more appropriate location
authorhaftmann
Wed, 05 May 2021 16:09:02 +0000
changeset 73622 4dc3baf45d6a
parent 73621 b4b70d13c995
child 73623 5020054b3a16
more appropriate location
NEWS
src/HOL/Combinatorics/Combinatorics.thy
src/HOL/Combinatorics/Perm.thy
src/HOL/Library/Library.thy
src/HOL/Library/Perm.thy
src/HOL/ex/Perm_Fragments.thy
src/HOL/ex/Specifications_with_bundle_mixins.thy
--- a/NEWS	Tue May 04 17:57:16 2021 +0000
+++ b/NEWS	Wed May 05 16:09:02 2021 +0000
@@ -83,9 +83,9 @@
 
 * Dedicated session HOL-Combinatorics.  INCOMPATIBILITY: theories
 "Permutations", "List_Permutation" (formerly "Permutation"), "Stirling",
-"Multiset_Permutations"  have been
-moved there from session HOL-Library.  See theory "Guide" for an
-overview about existing material on basic combinatorics.
+"Multiset_Permutations", "Perm" have been moved there from session
+HOL-Library.  See theory "Guide" for an overview about existing material
+on basic combinatorics.
 
 * Theory "Permutation" in HOL-Library has been renamed to the more
 specific "List_Permutation".  Note that most notions from that
--- a/src/HOL/Combinatorics/Combinatorics.thy	Tue May 04 17:57:16 2021 +0000
+++ b/src/HOL/Combinatorics/Combinatorics.thy	Wed May 05 16:09:02 2021 +0000
@@ -8,6 +8,7 @@
   List_Permutation
   Multiset_Permutations
   Cycles
+  Perm
 begin
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Combinatorics/Perm.thy	Wed May 05 16:09:02 2021 +0000
@@ -0,0 +1,810 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+section \<open>Permutations as abstract type\<close>
+
+theory Perm
+imports Main
+begin
+
+text \<open>
+  This theory introduces basics about permutations, i.e. almost
+  everywhere fix bijections.  But it is by no means complete.
+  Grieviously missing are cycles since these would require more
+  elaboration, e.g. the concept of distinct lists equivalent
+  under rotation, which maybe would also deserve its own theory.
+  But see theory \<open>src/HOL/ex/Perm_Fragments.thy\<close> for
+  fragments on that.
+\<close>
+
+subsection \<open>Abstract type of permutations\<close>
+
+typedef 'a perm = "{f :: 'a \<Rightarrow> 'a. bij f \<and> finite {a. f a \<noteq> a}}"
+  morphisms "apply" Perm
+proof
+  show "id \<in> ?perm" by simp
+qed
+
+setup_lifting type_definition_perm
+
+notation "apply" (infixl "\<langle>$\<rangle>" 999)
+
+lemma bij_apply [simp]:
+  "bij (apply f)"
+  using "apply" [of f] by simp
+
+lemma perm_eqI:
+  assumes "\<And>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a"
+  shows "f = g"
+  using assms by transfer (simp add: fun_eq_iff)
+
+lemma perm_eq_iff:
+  "f = g \<longleftrightarrow> (\<forall>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a)"
+  by (auto intro: perm_eqI)
+
+lemma apply_inj:
+  "f \<langle>$\<rangle> a = f \<langle>$\<rangle> b \<longleftrightarrow> a = b"
+  by (rule inj_eq) (rule bij_is_inj, simp)
+
+lift_definition affected :: "'a perm \<Rightarrow> 'a set"
+  is "\<lambda>f. {a. f a \<noteq> a}" .
+
+lemma in_affected:
+  "a \<in> affected f \<longleftrightarrow> f \<langle>$\<rangle> a \<noteq> a"
+  by transfer simp
+
+lemma finite_affected [simp]:
+  "finite (affected f)"
+  by transfer simp
+
+lemma apply_affected [simp]:
+  "f \<langle>$\<rangle> a \<in> affected f \<longleftrightarrow> a \<in> affected f"
+proof transfer
+  fix f :: "'a \<Rightarrow> 'a" and a :: 'a
+  assume "bij f \<and> finite {b. f b \<noteq> b}"
+  then have "bij f" by simp
+  interpret bijection f by standard (rule \<open>bij f\<close>)
+  have "f a \<in> {a. f a = a} \<longleftrightarrow> a \<in> {a. f a = a}" (is "?P \<longleftrightarrow> ?Q")
+    by auto
+  then show "f a \<in> {a. f a \<noteq> a} \<longleftrightarrow> a \<in> {a. f a \<noteq> a}"
+    by simp
+qed
+
+lemma card_affected_not_one:
+  "card (affected f) \<noteq> 1"
+proof
+  interpret bijection "apply f"
+    by standard (rule bij_apply)
+  assume "card (affected f) = 1"
+  then obtain a where *: "affected f = {a}"
+    by (rule card_1_singletonE)
+  then have **: "f \<langle>$\<rangle> a \<noteq> a"
+    by (simp flip: in_affected)
+  with * have "f \<langle>$\<rangle> a \<notin> affected f"
+    by simp
+  then have "f \<langle>$\<rangle> (f \<langle>$\<rangle> a) = f \<langle>$\<rangle> a"
+    by (simp add: in_affected)
+  then have "inv (apply f) (f \<langle>$\<rangle> (f \<langle>$\<rangle> a)) = inv (apply f) (f \<langle>$\<rangle> a)"
+    by simp
+  with ** show False by simp
+qed
+
+
+subsection \<open>Identity, composition and inversion\<close>
+
+instantiation Perm.perm :: (type) "{monoid_mult, inverse}"
+begin
+
+lift_definition one_perm :: "'a perm"
+  is id
+  by simp
+
+lemma apply_one [simp]:
+  "apply 1 = id"
+  by (fact one_perm.rep_eq)
+
+lemma affected_one [simp]:
+  "affected 1 = {}"
+  by transfer simp
+
+lemma affected_empty_iff [simp]:
+  "affected f = {} \<longleftrightarrow> f = 1"
+  by transfer auto
+
+lift_definition times_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm"
+  is comp
+proof
+  fix f g :: "'a \<Rightarrow> 'a"
+  assume "bij f \<and> finite {a. f a \<noteq> a}"
+    "bij g \<and>finite {a. g a \<noteq> a}"
+  then have "finite ({a. f a \<noteq> a} \<union> {a. g a \<noteq> a})"
+    by simp
+  moreover have "{a. (f \<circ> g) a \<noteq> a} \<subseteq> {a. f a \<noteq> a} \<union> {a. g a \<noteq> a}"
+    by auto
+  ultimately show "finite {a. (f \<circ> g) a \<noteq> a}"
+    by (auto intro: finite_subset)
+qed (auto intro: bij_comp)
+
+lemma apply_times:
+  "apply (f * g) = apply f \<circ> apply g"
+  by (fact times_perm.rep_eq)
+
+lemma apply_sequence:
+  "f \<langle>$\<rangle> (g \<langle>$\<rangle> a) = apply (f * g) a"
+  by (simp add: apply_times)
+
+lemma affected_times [simp]:
+  "affected (f * g) \<subseteq> affected f \<union> affected g"
+  by transfer auto
+
+lift_definition inverse_perm :: "'a perm \<Rightarrow> 'a perm"
+  is inv
+proof transfer
+  fix f :: "'a \<Rightarrow> 'a" and a
+  assume "bij f \<and> finite {b. f b \<noteq> b}"
+  then have "bij f" and fin: "finite {b. f b \<noteq> b}"
+    by auto
+  interpret bijection f by standard (rule \<open>bij f\<close>)
+  from fin show "bij (inv f) \<and> finite {a. inv f a \<noteq> a}"
+    by (simp add: bij_inv)
+qed
+
+instance
+  by standard (transfer; simp add: comp_assoc)+
+
+end
+
+lemma apply_inverse:
+  "apply (inverse f) = inv (apply f)"
+  by (fact inverse_perm.rep_eq)
+
+lemma affected_inverse [simp]:
+  "affected (inverse f) = affected f"
+proof transfer
+  fix f :: "'a \<Rightarrow> 'a" and a
+  assume "bij f \<and> finite {b. f b \<noteq> b}"
+  then have "bij f" by simp
+  interpret bijection f by standard (rule \<open>bij f\<close>)
+  show "{a. inv f a \<noteq> a} = {a. f a \<noteq> a}"
+    by simp
+qed
+
+global_interpretation perm: group times "1::'a perm" inverse
+proof
+  fix f :: "'a perm"
+  show "1 * f = f"
+    by transfer simp
+  show "inverse f * f = 1"
+  proof transfer
+    fix f :: "'a \<Rightarrow> 'a" and a
+    assume "bij f \<and> finite {b. f b \<noteq> b}"
+    then have "bij f" by simp
+    interpret bijection f by standard (rule \<open>bij f\<close>)
+    show "inv f \<circ> f = id"
+      by simp
