrow> fadd a c \<le> fadd b d"
- "\<forall>c a b. 0 \<le> c & a \<le> b \<longrightarrow> fmul a c \<le> fmul b c"
+ "\<forall>a b c d. a \<le> b \<and> c \<le> d \<longrightarrow> fadd a c \<le> fadd b d"
+ "\<forall>c a b. 0 \<le> c \<and> a \<le> b \<longrightarrow> fmul a c \<le> fmul b c"
"\<forall>a. fmul 0 a = 0"
"\<forall>a. fmul a 0 = 0"
"fadd 0 0 = 0"
"0 \<le> C"
"A \<le> B"
- shows
- "mult_matrix fmul fadd A C \<le> mult_matrix fmul fadd B C"
+ shows "mult_matrix fmul fadd A C \<le> mult_matrix fmul fadd B C"
using assms
- apply (simp add: le_matrix_def Rep_mult_matrix)
- apply (auto)
+ apply (auto simp: le_matrix_def Rep_mult_matrix)
apply (simplesubst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+
apply (rule le_foldseq)
apply (auto)
done
lemma spec2: "\<forall>j i. P j i \<Longrightarrow> P j i" by blast
-lemma neg_imp: "(\<not> Q \<longrightarrow> \<not> P) \<Longrightarrow> P \<longrightarrow> Q" by blast
lemma singleton_matrix_le[simp]: "(singleton_matrix j i a \<le> singleton_matrix j i b) = (a \<le> (b::_::order))"
by (auto simp: le_matrix_def)
lemma singleton_le_zero[simp]: "(singleton_matrix j i x \<le> 0) = (x \<le> (0::'a::{order,zero}))"
- apply (auto)
- apply (simp add: le_matrix_def)
- apply (drule_tac j=j and i=i in spec2)
- apply (simp)
- apply (simp add: le_matrix_def)
- done
+ by (metis singleton_matrix_le singleton_matrix_zero)
lemma singleton_ge_zero[simp]: "(0 \<le> singleton_matrix j i x) = ((0::'a::{order,zero}) \<le> x)"
- apply (auto)
- apply (simp add: le_matrix_def)
- apply (drule_tac j=j and i=i in spec2)
- apply (simp)
- apply (simp add: le_matrix_def)
- done
+ by (metis singleton_matrix_le singleton_matrix_zero)
+
+lemma move_matrix_le_zero[simp]:
+ fixes A:: "'a::{order,zero} matrix"
+ assumes "0 \<le> j" "0 \<le> i"
+ shows "(move_matrix A j i \<le> 0) = (A \<le> 0)"
+proof -
+ have "Rep_matrix A j' i' \<le> 0"
+ if "\<forall>n m. \<not> int n < j \<and> \<not> int m < i \<longrightarrow> Rep_matrix A (nat (int n - j)) (nat (int m - i)) \<le> 0"
+ for j' i'
+ using that[rule_format, of "j' + nat j" "i' + nat i"] by (simp add: assms)
+ then show ?thesis
+ by (auto simp: le_matrix_def)
+qed
-lemma move_matrix_le_zero[simp]: "0 \<le> j \<Longrightarrow> 0 \<le> i \<Longrightarrow> (move_matrix A j i \<le> 0) = (A \<le> (0::('a::{order,zero}) matrix))"
- apply (auto simp: le_matrix_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
+lemma move_matrix_zero_le[simp]:
+ fixes A:: "'a::{order,zero} matrix"
+ assumes "0 \<le> j" "0 \<le> i"
+ shows "(0 \<le> move_matrix A j i) = (0 \<le> A)"
+proof -
+ have "0 \<le> Rep_matrix A j' i'"
+ if "\<forall>n m. \<not> int n < j \<and> \<not> int m < i \<longrightarrow> 0 \<le> Rep_matrix A (nat (int n - j)) (nat (int m - i))"
+ for j' i'
+ using that[rule_format, of "j' + nat j" "i' + nat i"] by (simp add: assms)
+ then show ?thesis
+ by (auto simp: le_matrix_def)
+qed
-lemma move_matrix_zero_le[simp]: "0 \<le> j \<Longrightarrow> 0 \<le> i \<Longrightarrow> (0 \<le> move_matrix A j i) = ((0::('a::{order,zero}) matrix) \<le> A)"
- apply (auto simp: le_matrix_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
-
-lemma move_matrix_le_move_matrix_iff[simp]: "0 \<le> j \<Longrightarrow> 0 \<le> i \<Longrightarrow> (move_matrix A j i \<le> move_matrix B j i) = (A \<le> (B::('a::{order,zero}) matrix))"
- apply (auto simp: le_matrix_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
+lemma move_matrix_le_move_matrix_iff[simp]:
+ fixes A:: "'a::{order,zero} matrix"
+ assumes "0 \<le> j" "0 \<le> i"
