--- a/src/HOL/ROOT Thu Apr 24 00:23:38 2014 +0200
+++ b/src/HOL/ROOT Thu Apr 24 10:33:17 2014 +0200
@@ -560,7 +560,6 @@
HarmonicSeries
Refute_Examples
Execute_Choice
- Summation
Gauge_Integration
Dedekind_Real
Quicksort
--- a/src/HOL/ex/Summation.thy Thu Apr 24 00:23:38 2014 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,107 +0,0 @@
-(* Author: Florian Haftmann, TU Muenchen *)
-
-header {* Some basic facts about discrete summation *}
-
-theory Summation
-imports Main
-begin
-
-text {* Auxiliary. *}
-
-lemma add_setsum_orient:
- "setsum f {k..<j} + setsum f {l..<k} = setsum f {l..<k} + setsum f {k..<j}"
- by (fact add.commute)
-
-lemma add_setsum_int:
- fixes j k l :: int
- shows "j < k \<Longrightarrow> k < l \<Longrightarrow> setsum f {j..<k} + setsum f {k..<l} = setsum f {j..<l}"
- by (simp_all add: setsum_Un_Int [symmetric] ivl_disj_un)
-
-text {* The shift operator. *}
-
-definition \<Delta> :: "(int \<Rightarrow> 'a\<Colon>ab_group_add) \<Rightarrow> int \<Rightarrow> 'a" where
- "\<Delta> f k = f (k + 1) - f k"
-
-lemma \<Delta>_shift:
- "\<Delta> (\<lambda>k. l + f k) = \<Delta> f"
- by (simp add: \<Delta>_def fun_eq_iff)
-
-lemma \<Delta>_same_shift:
- assumes "\<Delta> f = \<Delta> g"
- shows "\<exists>l. plus l \<circ> f = g"
-proof -
- fix k
- from assms have "\<And>k. \<Delta> f k = \<Delta> g k" by simp
- then have k_incr: "\<And>k. f (k + 1) - g (k + 1) = f k - g k"
- by (simp add: \<Delta>_def algebra_simps)
- then have "\<And>k. f ((k - 1) + 1) - g ((k - 1) + 1) = f (k - 1) - g (k - 1)"
- by blast
- then have k_decr: "\<And>k. f (k - 1) - g (k - 1) = f k - g k"
- by simp
- have "\<And>k. f k - g k = f 0 - g 0"
- proof -
- fix k
- show "f k - g k = f 0 - g 0"
- by (induct k rule: int_induct) (simp_all add: k_incr k_decr)
- qed
- then have "\<And>k. (plus (g 0 - f 0) \<circ> f) k = g k"
- by (simp add: algebra_simps)
- then have "plus (g 0 - f 0) \<circ> f = g" ..
- then show ?thesis ..
-qed
-
-text {* The formal sum operator. *}
-
-definition \<Sigma> :: "(int \<Rightarrow> 'a\<Colon>ab_group_add) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a" where
- "\<Sigma> f j l = (if j < l then setsum f {j..<l}
- else if j > l then - setsum f {l..<j}
- else 0)"
-
-lemma \<Sigma>_same [simp]:
- "\<Sigma> f j j = 0"
- by (simp add: \<Sigma>_def)
-
-lemma \<Sigma>_positive:
- "j < l \<Longrightarrow> \<Sigma> f j l = setsum f {j..<l}"
- by (simp add: \<Sigma>_def)
-
-lemma \<Sigma>_negative:
- "j > l \<Longrightarrow> \<Sigma> f j l = - \<Sigma> f l j"
- by (simp add: \<Sigma>_def)
-
-lemma add_\<Sigma>:
- "\<Sigma> f j k + \<Sigma> f k l = \<Sigma> f j l"
- by (simp add: \<Sigma>_def algebra_simps add_setsum_int)
- (simp_all add: add_setsum_orient [of f k j l]
- add_setsum_orient [of f j l k]
- add_setsum_orient [of f j k l] add_setsum_int)
-
-lemma \<Sigma>_incr_upper:
- "\<Sigma> f j (l + 1) = \<Sigma> f j l + f l"
-proof -
- have "{l..<l+1} = {l}" by auto
- then have "\<Sigma> f l (l + 1) = f l" by (simp add: \<Sigma>_def)
- moreover have "\<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1)" by (simp add: add_\<Sigma>)
- ultimately show ?thesis by simp
-qed
-
-text {* Fundamental lemmas: The relation between @{term \<Delta>} and @{term \<Sigma>}. *}
-
-lemma \<Delta>_\<Sigma>:
- "\<Delta> (\<Sigma> f j) = f"
-proof
- fix k
- show "\<Delta> (\<Sigma> f j) k = f k"
- by (simp add: \<Delta>_def \<Sigma>_incr_upper)
-qed
-
-lemma \<Sigma>_\<Delta>:
- "\<Sigma> (\<Delta> f) j l = f l - f j"
-proof -
- from \<Delta>_\<Sigma> have "\<Delta> (\<Sigma> (\<Delta> f) j) = \<Delta> f" .
- then obtain k where "plus k \<circ> \<Sigma> (\<Delta> f) j = f" by (blast dest: \<Delta>_same_shift)
- then have "\<And>q. f q = k + \<Sigma> (\<Delta> f) j q" by (simp add: fun_eq_iff)
- then show ?thesis by simp
-qed
-
-end