+  qed
+qed
+
+declare perm.inverse_distrib_swap [simp]
+
+lemma perm_mult_commute:
+  assumes "affected f \<inter> affected g = {}"
+  shows "g * f = f * g"
+proof (rule perm_eqI)
+  fix a
+  from assms have *: "a \<in> affected f \<Longrightarrow> a \<notin> affected g"
+    "a \<in> affected g \<Longrightarrow> a \<notin> affected f" for a
+    by auto
+  consider "a \<in> affected f \<and> a \<notin> affected g
+        \<and> f \<langle>$\<rangle> a \<in> affected f"
+    | "a \<notin> affected f \<and> a \<in> affected g
+        \<and> f \<langle>$\<rangle> a \<notin> affected f"
+    | "a \<notin> affected f \<and> a \<notin> affected g"
+    using assms by auto
+  then show "(g * f) \<langle>$\<rangle> a = (f * g) \<langle>$\<rangle> a"
+  proof cases
+    case 1
+    with * have "f \<langle>$\<rangle> a \<notin> affected g"
+      by auto
+    with 1 show ?thesis by (simp add: in_affected apply_times)
+  next
+    case 2
+    with * have "g \<langle>$\<rangle> a \<notin> affected f"
+      by auto
+    with 2 show ?thesis by (simp add: in_affected apply_times)
+  next
+    case 3
+    then show ?thesis by (simp add: in_affected apply_times)
+  qed
+qed
+
+lemma apply_power:
+  "apply (f ^ n) = apply f ^^ n"
+  by (induct n) (simp_all add: apply_times)
+
+lemma perm_power_inverse:
+  "inverse f ^ n = inverse ((f :: 'a perm) ^ n)"
+proof (induct n)
+  case 0 then show ?case by simp
+next
+  case (Suc n)
+  then show ?case
+    unfolding power_Suc2 [of f] by simp
+qed
+
+
+subsection \<open>Orbit and order of elements\<close>
+
+definition orbit :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a set"
+where
+  "orbit f a = range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
+
+lemma in_orbitI:
+  assumes "(f ^ n) \<langle>$\<rangle> a = b"
+  shows "b \<in> orbit f a"
+  using assms by (auto simp add: orbit_def)
+
+lemma apply_power_self_in_orbit [simp]:
+  "(f ^ n) \<langle>$\<rangle> a \<in> orbit f a"
+  by (rule in_orbitI) rule
+
+lemma in_orbit_self [simp]:
+  "a \<in> orbit f a"
+  using apply_power_self_in_orbit [of _ 0] by simp
+
+lemma apply_self_in_orbit [simp]:
+  "f \<langle>$\<rangle> a \<in> orbit f a"
+  using apply_power_self_in_orbit [of _ 1] by simp
+
+lemma orbit_not_empty [simp]:
+  "orbit f a \<noteq> {}"
+  using in_orbit_self [of a f] by blast
+
+lemma not_in_affected_iff_orbit_eq_singleton:
+  "a \<notin> affected f \<longleftrightarrow> orbit f a = {a}" (is "?P \<longleftrightarrow> ?Q")
+proof
+  assume ?P
+  then have "f \<langle>$\<rangle> a = a"
+    by (simp add: in_affected)
+  then have "(f ^ n) \<langle>$\<rangle> a = a" for n
+    by (induct n) (simp_all add: apply_times)
+  then show ?Q
+    by (auto simp add: orbit_def)
+next
+  assume ?Q
+  then show ?P
+    by (auto simp add: orbit_def in_affected dest: range_eq_singletonD [of _ _ 1])
+qed
+
+definition order :: "'a perm \<Rightarrow> 'a \<Rightarrow> nat"
+where
+  "order f = card \<circ> orbit f"
+
+lemma orbit_subset_eq_affected:
+  assumes "a \<in> affected f"
+  shows "orbit f a \<subseteq> affected f"
+proof (rule ccontr)
+  assume "\<not> orbit f a \<subseteq> affected f"
+  then obtain b where "b \<in> orbit f a" and "b \<notin> affected f"
+    by auto
+  then have "b \<in> range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
+    by (simp add: orbit_def)
+  then obtain n where "b = (f ^ n) \<langle>$\<rangle> a"
+    by blast
+  with \<open>b \<notin> affected f\<close>
+  have "(f ^ n) \<langle>$\<rangle> a \<notin> affected f"
+    by simp
+  then have "f \<langle>$\<rangle> a \<notin> affected f"
+    by (induct n) (simp_all add: apply_times)
+  with assms show False
+    by simp
+qed
+
+lemma finite_orbit [simp]:
+  "finite (orbit f a)"
+proof (cases "a \<in> affected f")
+  case False then show ?thesis
+    by (simp add: not_in_affected_iff_orbit_eq_singleton)
+next
+  case True then have "orbit f a \<subseteq> affected f"
+    by (rule orbit_subset_eq_affected)
+  then show ?thesis using finite_affected
+    by (rule finite_subset)
+qed
+
+lemma orbit_1 [simp]:
+  "orbit 1 a = {a}"
+  by (auto simp add: orbit_def)
+
+lemma order_1 [simp]:
+  "order 1 a = 1"
+  unfolding order_def by simp
+
+lemma card_orbit_eq [simp]:
+  "card (orbit f a) = order f a"
+  by (simp add: order_def)
+
+lemma order_greater_zero [simp]:
+  "order f a > 0"
+  by (simp only: card_gt_0_iff order_def comp_def) simp
+
+lemma order_eq_one_iff:
+  "order f a = Suc 0 \<longleftrightarrow> a \<notin> affected f" (is "?P \<longleftrightarrow> ?Q")
+proof
+  assume ?P then have "card (orbit f a) = 1"
+    by simp
+  then obtain b where "orbit f a = {b}"
+    by (rule card_1_singletonE)
+  with in_orbit_self [of a f]
+    have "b = a" by simp
+  with \<open>orbit f a = {b}\<close> show ?Q
+    by (simp add: not_in_affected_iff_orbit_eq_singleton)
+next
+  assume ?Q
+  then have "orbit f a = {a}"
+    by (simp add: not_in_affected_iff_orbit_eq_singleton)
+  then have "card (orbit f a) = 1"
+    by simp
+  then show ?P
+    by simp
+qed
+
+lemma order_greater_eq_two_iff:
+  "order f a \<ge> 2 \<longleftrightarrow> a \<in> affected f"
+  using order_eq_one_iff [of f a]
+  apply (auto simp add: neq_iff)
+  using order_greater_zero [of f a]
+  apply simp
+  done
+
+lemma order_less_eq_affected:
+  assumes "f \<noteq> 1"
+  shows "order f a \<le> card (affected f)"
+proof (cases "a \<in> affected f")
+  from assms have "affected f \<noteq> {}"
+    by simp
+  then obtain B b where "affected f = insert b B"
+    by blast
+  with finite_affected [of f] have "card (affected f) \<ge> 1"
+    by (simp add: card.insert_remove)
+  case False then have "order f a = 1"
+    by (simp add: order_eq_one_iff)
+  with \<open>card (affected f) \<ge> 1\<close> show ?thesis
+    by simp
+next
+  case True
+  have "card (orbit f a) \<le> card (affected f)"
+    by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)
+  then show ?thesis
+    by simp
+qed
+
+lemma affected_order_greater_eq_two:
+  assumes "a \<in> affected f"
+  shows "order f a \<ge> 2"
+proof (rule ccontr)
+  assume "\<not> 2 \<le> order f a"
+  then have "order f a < 2"
+    by (simp add: not_le)
+  with order_greater_zero [of f a] have "order f a = 1"
+    by arith
+  with assms show False
+    by (simp add: order_eq_one_iff)
+qed
+
+lemma order_witness_unfold:
+  assumes "n > 0" and "(f ^ n) \<langle>$\<rangle> a = a"
+  shows "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n})"
+proof  -
+  have "orbit f a = (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n}" (is "_ = ?B")
+  proof (rule set_eqI, rule)
+    fix b
+    assume "b \<in> orbit f a"
+    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
+      by (auto simp add: orbit_def)
+    then have "b = (f ^ (m mod n + n * (m div n))) \<langle>$\<rangle> a"
+      by simp
+    also have "\<dots> = (f ^ (m mod n)) \<langle>$\<rangle> ((f ^ (n * (m div n))) \<langle>$\<rangle> a)"
+      by (simp only: power_add apply_times) simp
+    also have "(f ^ (n * q)) \<langle>$\<rangle> a = a" for q
+      by (induct q)
+        (simp_all add: power_add apply_times assms)
+    finally have "b = (f ^ (m mod n)) \<langle>$\<rangle> a" .