+ shows "(move_matrix A j i \<le> move_matrix B j i) = (A \<le> B)"
+proof -
+ have "Rep_matrix A j' i' \<le> Rep_matrix B j' i'"
+ if "\<forall>n m. \<not> int n < j \<and> \<not> int m < i \<longrightarrow> Rep_matrix A (nat (int n - j)) (nat (int m - i)) \<le> Rep_matrix B (nat (int n - j)) (nat (int m - i))"
+ for j' i'
+ using that[rule_format, of "j' + nat j" "i' + nat i"] by (simp add: assms)
+ then show ?thesis
+ by (auto simp: le_matrix_def)
+qed
instantiation matrix :: ("{lattice, zero}") lattice
begin
@@ -1434,36 +1236,21 @@
instance matrix :: (monoid_add) monoid_add
proof
fix A B C :: "'a matrix"
- show "A + B + C = A + (B + C)"
- apply (simp add: plus_matrix_def)
- apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec])
- apply (simp_all add: add.assoc)
- done
+ show "A + B + C = A + (B + C)"
+ by (simp add: add.assoc matrix_eqI plus_matrix_def)
show "0 + A = A"
- apply (simp add: plus_matrix_def)
- apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec])
- apply (simp)
- done
+ by (simp add: matrix_eqI plus_matrix_def)
show "A + 0 = A"
- apply (simp add: plus_matrix_def)
- apply (rule combine_matrix_zero_r_neutral [simplified zero_r_neutral_def, THEN spec])
- apply (simp)
- done
+ by (simp add: matrix_eqI plus_matrix_def)
qed
instance matrix :: (comm_monoid_add) comm_monoid_add
proof
fix A B :: "'a matrix"
show "A + B = B + A"
- apply (simp add: plus_matrix_def)
- apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec])
- apply (simp_all add: add.commute)
- done
+ by (simp add: add.commute matrix_eqI plus_matrix_def)
show "0 + A = A"
- apply (simp add: plus_matrix_def)
- apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec])
- apply (simp)
- done
+ by (simp add: plus_matrix_def matrix_eqI)
qed
instance matrix :: (group_add) group_add
@@ -1489,10 +1276,7 @@
fix A B C :: "'a matrix"
assume "A \<le> B"
then show "C + A \<le> C + B"
- apply (simp add: plus_matrix_def)
- apply (rule le_left_combine_matrix)
- apply (simp_all)
- done
+ by (simp add: le_matrix_def plus_matrix_def)
qed
instance matrix :: (lattice_ab_group_add) semilattice_inf_ab_group_add ..
@@ -1502,41 +1286,28 @@
proof
fix A B C :: "'a matrix"
show "A * B * C = A * (B * C)"
- apply (simp add: times_matrix_def)
- apply (rule mult_matrix_assoc)
- apply (simp_all add: associative_def algebra_simps)
- done
+ unfolding times_matrix_def
+ by (smt (verit, best) add.assoc associative_def distrib_left distrib_right group_cancel.add2 mult.assoc mult_matrix_assoc mult_not_zero)
show "(A + B) * C = A * C + B * C"
- apply (simp add: times_matrix_def plus_matrix_def)
- apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec])
- apply (simp_all add: associative_def commutative_def algebra_simps)
- done
+ unfolding times_matrix_def plus_matrix_def
+ using l_distributive_matrix
+ by (metis (full_types) add.assoc add.commute associative_def commutative_def distrib_right l_distributive_def mult_not_zero)
show "A * (B + C) = A * B + A * C"
- apply (simp add: times_matrix_def plus_matrix_def)
- apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec])
- apply (simp_all add: associative_def commutative_def algebra_simps)
- done
- show "0 * A = 0" by (simp add: times_matrix_def)
- show "A * 0 = 0" by (simp add: times_matrix_def)
-qed
+ unfolding times_matrix_def plus_matrix_def
+ using r_distributive_matrix
+ by (metis (no_types, lifting) add.assoc add.commute associative_def commutative_def distrib_left mult_zero_left mult_zero_right r_distributive_def)
+qed (auto simp: times_matrix_def)
instance matrix :: (ring) ring ..