+    moreover from \<open>n > 0\<close>
+    have "m mod n < n" 
+      by simp
+    ultimately show "b \<in> ?B"
+      by auto
+  next
+    fix b
+    assume "b \<in> ?B"
+    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
+      by blast
+    then show "b \<in> orbit f a"
+      by (rule in_orbitI)
+  qed
+  then have "card (orbit f a) = card ?B"
+    by (simp only:)
+  then show ?thesis
+    by simp
+qed
+    
+lemma inj_on_apply_range:
+  "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<order f a}"
+proof -
+  have "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
+    if "n \<le> order f a" for n
+  using that proof (induct n)
+    case 0 then show ?case by simp
+  next
+    case (Suc n)
+    then have prem: "n < order f a"
+      by simp
+    with Suc.hyps have hyp: "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
+      by simp
+    have "(f ^ n) \<langle>$\<rangle> a \<notin> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
+    proof
+      assume "(f ^ n) \<langle>$\<rangle> a \<in> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
+      then obtain m where *: "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a" and "m < n"
+        by auto
+      interpret bijection "apply (f ^ m)"
+        by standard simp
+      from \<open>m < n\<close> have "n = m + (n - m)"
+        and nm: "0 < n - m" "n - m \<le> n"
+        by arith+
+      with * have "(f ^ m) \<langle>$\<rangle> a = (f ^ (m + (n - m))) \<langle>$\<rangle> a"
+        by simp
+      then have "(f ^ m) \<langle>$\<rangle> a = (f ^ m) \<langle>$\<rangle> ((f ^ (n - m)) \<langle>$\<rangle> a)"
+        by (simp add: power_add apply_times)
+      then have "(f ^ (n - m)) \<langle>$\<rangle> a = a"
+        by simp
+      with \<open>n - m > 0\<close>
+      have "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m})"
+         by (rule order_witness_unfold)
+      also have "card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m}) \<le> card {0..<n - m}"
+        by (rule card_image_le) simp
+      finally have "order f a \<le> n - m"
+        by simp
+      with prem show False by simp
+    qed
+    with hyp show ?case
+      by (simp add: lessThan_Suc)
+  qed
+  then show ?thesis by simp
+qed
+
+lemma orbit_unfold_image:
+  "orbit f a = (\<lambda>n. (f ^ n) \<langle>$\<rangle> a) ` {..<order f a}" (is "_ = ?A")
+proof (rule sym, rule card_subset_eq)
+  show "finite (orbit f a)"
+    by simp
+  show "?A \<subseteq> orbit f a"
+    by (auto simp add: orbit_def)
+  from inj_on_apply_range [of f a]
+  have "card ?A = order f a"
+    by (auto simp add: card_image)
+  then show "card ?A = card (orbit f a)"
+    by simp
+qed
+
+lemma in_orbitE:
+  assumes "b \<in> orbit f a"
+  obtains n where "b = (f ^ n) \<langle>$\<rangle> a" and "n < order f a"
+  using assms unfolding orbit_unfold_image by blast
+
+lemma apply_power_order [simp]:
+  "(f ^ order f a) \<langle>$\<rangle> a = a"
+proof -
+  have "(f ^ order f a) \<langle>$\<rangle> a \<in> orbit f a"
+    by simp
+  then obtain n where
+    *: "(f ^ order f a) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
+    and "n < order f a"
+    by (rule in_orbitE)
+  show ?thesis
+  proof (cases n)
+    case 0 with * show ?thesis by simp
+  next
+    case (Suc m)
+    from order_greater_zero [of f a]
+      have "Suc (order f a - 1) = order f a"
+      by arith
+    from Suc \<open>n < order f a\<close>
+      have "m < order f a"
+      by simp
+    with Suc *
+    have "(inverse f) \<langle>$\<rangle> ((f ^ Suc (order f a - 1)) \<langle>$\<rangle> a) =
+      (inverse f) \<langle>$\<rangle> ((f ^ Suc m) \<langle>$\<rangle> a)"
+      by simp
+    then have "(f ^ (order f a - 1)) \<langle>$\<rangle> a =
+      (f ^ m) \<langle>$\<rangle> a"
+      by (simp only: power_Suc apply_times)
+        (simp add: apply_sequence mult.assoc [symmetric])
+    with inj_on_apply_range
+    have "order f a - 1 = m"
+      by (rule inj_onD)
+        (simp_all add: \<open>m < order f a\<close>)
+    with Suc have "n = order f a"
+      by auto
+    with \<open>n < order f a\<close>
+    show ?thesis by simp
+  qed
+qed
+
+lemma apply_power_left_mult_order [simp]:
+  "(f ^ (n * order f a)) \<langle>$\<rangle> a = a"
+  by (induct n) (simp_all add: power_add apply_times)
+
+lemma apply_power_right_mult_order [simp]:
+  "(f ^ (order f a * n)) \<langle>$\<rangle> a = a"
+  by (simp add: ac_simps)
+
+lemma apply_power_mod_order_eq [simp]:
+  "(f ^ (n mod order f a)) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
+proof -
+  have "(f ^ n) \<langle>$\<rangle> a = (f ^ (n mod order f a + order f a * (n div order f a))) \<langle>$\<rangle> a"
+    by simp
+  also have "\<dots> = (f ^ (n mod order f a) * f ^ (order f a * (n div order f a))) \<langle>$\<rangle> a"
+    by (simp flip: power_add)
+  finally show ?thesis
+    by (simp add: apply_times)
+qed  
+
+lemma apply_power_eq_iff:
+  "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a \<longleftrightarrow> m mod order f a = n mod order f a" (is "?P \<longleftrightarrow> ?Q")
+proof
+  assume ?Q
+  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
+    by simp
+  then show ?P
+    by simp
+next
+  assume ?P
+  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
+    by simp
+  with inj_on_apply_range
+  show ?Q
+    by (rule inj_onD) simp_all
+qed
+
+lemma apply_inverse_eq_apply_power_order_minus_one:
+  "(inverse f) \<langle>$\<rangle> a = (f ^ (order f a - 1)) \<langle>$\<rangle> a"
+proof (cases "order f a")
+  case 0 with order_greater_zero [of f a] show ?thesis
+    by simp
+next
+  case (Suc n)
+  moreover have "(f ^ order f a) \<langle>$\<rangle> a = a"
+    by simp
+  then have *: "(inverse f) \<langle>$\<rangle> ((f ^ order f a) \<langle>$\<rangle> a) = (inverse f) \<langle>$\<rangle> a"
+    by simp
+  ultimately show ?thesis
+    by (simp add: apply_sequence mult.assoc [symmetric])
+qed
+
+lemma apply_inverse_self_in_orbit [simp]:
+  "(inverse f) \<langle>$\<rangle> a \<in> orbit f a"
+  using apply_inverse_eq_apply_power_order_minus_one [symmetric]
+  by (rule in_orbitI)
+
+lemma apply_inverse_power_eq:
+  "(inverse (f ^ n)) \<langle>$\<rangle> a = (f ^ (order f a - n mod order f a)) \<langle>$\<rangle> a"
+proof (induct n)
+  case 0 then show ?case by simp
+next
+  case (Suc n)
+  define m where "m = order f a - n mod order f a - 1"
+  moreover have "order f a - n mod order f a > 0"
+    by simp
+  ultimately have *: "order f a - n mod order f a = Suc m"
+    by arith
+  moreover from * have m2: "order f a - Suc n mod order f a = (if m = 0 then order f a else m)"
+    by (auto simp add: mod_Suc)
+  ultimately show ?case
+    using Suc
+      by (simp_all add: apply_times power_Suc2 [of _ n] power_Suc [of _ m] del: power_Suc)
+        (simp add: apply_sequence mult.assoc [symmetric])
+qed
+
+lemma apply_power_eq_self_iff:
+  "(f ^ n) \<langle>$\<rangle> a = a \<longleftrightarrow> order f a dvd n"
+  using apply_power_eq_iff [of f n a 0]
+    by (simp add: mod_eq_0_iff_dvd)
+  
+lemma orbit_equiv:
+  assumes "b \<in> orbit f a"
+  shows "orbit f b = orbit f a" (is "?B = ?A")
+proof
+  from assms obtain n where "n < order f a" and b: "b = (f ^ n) \<langle>$\<rangle> a"
+    by (rule in_orbitE)
+  then show "?B \<subseteq> ?A"
+    by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
+  from b have "(inverse (f ^ n)) \<langle>$\<rangle> b = (inverse (f ^ n)) \<langle>$\<rangle> ((f ^ n) \<langle>$\<rangle> a)"
+    by simp
+  then have a: "a = (inverse (f ^ n)) \<langle>$\<rangle> b"
+    by (simp add: apply_sequence)
+  then show "?A \<subseteq> ?B"
+    apply (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
+    unfolding apply_times comp_def apply_inverse_power_eq
+    unfolding apply_sequence power_add [symmetric]
+    apply (rule in_orbitI) apply rule
+    done
+qed
+
+lemma orbit_apply [simp]:
+  "orbit f (f \<langle>$\<rangle> a) = orbit f a"
+  by (rule orbit_equiv) simp
+  
+lemma order_apply [simp]:
+  "order f (f \<langle>$\<rangle> a) = order f a"
+  by (simp only: order_def comp_def orbit_apply)
+
+lemma orbit_apply_inverse [simp]:
+  "orbit f (inverse f \<langle>$\<rangle> a) = orbit f a"
+  by (rule orbit_equiv) simp
+
+lemma order_apply_inverse [simp]:
+  "order f (inverse f \<langle>$\<rangle> a) = order f a"
+  by (simp only: order_def comp_def orbit_apply_inverse)
+
+lemma orbit_apply_power [simp]:
+  "orbit f ((f ^ n) \<langle>$\<rangle> a) = orbit f a"
+  by (rule orbit_equiv) simp
+
+lemma order_apply_power [simp]:
+  "order f ((f ^ n) \<langle>$\<rangle> a) = order f a"
+  by (simp only: order_def comp_def orbit_apply_power)
+
+lemma orbit_inverse [simp]:
+  "orbit (inverse f) = orbit f"
+proof (rule ext, rule set_eqI, rule)
+  fix b a
+  assume "b \<in> orbit f a"
+  then obtain n where b: "b = (f ^ n) \<langle>$\<rangle> a" "n < order f a"
+    by (rule in_orbitE)
+  then have "b = apply (inverse (inverse f) ^ n) a"
+    by simp
+  then have "b = apply (inverse (inverse f ^ n)) a"
+    by (simp add: perm_power_inverse)
+  then have "b = apply (inverse f ^ (n * (order (inverse f ^ n) a - 1))) a"
+    by (simp add: apply_inverse_eq_apply_power_order_minus_one power_mult)
+  then show "b \<in> orbit (inverse f) a"
+    by simp
+next
+  fix b a
+  assume "b \<in> orbit (inverse f) a"
+  then show "b \<in> orbit f a"
+    by (rule in_orbitE)
+      (simp add: apply_inverse_eq_apply_power_order_minus_one
+      perm_power_inverse power_mult [symmetric])
+qed
+
+lemma order_inverse [simp]:
+  "order (inverse f) = order f"
+  by (simp add: order_def)
+
+lemma orbit_disjoint:
+  assumes "orbit f a \<noteq> orbit f b"
+  shows "orbit f a \<inter> orbit f b = {}"
+proof (rule ccontr)
+  assume "orbit f a \<inter> orbit f b \<noteq> {}"
+  then obtain c where "c \<in> orbit f a \<inter> orbit f b"
+    by blast
+  then have "c \<in> orbit f a" and "c \<in> orbit f b"
+    by auto
+  then obtain m n where "c = (f ^ m) \<langle>$\<rangle> a"
+    and "c = apply (f ^ n) b" by (blast elim!: in_orbitE)
+  then have "(f ^ m) \<langle>$\<rangle> a = apply (f ^ n) b"
+    by simp
+  then have "apply (inverse f ^ m) ((f ^ m) \<langle>$\<rangle> a) =
+    apply (inverse f ^ m) (apply (f ^ n) b)"
+    by simp
+  then have *: "apply (inverse f ^ m * f ^ n) b = a"
+    by (simp add: apply_sequence perm_power_inverse)
+  have "a \<in> orbit f b"
+  proof (cases n m rule: linorder_cases)
+    case equal with * show ?thesis
+      by (simp add: perm_power_inverse)
+  next
+    case less
+    moreover define q where "q = m - n"
+    ultimately have "m = q + n" by arith
+    with * have "apply (inverse f ^ q) b = a"
+      by (simp add: power_add mult.assoc perm_power_inverse)
+    then have "a \<in> orbit (inverse f) b"
+      by (rule in_orbitI)
+    then show ?thesis
+      by simp
+  next
+    case greater
+    moreover define q where "q = n - m"
+    ultimately have "n = m + q" by arith
+    with * have "apply (f ^ q) b = a"
+      by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
+    then show ?thesis
+      by (rule in_orbitI)
+  qed
+  with assms show False
+    by (auto dest: orbit_equiv)
+qed
+
+
+subsection \<open>Swaps\<close>
+
+lift_definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> 'a perm"  ("\<langle>_ \<leftrightarrow> _\<rangle>")
+  is "\<lambda>a b. Fun.swap a b id"
+proof
+  fix a b :: 'a
+  have "{c. Fun.swap a b id c \<noteq> c} \<subseteq> {a, b}"
+    by (auto simp add: Fun.swap_def)
+  then show "finite {c. Fun.swap a b id c \<noteq> c}"
+    by (rule finite_subset) simp
+qed simp
+
+lemma apply_swap_simp [simp]:
+  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> a = b"
+  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> b = a"
+  by (transfer; simp)+
+
+lemma apply_swap_same [simp]:
+  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> \<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = c"
+  by transfer simp
+
+lemma apply_swap_eq_iff [simp]:
+  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = a \<longleftrightarrow> c = b"
+  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = b \<longleftrightarrow> c = a"
+  by (transfer; auto simp add: Fun.swap_def)+
+
+lemma swap_1 [simp]:
+  "\<langle>a \<leftrightarrow> a\<rangle> = 1"
+  by transfer simp
+
+lemma swap_sym:
+  "\<langle>b \<leftrightarrow> a\<rangle> = \<langle>a \<leftrightarrow> b\<rangle>"
+  by (transfer; auto simp add: Fun.swap_def)+
+
+lemma swap_self [simp]:
+  "\<langle>a \<leftrightarrow> b\<rangle> * \<langle>a \<leftrightarrow> b\<rangle> = 1"
+  by transfer (simp add: Fun.swap_def fun_eq_iff)
+
+lemma affected_swap:
+  "a \<noteq> b \<Longrightarrow> affected \<langle>a \<leftrightarrow> b\<rangle> = {a, b}"
+  by transfer (auto simp add: Fun.swap_def)
+
+lemma inverse_swap [simp]:
+  "inverse \<langle>a \<leftrightarrow> b\<rangle> = \<langle>a \<leftrightarrow> b\<rangle>"
+  by transfer (auto intro: inv_equality simp: Fun.swap_def)
+
+
+subsection \<open>Permutations specified by cycles\<close>
+
+fun cycle :: "'a list \<Rightarrow> 'a perm"  ("\<langle>_\<rangle>")
+where
+  "\<langle>[]\<rangle> = 1"
+| "\<langle>[a]\<rangle> = 1"
+| "\<langle>a # b # as\<rangle> = \<langle>a # as\<rangle> * \<langle>a\<leftrightarrow>b\<rangle>"
+
+text \<open>
+  We do not continue and restrict ourselves to syntax from here.
+  See also introductory note.