instance matrix :: (ordered_ring) ordered_ring
proof
fix A B C :: "'a matrix"
- assume a: "A \<le> B"
- assume b: "0 \<le> C"
- from a b show "C * A \<le> C * B"
- apply (simp add: times_matrix_def)
- apply (rule le_left_mult)
- apply (simp_all add: add_mono mult_left_mono)
- done
- from a b show "A * C \<le> B * C"
- apply (simp add: times_matrix_def)
- apply (rule le_right_mult)
- apply (simp_all add: add_mono mult_right_mono)
- done
+ assume \<section>: "A \<le> B" "0 \<le> C"
+ from \<section> show "C * A \<le> C * B"
+ by (simp add: times_matrix_def add_mono le_left_mult mult_left_mono)
+ from \<section> show "A * C \<le> B * C"
+ by (simp add: times_matrix_def add_mono le_right_mult mult_right_mono)
qed
instance matrix :: (lattice_ring) lattice_ring
@@ -1558,9 +1329,7 @@
lemma Rep_matrix_mult: "Rep_matrix ((a::('a::semiring_0) matrix) * b) j i =
foldseq (+) (\<lambda>k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))"
-apply (simp add: times_matrix_def)
-apply (simp add: Rep_mult_matrix)
-done
+ by (simp add: times_matrix_def Rep_mult_matrix)
lemma apply_matrix_add: "\<forall>x y. f (x+y) = (f x) + (f y) \<Longrightarrow> f 0 = (0::'a)
\<Longrightarrow> apply_matrix f ((a::('a::monoid_add) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)"
@@ -1570,20 +1339,18 @@
by (simp add: matrix_eqI)
lemma nrows_mult: "nrows ((A::('a::semiring_0) matrix) * B) \<le> nrows A"
-by (simp add: times_matrix_def mult_nrows)
+ by (simp add: times_matrix_def mult_nrows)
lemma ncols_mult: "ncols ((A::('a::semiring_0) matrix) * B) \<le> ncols B"
-by (simp add: times_matrix_def mult_ncols)
+ by (simp add: times_matrix_def mult_ncols)
definition
one_matrix :: "nat \<Rightarrow> ('a::{zero,one}) matrix" where
- "one_matrix n = Abs_matrix (\<lambda>j i. if j = i & j < n then 1 else 0)"
+ "one_matrix n = Abs_matrix (\<lambda>j i. if j = i \<and> j < n then 1 else 0)"
-lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
-apply (simp add: one_matrix_def)
-apply (simplesubst RepAbs_matrix)
-apply (rule exI[of _ n], simp add: if_split)+
-by (simp add: if_split)
+lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i \<and> j < n) then 1 else 0)"
+ unfolding one_matrix_def
+ by (smt (verit, del_insts) RepAbs_matrix not_le)
lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _")
proof -
@@ -1599,32 +1366,41 @@
ultimately show "?r = n" by simp
qed
-lemma one_matrix_mult_right[simp]: "ncols A \<le> n \<Longrightarrow> (A::('a::{semiring_1}) matrix) * (one_matrix n) = A"
+lemma one_matrix_mult_right[simp]:
+ fixes A :: "('a::semiring_1) matrix"
+ shows "ncols A \<le> n \<Longrightarrow> A * (one_matrix n) = A"
apply (intro matrix_eqI)
apply (simp add: times_matrix_def Rep_mult_matrix)
apply (subst foldseq_almostzero, auto simp: ncols)
done
-lemma one_matrix_mult_left[simp]: "nrows A \<le> n \<Longrightarrow> (one_matrix n) * A = (A::('a::semiring_1) matrix)"
+lemma one_matrix_mult_left[simp]:
+ fixes A :: "('a::semiring_1) matrix"
+ shows "nrows A \<le> n \<Longrightarrow> (one_matrix n) * A = A"
apply (intro matrix_eqI)
apply (simp add: times_matrix_def Rep_mult_matrix)
apply (subst foldseq_almostzero, auto simp: nrows)
done
-lemma transpose_matrix_mult: "transpose_matrix ((A::('a::comm_ring) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)"
-apply (simp add: times_matrix_def)
-apply (subst transpose_mult_matrix)
-apply (simp_all add: mult.commute)
-done
+lemma transpose_matrix_mult:
+ fixes A :: "('a::comm_ring) matrix"
+ shows "transpose_matrix (A*B) = (transpose_matrix B) * (transpose_matrix A)"
+ by (simp add: times_matrix_def transpose_mult_matrix mult.commute)
+
+lemma transpose_matrix_add:
+ fixes A :: "('a::monoid_add) matrix"
+ shows "transpose_matrix (A+B) = transpose_matrix A + transpose_matrix B"
+ by (simp add: plus_matrix_def transpose_combine_matrix)
-lemma transpose_matrix_add: "transpose_matrix ((A::('a::monoid_add) matrix)+B) = transpose_matrix A + transpose_matrix B"
-by (simp add: plus_matrix_def transpose_combine_matrix)
+lemma transpose_matrix_diff:
+ fixes A :: "('a::group_add) matrix"
+ shows "transpose_matrix (A-B) = transpose_matrix A - transpose_matrix B"
+ by (simp add: diff_matrix_def transpose_combine_matrix)
-lemma transpose_matrix_diff: "transpose_matrix ((A::('a::group_add) matrix)-B) = transpose_matrix A - transpose_matrix B"
-by (simp add: diff_matrix_def transpose_combine_matrix)
-
-lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::group_add) matrix)) = - transpose_matrix (A::'a matrix)"
-by (simp add: minus_matrix_def transpose_apply_matrix)
+lemma transpose_matrix_minus:
+ fixes A :: "('a::group_add) matrix"
+ shows "transpose_matrix (-A) = - transpose_matrix (A::'a matrix)"
+ by (simp add: minus_matrix_def transpose_apply_matrix)
definition right_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
"right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \<and> nrows X \<le> ncols A"
@@ -1636,32 +1412,25 @@
"inverse_matrix A X == (right_inverse_matrix A X) \<and> (left_inverse_matrix A X)"
lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
-apply (insert ncols_mult[of A X], insert nrows_mult[of A X])
-by (simp add: right_inverse_matrix_def)
+ using ncols_mult[of A X] nrows_mult[of A X]
+ by (simp add: right_inverse_matrix_def)
lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \<Longrightarrow> ncols A = nrows Y"
-apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A])
-by (simp add: left_inverse_matrix_def)
+ using ncols_mult[of Y A] nrows_mult[of Y A]
+ by (simp add: left_inverse_matrix_def)
lemma left_right_inverse_matrix_unique:
assumes "left_inverse_matrix A Y" "right_inverse_matrix A X"
shows "X = Y"
proof -
- have "Y = Y * one_matrix (nrows A)"
- apply (subst one_matrix_mult_right)
- using assms
- apply (simp_all add: left_inverse_matrix_def)
- done
- also have "\<dots> = Y * (A * X)"
- apply (insert assms)
- apply (frule right_inverse_matrix_dim)
- by (simp add: right_inverse_matrix_def)
+ have "Y = Y * one_matrix (nrows A)"
+ by (metis assms(1) left_inverse_matrix_def one_matrix_mult_right)
+ also have "\<dots> = Y * (A * X)"
+ by (metis assms(2) max.idem right_inverse_matrix_def right_inverse_matrix_dim)
also have "\<dots> = (Y * A) * X" by (simp add: mult.assoc)
- also have "\<dots> = X"
- apply (insert assms)
- apply (frule left_inverse_matrix_dim)
- apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left)
- done
+ also have "\<dots> = X"
+ using assms left_inverse_matrix_def right_inverse_matrix_def
+ by (metis left_inverse_matrix_dim max.idem one_matrix_mult_left)
ultimately show "X = Y" by (simp)
qed
@@ -1672,19 +1441,18 @@
by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def)
lemma zero_imp_mult_zero: "(a::'a::semiring_0) = 0 | b = 0 \<Longrightarrow> a * b = 0"
-by auto
+ by auto
lemma Rep_matrix_zero_imp_mult_zero:
"\<forall>j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0 \<Longrightarrow> A * B = (0::('a::lattice_ring) matrix)"
by (simp add: matrix_eqI Rep_matrix_mult foldseq_zero zero_imp_mult_zero)
lemma add_nrows: "nrows (A::('a::monoid_add) matrix) \<le> u \<Longrightarrow> nrows B \<le> u \<Longrightarrow> nrows (A + B) \<le> u"
-apply (simp add: plus_matrix_def)
-apply (rule combine_nrows)
-apply (simp_all)
-done
+ by (simp add: nrows_le)
-lemma move_matrix_row_mult: "move_matrix ((A::('a::semiring_0) matrix) * B) j 0 = (move_matrix A j 0) * B"
+lemma move_matrix_row_mult:
+ fixes A :: "('a::semiring_0) matrix"
+ shows "move_matrix (A * B) j 0 = (move_matrix A j 0) * B"
proof -
have "\<And>m. \<not> int m < j \<Longrightarrow> ncols (move_matrix A j 0) \<le> max (ncols A) (nrows B)"