+\<close>
+
+
+subsection \<open>Syntax\<close>
+
+bundle no_permutation_syntax
+begin
+  no_notation swap    ("\<langle>_ \<leftrightarrow> _\<rangle>")
+  no_notation cycle   ("\<langle>_\<rangle>")
+  no_notation "apply" (infixl "\<langle>$\<rangle>" 999)
+end
+
+bundle permutation_syntax
+begin
+  notation swap       ("\<langle>_ \<leftrightarrow> _\<rangle>")
+  notation cycle      ("\<langle>_\<rangle>")
+  notation "apply"    (infixl "\<langle>$\<rangle>" 999)
+end
+
+unbundle no_permutation_syntax
+
+end
--- a/src/HOL/Library/Library.thy	Tue May 04 17:57:16 2021 +0000
+++ b/src/HOL/Library/Library.thy	Wed May 05 16:09:02 2021 +0000
@@ -65,7 +65,6 @@
   Parallel
   Pattern_Aliases
   Periodic_Fun
-  Perm
   Poly_Mapping
   Power_By_Squaring
   Preorder
--- a/src/HOL/Library/Perm.thy	Tue May 04 17:57:16 2021 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,810 +0,0 @@
-(* Author: Florian Haftmann, TU Muenchen *)
-
-section \<open>Permutations as abstract type\<close>
-
-theory Perm
-imports Main
-begin
-
-text \<open>
-  This theory introduces basics about permutations, i.e. almost
-  everywhere fix bijections.  But it is by no means complete.
-  Grieviously missing are cycles since these would require more
-  elaboration, e.g. the concept of distinct lists equivalent
-  under rotation, which maybe would also deserve its own theory.
-  But see theory \<open>src/HOL/ex/Perm_Fragments.thy\<close> for
-  fragments on that.
-\<close>
-
-subsection \<open>Abstract type of permutations\<close>
-
-typedef 'a perm = "{f :: 'a \<Rightarrow> 'a. bij f \<and> finite {a. f a \<noteq> a}}"
-  morphisms "apply" Perm
-proof
-  show "id \<in> ?perm" by simp
-qed
-
-setup_lifting type_definition_perm
-
-notation "apply" (infixl "\<langle>$\<rangle>" 999)
-
-lemma bij_apply [simp]:
-  "bij (apply f)"
-  using "apply" [of f] by simp
-
-lemma perm_eqI:
-  assumes "\<And>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a"
-  shows "f = g"
-  using assms by transfer (simp add: fun_eq_iff)
-
-lemma perm_eq_iff:
-  "f = g \<longleftrightarrow> (\<forall>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a)"
-  by (auto intro: perm_eqI)
-
-lemma apply_inj:
-  "f \<langle>$\<rangle> a = f \<langle>$\<rangle> b \<longleftrightarrow> a = b"
-  by (rule inj_eq) (rule bij_is_inj, simp)
-
-lift_definition affected :: "'a perm \<Rightarrow> 'a set"
-  is "\<lambda>f. {a. f a \<noteq> a}" .
-
-lemma in_affected:
-  "a \<in> affected f \<longleftrightarrow> f \<langle>$\<rangle> a \<noteq> a"
-  by transfer simp
-
-lemma finite_affected [simp]:
-  "finite (affected f)"
-  by transfer simp
-
-lemma apply_affected [simp]:
-  "f \<langle>$\<rangle> a \<in> affected f \<longleftrightarrow> a \<in> affected f"
-proof transfer
-  fix f :: "'a \<Rightarrow> 'a" and a :: 'a
-  assume "bij f \<and> finite {b. f b \<noteq> b}"
-  then have "bij f" by simp
-  interpret bijection f by standard (rule \<open>bij f\<close>)
-  have "f a \<in> {a. f a = a} \<longleftrightarrow> a \<in> {a. f a = a}" (is "?P \<longleftrightarrow> ?Q")
-    by auto
-  then show "f a \<in> {a. f a \<noteq> a} \<longleftrightarrow> a \<in> {a. f a \<noteq> a}"
-    by simp
-qed
-
-lemma card_affected_not_one:
-  "card (affected f) \<noteq> 1"
-proof
-  interpret bijection "apply f"
-    by standard (rule bij_apply)
-  assume "card (affected f) = 1"
-  then obtain a where *: "affected f = {a}"
-    by (rule card_1_singletonE)
-  then have **: "f \<langle>$\<rangle> a \<noteq> a"
-    by (simp flip: in_affected)
-  with * have "f \<langle>$\<rangle> a \<notin> affected f"
-    by simp
-  then have "f \<langle>$\<rangle> (f \<langle>$\<rangle> a) = f \<langle>$\<rangle> a"
-    by (simp add: in_affected)
-  then have "inv (apply f) (f \<langle>$\<rangle> (f \<langle>$\<rangle> a)) = inv (apply f) (f \<langle>$\<rangle> a)"
-    by simp
-  with ** show False by simp
-qed
-
-
-subsection \<open>Identity, composition and inversion\<close>
-
-instantiation Perm.perm :: (type) "{monoid_mult, inverse}"
-begin
-
-lift_definition one_perm :: "'a perm"
-  is id
-  by simp
-
-lemma apply_one [simp]:
-  "apply 1 = id"
-  by (fact one_perm.rep_eq)
-
-lemma affected_one [simp]:
-  "affected 1 = {}"
-  by transfer simp
-
-lemma affected_empty_iff [simp]:
-  "affected f = {} \<longleftrightarrow> f = 1"
-  by transfer auto
-
-lift_definition times_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm"
-  is comp
-proof
-  fix f g :: "'a \<Rightarrow> 'a"
-  assume "bij f \<and> finite {a. f a \<noteq> a}"
-    "bij g \<and>finite {a. g a \<noteq> a}"
-  then have "finite ({a. f a \<noteq> a} \<union> {a. g a \<noteq> a})"
-    by simp
-  moreover have "{a. (f \<circ> g) a \<noteq> a} \<subseteq> {a. f a \<noteq> a} \<union> {a. g a \<noteq> a}"
-    by auto
-  ultimately show "finite {a. (f \<circ> g) a \<noteq> a}"
-    by (auto intro: finite_subset)
-qed (auto intro: bij_comp)
-
-lemma apply_times:
-  "apply (f * g) = apply f \<circ> apply g"
-  by (fact times_perm.rep_eq)
-
-lemma apply_sequence:
-  "f \<langle>$\<rangle> (g \<langle>$\<rangle> a) = apply (f * g) a"
-  by (simp add: apply_times)
-
-lemma affected_times [simp]:
-  "affected (f * g) \<subseteq> affected f \<union> affected g"
-  by transfer auto
-
-lift_definition inverse_perm :: "'a perm \<Rightarrow> 'a perm"
-  is inv
-proof transfer
-  fix f :: "'a \<Rightarrow> 'a" and a
-  assume "bij f \<and> finite {b. f b \<noteq> b}"
-  then have "bij f" and fin: "finite {b. f b \<noteq> b}"
-    by auto
-  interpret bijection f by standard (rule \<open>bij f\<close>)
-  from fin show "bij (inv f) \<and> finite {a. inv f a \<noteq> a}"
-    by (simp add: bij_inv)
-qed
-
-instance
-  by standard (transfer; simp add: comp_assoc)+
-
-end
-
-lemma apply_inverse:
-  "apply (inverse f) = inv (apply f)"
-  by (fact inverse_perm.rep_eq)
-
-lemma affected_inverse [simp]:
-  "affected (inverse f) = affected f"
-proof transfer
-  fix f :: "'a \<Rightarrow> 'a" and a
-  assume "bij f \<and> finite {b. f b \<noteq> b}"
-  then have "bij f" by simp
-  interpret bijection f by standard (rule \<open>bij f\<close>)
-  show "{a. inv f a \<noteq> a} = {a. f a \<noteq> a}"
-    by simp
-qed
-
-global_interpretation perm: group times "1::'a perm" inverse
-proof
-  fix f :: "'a perm"
-  show "1 * f = f"
-    by transfer simp
-  show "inverse f * f = 1"
-  proof transfer
-    fix f :: "'a \<Rightarrow> 'a" and a
-    assume "bij f \<and> finite {b. f b \<noteq> b}"
-    then have "bij f" by simp
-    interpret bijection f by standard (rule \<open>bij f\<close>)
-    show "inv f \<circ> f = id"
-      by simp
-  qed
-qed
-
-declare perm.inverse_distrib_swap [simp]
-
-lemma perm_mult_commute:
-  assumes "affected f \<inter> affected g = {}"
-  shows "g * f = f * g"
-proof (rule perm_eqI)
-  fix a
-  from assms have *: "a \<in> affected f \<Longrightarrow> a \<notin> affected g"