by (smt (verit, best) max1 nat_int ncols_move_matrix_le)
@@ -1696,7 +1464,9 @@
done
qed
-lemma move_matrix_col_mult: "move_matrix ((A::('a::semiring_0) matrix) * B) 0 i = A * (move_matrix B 0 i)"
+lemma move_matrix_col_mult:
+ fixes A :: "('a::semiring_0) matrix"
+ shows "move_matrix (A * B) 0 i = A * (move_matrix B 0 i)"
proof -
have "\<And>n. \<not> int n < i \<Longrightarrow> nrows (move_matrix B 0 i) \<le> max (ncols A) (nrows B)"
by (smt (verit, del_insts) max2 nat_int nrows_move_matrix_le)
--- a/src/HOL/Matrix_LP/SparseMatrix.thy Thu Aug 22 22:26:36 2024 +0100
+++ b/src/HOL/Matrix_LP/SparseMatrix.thy Sat Aug 24 14:14:44 2024 +0100
@@ -1,5 +1,5 @@
(* Title: HOL/Matrix_LP/SparseMatrix.thy
- Author: Steven Obua
+ Author: Steven Obua; updated to Isar by LCP
*)
theory SparseMatrix
@@ -291,7 +291,7 @@
using sorted_sparse_row_matrix_zero apply fastforce
apply (subst Rep_matrix_zero_imp_mult_zero)
apply (metis Rep_move_matrix comp_1 nrows_le nrows_spvec sorted_sparse_row_vector_zero verit_comp_simplify1(3))
- apply (simp add: )
+ apply simp
done
next
case greater
@@ -434,9 +434,7 @@
qed
lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (add_spmat A B)"
- apply (induct A B rule: add_spmat.induct)
- apply (simp_all add: sorted_spvec_add_spvec)
- done
+ by (induct A B rule: add_spmat.induct) (simp_all add: sorted_spvec_add_spvec)
fun le_spvec :: "('a::lattice_ab_group_add) spvec \<Rightarrow> 'a spvec \<Rightarrow> bool"
where
@@ -464,8 +462,6 @@
"disj_matrices A B \<longleftrightarrow>
(\<forall>j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (\<forall>j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))"
-declare [[simp_depth_limit = 6]]
-
lemma disj_matrices_contr1: "disj_matrices A B \<Longrightarrow> Rep_matrix A j i \<noteq> 0 \<Longrightarrow> Rep_matrix B j i = 0"
by (simp add: disj_matrices_def)
@@ -473,73 +469,47 @@
by (simp add: disj_matrices_def)
-lemma disj_matrices_add: "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D \<Longrightarrow> disj_matrices B C \<Longrightarrow>
- (A + B \<le> C + D) = (A \<le> C & B \<le> (D::('a::lattice_ab_group_add) matrix))"
- apply (auto)
- apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
- apply (intro strip)
- apply (erule conjE)+
- apply (drule_tac j=j and i=i in spec2)+
- apply (case_tac "Rep_matrix B j i = 0")
- apply (case_tac "Rep_matrix D j i = 0")
- apply (simp_all)
- apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
- apply (intro strip)
- apply (erule conjE)+
- apply (drule_tac j=j and i=i in spec2)+
- apply (case_tac "Rep_matrix A j i = 0")
- apply (case_tac "Rep_matrix C j i = 0")
- apply (simp_all)
- apply (erule add_mono)
- apply (assumption)
- done
+lemma disj_matrices_add:
+ fixes A :: "('a::lattice_ab_group_add) matrix"
+ shows "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D
+ \<Longrightarrow> disj_matrices B C \<Longrightarrow> (A + B \<le> C + D) = (A \<le> C \<and> B \<le> D)"
+ apply (intro iffI conjI)
+ unfolding le_matrix_def disj_matrices_def
+ apply (metis Rep_matrix_add group_cancel.rule0 order_refl)
+ apply (metis (no_types, lifting) Rep_matrix_add add_cancel_right_left dual_order.refl)
+ by (meson add_mono le_matrix_def)
lemma disj_matrices_zero1[simp]: "disj_matrices 0 B"
-by (simp add: disj_matrices_def)
+ by (simp add: disj_matrices_def)
lemma disj_matrices_zero2[simp]: "disj_matrices A 0"
-by (simp add: disj_matrices_def)
+ by (simp add: disj_matrices_def)
lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A"
-by (auto simp: disj_matrices_def)
+ by (auto simp: disj_matrices_def)
lemma disj_matrices_add_le_zero: "disj_matrices A B \<Longrightarrow>
(A + B \<le> 0) = (A \<le> 0 & (B::('a::lattice_ab_group_add) matrix) \<le> 0)"
-by (rule disj_matrices_add[of A B 0 0, simplified])
-
+ by (rule disj_matrices_add[of A B 0 0, simplified])
+
lemma disj_matrices_add_zero_le: "disj_matrices A B \<Longrightarrow>
(0 \<le> A + B) = (0 \<le> A & 0 \<le> (B::('a::lattice_ab_group_add) matrix))"
-by (rule disj_matrices_add[of 0 0 A B, simplified])
+ by (rule disj_matrices_add[of 0 0 A B, simplified])
lemma disj_matrices_add_x_le: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow>
(A \<le> B + C) = (A \<le> C & 0 \<le> (B::('a::lattice_ab_group_add) matrix))"
-by (auto simp: disj_matrices_add[of 0 A B C, simplified])
+ by (auto simp: disj_matrices_add[of 0 A B C, simplified])
lemma disj_matrices_add_le_x: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow>
(B + A \<le> C) = (A \<le> C & (B::('a::lattice_ab_group_add) matrix) \<le> 0)"
-by (auto simp: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute)
+ by (auto simp: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute)
lemma disj_sparse_row_singleton: "i \<le> j \<Longrightarrow> sorted_spvec((j,y)#v) \<Longrightarrow> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)"
apply (simp add: disj_matrices_def)
- apply (rule conjI)
- apply (rule neg_imp)
- apply (simp)
- apply (intro strip)
- apply (rule sorted_sparse_row_vector_zero)
- apply (simp_all)
- apply (intro strip)
- apply (rule sorted_sparse_row_vector_zero)
- apply (simp_all)
- done
+ using sorted_sparse_row_vector_zero by blast
lemma disj_matrices_x_add: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (A::('a::lattice_ab_group_add) matrix) (B+C)"
- apply (simp add: disj_matrices_def)
- apply (auto)
- apply (drule_tac j=j and i=i in spec2)+
- apply (case_tac "Rep_matrix B j i = 0")
- apply (case_tac "Rep_matrix C j i = 0")
- apply (simp_all)
- done
+ by (smt (verit, ccfv_SIG) Rep_matrix_add add_0 disj_matrices_def)
lemma disj_matrices_add_x: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (B+C) (A::('a::lattice_ab_group_add) matrix)"
by (simp add: disj_matrices_x_add disj_matrices_commute)
@@ -547,97 +517,106 @@
lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \<noteq> u | i \<noteq> v | x = 0 | y = 0)"
by (auto simp: disj_matrices_def)
-lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]:
- "j \<le> a \<Longrightarrow> sorted_spvec((a,c)#as) \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)"
- apply (auto simp: disj_matrices_def)
- apply (drule nrows_notzero)
- apply (drule less_le_trans[OF _ nrows_spvec])
- apply (subgoal_tac "ja = j")
- apply (simp add: sorted_sparse_row_matrix_zero)
- apply (arith)
- apply (rule nrows)
- apply (rule order_trans[of _ 1 _])
- apply (simp)
- apply (case_tac "nat (int ja - int j) = 0")
- apply (case_tac "ja = j")
- apply (simp add: sorted_sparse_row_matrix_zero)
- apply arith+
- done
+lemma disj_move_sparse_vec_mat:
+ assumes "j \<le> a" and "sorted_spvec ((a, c) # as)"
+ shows "disj_matrices (sparse_row_matrix as) (move_matrix (sparse_row_vector b) (int j) i)"
+proof -
+ have "Rep_matrix (sparse_row_vector b) (n-j) (nat (int m - i)) = 0"
+ if "\<not> n<j" and nz: "Rep_matrix (sparse_row_matrix as) n m \<noteq> 0"
+ for n m
+ proof -
+ have "n \<noteq> j"
+ using assms sorted_sparse_row_matrix_zero nz by blast
+ with that have "j < n" by auto
+ then show ?thesis
+ by (metis One_nat_def Suc_diff_Suc nrows nrows_spvec plus_1_eq_Suc trans_le_add1)
+ qed
+ then show ?thesis
+ by (auto simp: disj_matrices_def nat_minus_as_int)
+qed
lemma disj_move_sparse_row_vector_twice:
"j \<noteq> u \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)"
- apply (auto simp: disj_matrices_def)
- apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+
- done
-
-lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \<longrightarrow> (sorted_spvec b) \<longrightarrow> (le_spvec a b) = (sparse_row_vector a \<le> sparse_row_vector b)"