-    "a \<in> affected g \<Longrightarrow> a \<notin> affected f" for a
-    by auto
-  consider "a \<in> affected f \<and> a \<notin> affected g
-        \<and> f \<langle>$\<rangle> a \<in> affected f"
-    | "a \<notin> affected f \<and> a \<in> affected g
-        \<and> f \<langle>$\<rangle> a \<notin> affected f"
-    | "a \<notin> affected f \<and> a \<notin> affected g"
-    using assms by auto
-  then show "(g * f) \<langle>$\<rangle> a = (f * g) \<langle>$\<rangle> a"
-  proof cases
-    case 1
-    with * have "f \<langle>$\<rangle> a \<notin> affected g"
-      by auto
-    with 1 show ?thesis by (simp add: in_affected apply_times)
-  next
-    case 2
-    with * have "g \<langle>$\<rangle> a \<notin> affected f"
-      by auto
-    with 2 show ?thesis by (simp add: in_affected apply_times)
-  next
-    case 3
-    then show ?thesis by (simp add: in_affected apply_times)
-  qed
-qed
-
-lemma apply_power:
-  "apply (f ^ n) = apply f ^^ n"
-  by (induct n) (simp_all add: apply_times)
-
-lemma perm_power_inverse:
-  "inverse f ^ n = inverse ((f :: 'a perm) ^ n)"
-proof (induct n)
-  case 0 then show ?case by simp
-next
-  case (Suc n)
-  then show ?case
-    unfolding power_Suc2 [of f] by simp
-qed
-
-
-subsection \<open>Orbit and order of elements\<close>
-
-definition orbit :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a set"
-where
-  "orbit f a = range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
-
-lemma in_orbitI:
-  assumes "(f ^ n) \<langle>$\<rangle> a = b"
-  shows "b \<in> orbit f a"
-  using assms by (auto simp add: orbit_def)
-
-lemma apply_power_self_in_orbit [simp]:
-  "(f ^ n) \<langle>$\<rangle> a \<in> orbit f a"
-  by (rule in_orbitI) rule
-
-lemma in_orbit_self [simp]:
-  "a \<in> orbit f a"
-  using apply_power_self_in_orbit [of _ 0] by simp
-
-lemma apply_self_in_orbit [simp]:
-  "f \<langle>$\<rangle> a \<in> orbit f a"
-  using apply_power_self_in_orbit [of _ 1] by simp
-
-lemma orbit_not_empty [simp]:
-  "orbit f a \<noteq> {}"
-  using in_orbit_self [of a f] by blast
-
-lemma not_in_affected_iff_orbit_eq_singleton:
-  "a \<notin> affected f \<longleftrightarrow> orbit f a = {a}" (is "?P \<longleftrightarrow> ?Q")
-proof
-  assume ?P
-  then have "f \<langle>$\<rangle> a = a"
-    by (simp add: in_affected)
-  then have "(f ^ n) \<langle>$\<rangle> a = a" for n
-    by (induct n) (simp_all add: apply_times)
-  then show ?Q
-    by (auto simp add: orbit_def)
-next
-  assume ?Q
-  then show ?P
-    by (auto simp add: orbit_def in_affected dest: range_eq_singletonD [of _ _ 1])
-qed
-
-definition order :: "'a perm \<Rightarrow> 'a \<Rightarrow> nat"
-where
-  "order f = card \<circ> orbit f"
-
-lemma orbit_subset_eq_affected:
-  assumes "a \<in> affected f"
-  shows "orbit f a \<subseteq> affected f"
-proof (rule ccontr)
-  assume "\<not> orbit f a \<subseteq> affected f"
-  then obtain b where "b \<in> orbit f a" and "b \<notin> affected f"
-    by auto
-  then have "b \<in> range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
-    by (simp add: orbit_def)
-  then obtain n where "b = (f ^ n) \<langle>$\<rangle> a"
-    by blast
-  with \<open>b \<notin> affected f\<close>
-  have "(f ^ n) \<langle>$\<rangle> a \<notin> affected f"
-    by simp
-  then have "f \<langle>$\<rangle> a \<notin> affected f"
-    by (induct n) (simp_all add: apply_times)
-  with assms show False
-    by simp
-qed
-
-lemma finite_orbit [simp]:
-  "finite (orbit f a)"
-proof (cases "a \<in> affected f")
-  case False then show ?thesis
-    by (simp add: not_in_affected_iff_orbit_eq_singleton)
-next
-  case True then have "orbit f a \<subseteq> affected f"
-    by (rule orbit_subset_eq_affected)
-  then show ?thesis using finite_affected
-    by (rule finite_subset)
-qed
-
-lemma orbit_1 [simp]:
-  "orbit 1 a = {a}"
-  by (auto simp add: orbit_def)
-
-lemma order_1 [simp]:
-  "order 1 a = 1"
-  unfolding order_def by simp
-
-lemma card_orbit_eq [simp]:
-  "card (orbit f a) = order f a"
-  by (simp add: order_def)
-
-lemma order_greater_zero [simp]:
-  "order f a > 0"
-  by (simp only: card_gt_0_iff order_def comp_def) simp
-
-lemma order_eq_one_iff:
-  "order f a = Suc 0 \<longleftrightarrow> a \<notin> affected f" (is "?P \<longleftrightarrow> ?Q")
-proof
-  assume ?P then have "card (orbit f a) = 1"
-    by simp
-  then obtain b where "orbit f a = {b}"
-    by (rule card_1_singletonE)
-  with in_orbit_self [of a f]
-    have "b = a" by simp
-  with \<open>orbit f a = {b}\<close> show ?Q
-    by (simp add: not_in_affected_iff_orbit_eq_singleton)
-next
-  assume ?Q
-  then have "orbit f a = {a}"
-    by (simp add: not_in_affected_iff_orbit_eq_singleton)
-  then have "card (orbit f a) = 1"
-    by simp
-  then show ?P
-    by simp
-qed
-
-lemma order_greater_eq_two_iff:
-  "order f a \<ge> 2 \<longleftrightarrow> a \<in> affected f"
-  using order_eq_one_iff [of f a]
-  apply (auto simp add: neq_iff)
-  using order_greater_zero [of f a]
-  apply simp
-  done
-
-lemma order_less_eq_affected:
-  assumes "f \<noteq> 1"
-  shows "order f a \<le> card (affected f)"
-proof (cases "a \<in> affected f")
-  from assms have "affected f \<noteq> {}"
-    by simp
-  then obtain B b where "affected f = insert b B"
-    by blast
-  with finite_affected [of f] have "card (affected f) \<ge> 1"
-    by (simp add: card.insert_remove)
-  case False then have "order f a = 1"
-    by (simp add: order_eq_one_iff)
-  with \<open>card (affected f) \<ge> 1\<close> show ?thesis
-    by simp
-next
-  case True
-  have "card (orbit f a) \<le> card (affected f)"
-    by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)
-  then show ?thesis
-    by simp
-qed
-
-lemma affected_order_greater_eq_two:
-  assumes "a \<in> affected f"
-  shows "order f a \<ge> 2"
-proof (rule ccontr)
-  assume "\<not> 2 \<le> order f a"
-  then have "order f a < 2"
-    by (simp add: not_le)
-  with order_greater_zero [of f a] have "order f a = 1"
-    by arith
-  with assms show False
-    by (simp add: order_eq_one_iff)
-qed
-
-lemma order_witness_unfold:
-  assumes "n > 0" and "(f ^ n) \<langle>$\<rangle> a = a"
-  shows "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n})"
-proof  -
-  have "orbit f a = (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n}" (is "_ = ?B")
-  proof (rule set_eqI, rule)
-    fix b
-    assume "b \<in> orbit f a"
-    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
-      by (auto simp add: orbit_def)
-    then have "b = (f ^ (m mod n + n * (m div n))) \<langle>$\<rangle> a"
-      by simp
-    also have "\<dots> = (f ^ (m mod n)) \<langle>$\<rangle> ((f ^ (n * (m div n))) \<langle>$\<rangle> a)"
-      by (simp only: power_add apply_times) simp
-    also have "(f ^ (n * q)) \<langle>$\<rangle> a = a" for q
-      by (induct q)
-        (simp_all add: power_add apply_times assms)
-    finally have "b = (f ^ (m mod n)) \<langle>$\<rangle> a" .
-    moreover from \<open>n > 0\<close>
-    have "m mod n < n" 
-      by simp
-    ultimately show "b \<in> ?B"
-      by auto
-  next
-    fix b
-    assume "b \<in> ?B"
-    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
-      by blast
-    then show "b \<in> orbit f a"
-      by (rule in_orbitI)
-  qed
-  then have "card (orbit f a) = card ?B"
-    by (simp only:)
-  then show ?thesis
-    by simp
-qed
-    
-lemma inj_on_apply_range:
-  "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<order f a}"
-proof -
-  have "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
-    if "n \<le> order f a" for n
-  using that proof (induct n)
-    case 0 then show ?case by simp
-  next
-    case (Suc n)
-    then have prem: "n < order f a"
-      by simp
-    with Suc.hyps have hyp: "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
-      by simp
-    have "(f ^ n) \<langle>$\<rangle> a \<notin> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
-    proof
-      assume "(f ^ n) \<langle>$\<rangle> a \<in> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
-      then obtain m where *: "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a" and "m < n"
-        by auto
-      interpret bijection "apply (f ^ m)"
-        by standard simp
-      from \<open>m < n\<close> have "n = m + (n - m)"
-        and nm: "0 < n - m" "n - m \<le> n"
-        by arith+
-      with * have "(f ^ m) \<langle>$\<rangle> a = (f ^ (m + (n - m))) \<langle>$\<rangle> a"
-        by simp
-      then have "(f ^ m) \<langle>$\<rangle> a = (f ^ m) \<langle>$\<rangle> ((f ^ (n - m)) \<langle>$\<rangle> a)"
-        by (simp add: power_add apply_times)
-      then have "(f ^ (n - m)) \<langle>$\<rangle> a = a"
-        by simp
-      with \<open>n - m > 0\<close>
-      have "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m})"
-         by (rule order_witness_unfold)
-      also have "card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m}) \<le> card {0..<n - m}"
-        by (rule card_image_le) simp
-      finally have "order f a \<le> n - m"
-        by simp
-      with prem show False by simp
-    qed
-    with hyp show ?case
-      by (simp add: lessThan_Suc)
-  qed
-  then show ?thesis by simp
-qed
-
-lemma orbit_unfold_image:
-  "orbit f a = (\<lambda>n. (f ^ n) \<langle>$\<rangle> a) ` {..<order f a}" (is "_ = ?A")
-proof (rule sym, rule card_subset_eq)
-  show "finite (orbit f a)"
-    by simp
-  show "?A \<subseteq> orbit f a"
-    by (auto simp add: orbit_def)
-  from inj_on_apply_range [of f a]
-  have "card ?A = order f a"
-    by (auto simp add: card_image)
-  then show "card ?A = card (orbit f a)"
-    by simp
-qed
-
-lemma in_orbitE:
-  assumes "b \<in> orbit f a"
-  obtains n where "b = (f ^ n) \<langle>$\<rangle> a" and "n < order f a"
-  using assms unfolding orbit_unfold_image by blast
-
-lemma apply_power_order [simp]:
-  "(f ^ order f a) \<langle>$\<rangle> a = a"
-proof -
-  have "(f ^ order f a) \<langle>$\<rangle> a \<in> orbit f a"
-    by simp
-  then obtain n where
-    *: "(f ^ order f a) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
-    and "n < order f a"
-    by (rule in_orbitE)
-  show ?thesis
-  proof (cases n)
-    case 0 with * show ?thesis by simp
-  next
-    case (Suc m)
-    from order_greater_zero [of f a]
-      have "Suc (order f a - 1) = order f a"
-      by arith
-    from Suc \<open>n < order f a\<close>
-      have "m < order f a"
-      by simp
-    with Suc *
-    have "(inverse f) \<langle>$\<rangle> ((f ^ Suc (order f a - 1)) \<langle>$\<rangle> a) =
-      (inverse f) \<langle>$\<rangle> ((f ^ Suc m) \<langle>$\<rangle> a)"
-      by simp
-    then have "(f ^ (order f a - 1)) \<langle>$\<rangle> a =
-      (f ^ m) \<langle>$\<rangle> a"
-      by (simp only: power_Suc apply_times)
-        (simp add: apply_sequence mult.assoc [symmetric])
-    with inj_on_apply_range
-    have "order f a - 1 = m"
-      by (rule inj_onD)
-        (simp_all add: \<open>m < order f a\<close>)
-    with Suc have "n = order f a"
-      by auto
-    with \<open>n < order f a\<close>
-    show ?thesis by simp
-  qed
-qed
-
-lemma apply_power_left_mult_order [simp]:
-  "(f ^ (n * order f a)) \<langle>$\<rangle> a = a"
-  by (induct n) (simp_all add: power_add apply_times)
-
-lemma apply_power_right_mult_order [simp]:
-  "(f ^ (order f a * n)) \<langle>$\<rangle> a = a"
-  by (simp add: ac_simps)
-
-lemma apply_power_mod_order_eq [simp]:
-  "(f ^ (n mod order f a)) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
-proof -
-  have "(f ^ n) \<langle>$\<rangle> a = (f ^ (n mod order f a + order f a * (n div order f a))) \<langle>$\<rangle> a"
-    by simp
-  also have "\<dots> = (f ^ (n mod order f a) * f ^ (order f a * (n div order f a))) \<langle>$\<rangle> a"
-    by (simp flip: power_add)
-  finally show ?thesis
-    by (simp add: apply_times)
-qed  
-
-lemma apply_power_eq_iff:
-  "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a \<longleftrightarrow> m mod order f a = n mod order f a" (is "?P \<longleftrightarrow> ?Q")
-proof
-  assume ?Q
-  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
-    by simp
-  then show ?P
-    by simp
-next
-  assume ?P
-  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
-    by simp
-  with inj_on_apply_range
-  show ?Q
-    by (rule inj_onD) simp_all
-qed
-
-lemma apply_inverse_eq_apply_power_order_minus_one:
-  "(inverse f) \<langle>$\<rangle> a = (f ^ (order f a - 1)) \<langle>$\<rangle> a"
-proof (cases "order f a")
-  case 0 with order_greater_zero [of f a] show ?thesis
-    by simp
-next
-  case (Suc n)
-  moreover have "(f ^ order f a) \<langle>$\<rangle> a = a"
-    by simp
-  then have *: "(inverse f) \<langle>$\<rangle> ((f ^ order f a) \<langle>$\<rangle> a) = (inverse f) \<langle>$\<rangle> a"
-    by simp
-  ultimately show ?thesis
-    by (simp add: apply_sequence mult.assoc [symmetric])
-qed
-
-lemma apply_inverse_self_in_orbit [simp]:
-  "(inverse f) \<langle>$\<rangle> a \<in> orbit f a"
-  using apply_inverse_eq_apply_power_order_minus_one [symmetric]
-  by (rule in_orbitI)
-
-lemma apply_inverse_power_eq:
-  "(inverse (f ^ n)) \<langle>$\<rangle> a = (f ^ (order f a - n mod order f a)) \<langle>$\<rangle> a"
-proof (induct n)
-  case 0 then show ?case by simp
-next
-  case (Suc n)
-  define m where "m = order f a - n mod order f a - 1"
-  moreover have "order f a - n mod order f a > 0"
-    by simp
-  ultimately have *: "order f a - n mod order f a = Suc m"
-    by arith
-  moreover from * have m2: "order f a - Suc n mod order f a = (if m = 0 then order f a else m)"
-    by (auto simp add: mod_Suc)
-  ultimately show ?case
-    using Suc
-      by (simp_all add: apply_times power_Suc2 [of _ n] power_Suc [of _ m] del: power_Suc)
-        (simp add: apply_sequence mult.assoc [symmetric])
-qed
-
-lemma apply_power_eq_self_iff:
-  "(f ^ n) \<langle>$\<rangle> a = a \<longleftrightarrow> order f a dvd n"
-  using apply_power_eq_iff [of f n a 0]
-    by (simp add: mod_eq_0_iff_dvd)
-  
-lemma orbit_equiv:
-  assumes "b \<in> orbit f a"
-  shows "orbit f b = orbit f a" (is "?B = ?A")
-proof
-  from assms obtain n where "n < order f a" and b: "b = (f ^ n) \<langle>$\<rangle> a"
-    by (rule in_orbitE)
-  then show "?B \<subseteq> ?A"
-    by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
-  from b have "(inverse (f ^ n)) \<langle>$\<rangle> b = (inverse (f ^ n)) \<langle>$\<rangle> ((f ^ n) \<langle>$\<rangle> a)"
-    by simp
-  then have a: "a = (inverse (f ^ n)) \<langle>$\<rangle> b"
-    by (simp add: apply_sequence)
-  then show "?A \<subseteq> ?B"
-    apply (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
-    unfolding apply_times comp_def apply_inverse_power_eq
-    unfolding apply_sequence power_add [symmetric]
-    apply (rule in_orbitI) apply rule
-    done
-qed
-
-lemma orbit_apply [simp]:
-  "orbit f (f \<langle>$\<rangle> a) = orbit f a"
-  by (rule orbit_equiv) simp
-  
-lemma order_apply [simp]:
-  "order f (f \<langle>$\<rangle> a) = order f a"
-  by (simp only: order_def comp_def orbit_apply)
-
-lemma orbit_apply_inverse [simp]:
-  "orbit f (inverse f \<langle>$\<rangle> a) = orbit f a"
-  by (rule orbit_equiv) simp
-
-lemma order_apply_inverse [simp]:
-  "order f (inverse f \<langle>$\<rangle> a) = order f a"
-  by (simp only: order_def comp_def orbit_apply_inverse)
-
-lemma orbit_apply_power [simp]:
-  "orbit f ((f ^ n) \<langle>$\<rangle> a) = orbit f a"
-  by (rule orbit_equiv) simp
-
-lemma order_apply_power [simp]:
-  "order f ((f ^ n) \<langle>$\<rangle> a) = order f a"
-  by (simp only: order_def comp_def orbit_apply_power)
-
-lemma orbit_inverse [simp]:
-  "orbit (inverse f) = orbit f"
-proof (rule ext, rule set_eqI, rule)
-  fix b a
-  assume "b \<in> orbit f a"
-  then obtain n where b: "b = (f ^ n) \<langle>$\<rangle> a" "n < order f a"
-    by (rule in_orbitE)
-  then have "b = apply (inverse (inverse f) ^ n) a"
-    by simp
-  then have "b = apply (inverse (inverse f ^ n)) a"
-    by (simp add: perm_power_inverse)
-  then have "b = apply (inverse f ^ (n * (order (inverse f ^ n) a - 1))) a"
-    by (simp add: apply_inverse_eq_apply_power_order_minus_one power_mult)
-  then show "b \<in> orbit (inverse f) a"
-    by simp
-next
-  fix b a
-  assume "b \<in> orbit (inverse f) a"
-  then show "b \<in> orbit f a"
-    by (rule in_orbitE)
-      (simp add: apply_inverse_eq_apply_power_order_minus_one
-      perm_power_inverse power_mult [symmetric])
-qed
-
-lemma order_inverse [simp]:
-  "order (inverse f) = order f"
-  by (simp add: order_def)
-
-lemma orbit_disjoint:
-  assumes "orbit f a \<noteq> orbit f b"
-  shows "orbit f a \<inter> orbit f b = {}"
-proof (rule ccontr)
-  assume "orbit f a \<inter> orbit f b \<noteq> {}"
-  then obtain c where "c \<in> orbit f a \<inter> orbit f b"
-    by blast
-  then have "c \<in> orbit f a" and "c \<in> orbit f b"
-    by auto
-  then obtain m n where "c = (f ^ m) \<langle>$\<rangle> a"
-    and "c = apply (f ^ n) b" by (blast elim!: in_orbitE)
-  then have "(f ^ m) \<langle>$\<rangle> a = apply (f ^ n) b"
-    by simp
-  then have "apply (inverse f ^ m) ((f ^ m) \<langle>$\<rangle> a) =
-    apply (inverse f ^ m) (apply (f ^ n) b)"
-    by simp
-  then have *: "apply (inverse f ^ m * f ^ n) b = a"
-    by (simp add: apply_sequence perm_power_inverse)
-  have "a \<in> orbit f b"
-  proof (cases n m rule: linorder_cases)
-    case equal with * show ?thesis
-      by (simp add: perm_power_inverse)
-  next
-    case less
-    moreover define q where "q = m - n"
-    ultimately have "m = q + n" by arith
-    with * have "apply (inverse f ^ q) b = a"
-      by (simp add: power_add mult.assoc perm_power_inverse)
-    then have "a \<in> orbit (inverse f) b"
-      by (rule in_orbitI)
-    then show ?thesis
-      by simp
-  next
-    case greater
-    moreover define q where "q = n - m"
-    ultimately have "n = m + q" by arith
-    with * have "apply (f ^ q) b = a"
-      by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
-    then show ?thesis
-      by (rule in_orbitI)
-  qed
-  with assms show False
-    by (auto dest: orbit_equiv)
-qed
-
-
-subsection \<open>Swaps\<close>
-
-lift_definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> 'a perm"  ("\<langle>_ \<leftrightarrow> _\<rangle>")
-  is "\<lambda>a b. Fun.swap a b id"
-proof
-  fix a b :: 'a
-  have "{c. Fun.swap a b id c \<noteq> c} \<subseteq> {a, b}"
-    by (auto simp add: Fun.swap_def)
-  then show "finite {c. Fun.swap a b id c \<noteq> c}"
-    by (rule finite_subset) simp
-qed simp
-
-lemma apply_swap_simp [simp]:
-  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> a = b"
-  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> b = a"
-  by (transfer; simp)+
-
-lemma apply_swap_same [simp]:
-  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> \<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = c"
-  by transfer simp
-
-lemma apply_swap_eq_iff [simp]:
-  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = a \<longleftrightarrow> c = b"
-  "\<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = b \<longleftrightarrow> c = a"
-  by (transfer; auto simp add: Fun.swap_def)+
-
-lemma swap_1 [simp]:
-  "\<langle>a \<leftrightarrow> a\<rangle> = 1"
-  by transfer simp
-
-lemma swap_sym:
-  "\<langle>b \<leftrightarrow> a\<rangle> = \<langle>a \<leftrightarrow> b\<rangle>"
-  by (transfer; auto simp add: Fun.swap_def)+
-
-lemma swap_self [simp]:
-  "\<langle>a \<leftrightarrow> b\<rangle> * \<langle>a \<leftrightarrow> b\<rangle> = 1"
-  by transfer (simp add: Fun.swap_def fun_eq_iff)
-
-lemma affected_swap:
-  "a \<noteq> b \<Longrightarrow> affected \<langle>a \<leftrightarrow> b\<rangle> = {a, b}"
-  by transfer (auto simp add: Fun.swap_def)
-
-lemma inverse_swap [simp]:
-  "inverse \<langle>a \<leftrightarrow> b\<rangle> = \<langle>a \<leftrightarrow> b\<rangle>"
-  by transfer (auto intro: inv_equality simp: Fun.swap_def)
-
-
-subsection \<open>Permutations specified by cycles\<close>
-
-fun cycle :: "'a list \<Rightarrow> 'a perm"  ("\<langle>_\<rangle>")
-where
-  "\<langle>[]\<rangle> = 1"
-| "\<langle>[a]\<rangle> = 1"
-| "\<langle>a # b # as\<rangle> = \<langle>a # as\<rangle> * \<langle>a\<leftrightarrow>b\<rangle>"
-
-text \<open>
-  We do not continue and restrict ourselves to syntax from here.
-  See also introductory note.
-\<close>
-
-
-subsection \<open>Syntax\<close>
-
-bundle no_permutation_syntax
-begin
-  no_notation swap    ("\<langle>_ \<leftrightarrow> _\<rangle>")
-  no_notation cycle   ("\<langle>_\<rangle>")
-  no_notation "apply" (infixl "\<langle>$\<rangle>" 999)
-end
-
-bundle permutation_syntax
-begin
-  notation swap       ("\<langle>_ \<leftrightarrow> _\<rangle>")
-  notation cycle      ("\<langle>_\<rangle>")
-  notation "apply"    (infixl "\<langle>$\<rangle>" 999)
-end
-
-unbundle no_permutation_syntax
-
-end
--- a/src/HOL/ex/Perm_Fragments.thy	Tue May 04 17:57:16 2021 +0000
+++ b/src/HOL/ex/Perm_Fragments.thy	Wed May 05 16:09:02 2021 +0000
@@ -3,7 +3,7 @@
 section \<open>Fragments on permuations\<close>
 
 theory Perm_Fragments
-imports "HOL-Library.Perm" "HOL-Library.Dlist"
+imports "HOL-Library.Dlist" "HOL-Combinatorics.Perm"
 begin
 
 text \<open>On cycles\<close>
--- a/src/HOL/ex/Specifications_with_bundle_mixins.thy	Tue May 04 17:57:16 2021 +0000
+++ b/src/HOL/ex/Specifications_with_bundle_mixins.thy	Wed May 05 16:09:02 2021 +0000
@@ -1,5 +1,5 @@
 theory Specifications_with_bundle_mixins
-  imports "HOL-Library.Perm"
+  imports "HOL-Combinatorics.Perm"
 begin
 
 locale involutory = opening permutation_syntax +