- apply (induct a b rule: le_spvec.induct)
- apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le
- disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
- apply (rule conjI, intro strip)
- apply (simp add: sorted_spvec_cons1)
- apply (subst disj_matrices_add_x_le)
- apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute)
- apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
- apply (simp, blast)
- apply (intro strip, rule conjI, intro strip)
- apply (simp add: sorted_spvec_cons1)
- apply (subst disj_matrices_add_le_x)
- apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add)
- apply (blast)
- apply (intro strip)
- apply (simp add: sorted_spvec_cons1)
- apply (case_tac "a=b", simp_all)
- apply (subst disj_matrices_add)
- apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
- done
-
-lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \<longrightarrow> le_spvec b [] = (sparse_row_vector b \<le> 0)"
- apply (induct b)
- apply (simp_all add: sorted_spvec_cons1)
- apply (intro strip)
- apply (subst disj_matrices_add_le_zero)
- apply (auto simp: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1)
- done
+ unfolding disj_matrices_def
+ by (smt (verit, ccfv_SIG) One_nat_def Rep_move_matrix of_nat_1 le_nat_iff nrows nrows_spvec of_nat_le_iff)
-lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec [] b = (0 \<le> sparse_row_vector b))"
- apply (induct b)
- apply (simp_all add: sorted_spvec_cons1)
- apply (intro strip)
- apply (subst disj_matrices_add_zero_le)
- apply (auto simp: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1)
- done
+lemma le_spvec_iff_sparse_row_le:
+ "sorted_spvec a \<Longrightarrow> sorted_spvec b \<Longrightarrow> (le_spvec a b) \<longleftrightarrow> (sparse_row_vector a \<le> sparse_row_vector b)"
+proof (induct a b rule: le_spvec.induct)
+ case 1
+ then show ?case
+ by auto
+next
+ case (2 uu a as)
+ then have "sorted_spvec as"
+ by (metis sorted_spvec_cons1)
+ with 2 show ?case
+ apply (simp add: add.commute)
+ by (metis disj_matrices_add_le_zero disj_sparse_row_singleton le_refl singleton_le_zero)
+next
+ case (3 uv b bs)
+ then have "sorted_spvec bs"
+ by (metis sorted_spvec_cons1)
+ with 3 show ?case
+ apply (simp add: add.commute)
+ by (metis disj_matrices_add_zero_le disj_sparse_row_singleton le_refl singleton_ge_zero)
+next
+ case (4 i a as j b bs)
+ then obtain \<section>: "sorted_spvec as" "sorted_spvec bs"
+ by (metis sorted_spvec_cons1)
+ show ?case
+ proof (cases i j rule: linorder_cases)
+ case less
+ with 4 \<section> show ?thesis
+ apply (simp add: )
+ by (metis disj_matrices_add_le_x disj_matrices_add_x disj_matrices_commute disj_singleton_matrices disj_sparse_row_singleton less_imp_le_nat singleton_le_zero not_le)
+ next
+ case equal
+ with 4 \<section> show ?thesis
+ apply (simp add: )
+ by (metis disj_matrices_add disj_matrices_commute disj_sparse_row_singleton order_refl singleton_matrix_le)
+ next
+ case greater
+ with 4 \<section> show ?thesis
+ apply (simp add: )
+ by (metis disj_matrices_add_x disj_matrices_add_x_le disj_matrices_commute disj_singleton_matrices disj_sparse_row_singleton le_refl order_less_le singleton_ge_zero)
+ qed
+qed
-lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \<longrightarrow> (sorted_spmat A) \<longrightarrow> (sorted_spvec B) \<longrightarrow> (sorted_spmat B) \<longrightarrow>
+lemma le_spvec_empty2_sparse_row:
+ "sorted_spvec b \<Longrightarrow> le_spvec b [] = (sparse_row_vector b \<le> 0)"
+ by (simp add: le_spvec_iff_sparse_row_le)
+
+lemma le_spvec_empty1_sparse_row:
+ "(sorted_spvec b) \<Longrightarrow> (le_spvec [] b = (0 \<le> sparse_row_vector b))"
+ by (simp add: le_spvec_iff_sparse_row_le)
+
+lemma le_spmat_iff_sparse_row_le:
+ "\<lbrakk>sorted_spvec A; sorted_spmat A; sorted_spvec B; sorted_spmat B\<rbrakk> \<Longrightarrow>
le_spmat A B = (sparse_row_matrix A \<le> sparse_row_matrix B)"
- apply (induct A B rule: le_spmat.induct)
- apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl]
- disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+
- apply (rule conjI, intro strip)
- apply (simp add: sorted_spvec_cons1)
- apply (subst disj_matrices_add_x_le)
- apply (rule disj_matrices_add_x)
- apply (simp add: disj_move_sparse_row_vector_twice)
- apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
- apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute)
- apply (simp, blast)
- apply (intro strip, rule conjI, intro strip)
- apply (simp add: sorted_spvec_cons1)
- apply (subst disj_matrices_add_le_x)
- apply (simp add: disj_move_sparse_vec_mat[OF order_refl])
- apply (rule disj_matrices_x_add)
- apply (simp add: disj_move_sparse_row_vector_twice)
- apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
- apply (simp, blast)
- apply (intro strip)
- apply (case_tac "i=j")
- apply (simp_all)
- apply (subst disj_matrices_add)
- apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl])
- apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le)
- done
+proof (induct A B rule: le_spmat.induct)
+ case (4 i a as j b bs)
+ then obtain \<section>: "sorted_spvec as" "sorted_spvec bs"
+ by (metis sorted_spvec_cons1)
+ show ?case
+ proof (cases i j rule: linorder_cases)
+ case less
+ with 4 \<section> show ?thesis
+ apply (simp add: sparse_row_matrix_cons le_spvec_empty2_sparse_row)
+ by (metis disj_matrices_add_le_x disj_matrices_add_x disj_matrices_commute disj_move_sparse_row_vector_twice disj_move_sparse_vec_mat int_eq_iff less_not_refl move_matrix_le_zero order_le_less)
+ next
+ case equal
+ with 4 \<section> show ?thesis
+ by (simp add: sparse_row_matrix_cons le_spvec_iff_sparse_row_le disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl] disj_matrices_add)
+ next
+ case greater
+ with 4 \<section> show ?thesis
+ apply (simp add: sparse_row_matrix_cons le_spvec_empty1_sparse_row)
+ by (metis disj_matrices_add_x disj_matrices_add_x_le disj_matrices_commute disj_move_sparse_row_vector_twice disj_move_sparse_vec_mat move_matrix_zero_le nat_int nat_less_le of_nat_0_le_iff order_refl)
+ qed
+qed (auto simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl]
+ disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)
-declare [[simp_depth_limit = 999]]
primrec abs_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat"
where
@@ -792,7 +771,7 @@
proof (induct v rule: sorted_spvec.induct)
case (3 m x n y bs)
then show ?case
- apply (simp add: )
+ apply simp
apply (subst pprt_add)
apply (metis disj_matrices_commute disj_sparse_row_singleton order.refl fst_conv prod.sel(2) sparse_row_vector_cons)
by (metis pprt_singleton sorted_spvec_cons1)
@@ -804,7 +783,7 @@
proof (induct v rule: sorted_spvec.induct)
case (3 m x n y bs)
then show ?case
- apply (simp add: )
+ apply simp
apply (subst nprt_add)
apply (metis disj_matrices_commute disj_sparse_row_singleton dual_order.refl fst_conv prod.sel(2) sparse_row_vector_cons)
using sorted_spvec_cons1 by force
@@ -868,10 +847,10 @@
qed
lemma sorted_nprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (nprt_spvec v)"
-by (induct v rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm)
+ by (induct v rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm)
lemma sorted_spvec_pprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (pprt_spmat m)"
-by (induct m rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm)
+ by (induct m rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm)
lemma sorted_spvec_nprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (nprt_spmat m)"
by (induct m rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm)