revised datatype definition package
authorpaulson
Mon, 28 Dec 1998 16:58:11 +0100
changeset 6052 4f093e55beeb
parent 6051 7d457fc538e7
child 6053 8a1059aa01f0
revised datatype definition package
src/ZF/Tools/datatype_package.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Tools/datatype_package.ML	Mon Dec 28 16:58:11 1998 +0100
@@ -0,0 +1,480 @@
+(*  Title:      ZF/datatype_package.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+Fixedpoint definition module -- for Inductive/Codatatype Definitions
+
+The functor will be instantiated for normal sums/products (datatype defs)
+                         and non-standard sums/products (codatatype defs)
+
+Sums are used only for mutual recursion;
+Products are used only to derive "streamlined" induction rules for relations
+*)
+
+
+(** Datatype information, e.g. associated theorems **)
+
+type datatype_info =
+  {inductive: bool,		(*true if inductive, not coinductive*)
+   constructors : term list,    (*the constructors, as Consts*)
+   rec_rewrites : thm list,     (*recursor equations*)
+   case_rewrites : thm list,    (*case equations*)
+   induct : thm,
+   mutual_induct : thm,
+   exhaustion : thm};
+
+structure DatatypesArgs =
+  struct
+  val name = "ZF/datatypes";
+  type T = datatype_info Symtab.table;
+
+  val empty = Symtab.empty;
+  val prep_ext = I;
+  val merge: T * T -> T = Symtab.merge (K true);
+
+  fun print sg tab =
+    Pretty.writeln (Pretty.strs ("datatypes:" ::
+      map (Sign.cond_extern sg Sign.typeK o fst) (Symtab.dest tab)));
+  end;
+
+structure DatatypesData = TheoryDataFun(DatatypesArgs);
+
+
+(** Constructor information: needed to map constructors to datatypes **)
+
+type constructor_info =
+  {big_rec_name : string,     (*name of the mutually recursive set*)
+   constructors : term list,  (*the constructors, as Consts*)
+   rec_rewrites : thm list};  (*recursor equations*)
+
+
+structure ConstructorsArgs =
+struct
+  val name = "ZF/constructors"
+  type T = constructor_info Symtab.table
+
+  val empty = Symtab.empty
+  val prep_ext = I
+  val merge: T * T -> T = Symtab.merge (K true)
+
+  fun print sg tab = ()   (*nothing extra to print*)
+end;
+
+structure ConstructorsData = TheoryDataFun(ConstructorsArgs);
+
+val setup_datatypes = [DatatypesData.init, ConstructorsData.init];
+
+
+type datatype_result =
+   {con_defs   : thm list,             (*definitions made in thy*)
+    case_eqns  : thm list,             (*equations for case operator*)
+    recursor_eqns : thm list,          (*equations for the recursor*)
+    free_iffs  : thm list,             (*freeness rewrite rules*)
+    free_SEs   : thm list,             (*freeness destruct rules*)
+    mk_free    : string -> thm};      (*makes freeness theorems*)
+
+
+signature DATATYPE_ARG =
+  sig 
+  val intrs : thm list
+  val elims : thm list
+  end;
+
+
+(*Functor's result signature*)
+signature DATATYPE_PACKAGE =
+  sig 
+
+  (*Insert definitions for the recursive sets, which
+     must *already* be declared as constants in parent theory!*)
+  val add_datatype_i : 
+      term * term list * Ind_Syntax.constructor_spec list list * 
+      thm list * thm list * thm list
+      -> theory -> theory * inductive_result * datatype_result
+
+  val add_datatype : 
+      string * string list * 
+      (string * string list * mixfix) list list *
+      thm list * thm list * thm list
+      -> theory -> theory * inductive_result * datatype_result
+
+  end;
+
+
+(*Declares functions to add fixedpoint/constructor defs to a theory.
+  Recursive sets must *already* be declared as constants.*)
+functor Add_datatype_def_Fun 
+    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU 
+ 	   and Ind_Package : INDUCTIVE_PACKAGE
+           and Datatype_Arg : DATATYPE_ARG)
+ : DATATYPE_PACKAGE =
+struct
+
+
+(*con_ty_lists specifies the constructors in the form (name,prems,mixfix) *)
+fun add_datatype_i (dom_sum, rec_tms, con_ty_lists, 
+		    monos, type_intrs, type_elims) thy =
+ let
+  open BasisLibrary
+  val dummy = (*has essential ancestors?*)
+    Theory.requires thy "Datatype" "(co)datatype definitions";
+
+
+  val rec_names = map (#1 o dest_Const o head_of) rec_tms
+  val rec_base_names = map Sign.base_name rec_names
+  val big_rec_base_name = space_implode "_" rec_base_names
+
+  val thy_path = thy |> Theory.add_path big_rec_base_name
+  val sign = sign_of thy_path
+
+  val big_rec_name = Sign.intern_const sign big_rec_base_name;
+
+  val intr_tms = Ind_Syntax.mk_all_intr_tms sign (rec_tms, con_ty_lists)
+
+  val dummy =	
+	writeln ((if (#1 (dest_Const Fp.oper) = "lfp") then "Datatype" 
+		  else "Codatatype")
+		 ^ " definition " ^ big_rec_name)
+
+  val case_varname = "f";                (*name for case variables*)
+
+  (** Define the constructors **)
+
+  (*The empty tuple is 0*)
+  fun mk_tuple [] = Const("0",iT)
+    | mk_tuple args = foldr1 (app Pr.pair) args;
+
+  fun mk_inject n k u = access_bal (ap Su.inl, ap Su.inr, u) n k;
+
+  val npart = length rec_names;  (*number of mutually recursive parts*)
+
+
+  val full_name = Sign.full_name sign;
+
+  (*Make constructor definition; 
+    kpart is the number of this mutually recursive part*)
+  fun mk_con_defs (kpart, con_ty_list) = 
+    let val ncon = length con_ty_list    (*number of constructors*)
+	fun mk_def (((id,T,syn), name, args, prems), kcon) =
+	      (*kcon is index of constructor*)
+	    Logic.mk_defpair (list_comb (Const (full_name name, T), args),
+			mk_inject npart kpart
+			(mk_inject ncon kcon (mk_tuple args)))
+    in  ListPair.map mk_def (con_ty_list, 1 upto ncon)  end;
+
+
+  (*** Define the case operator ***)
+
+  (*Combine split terms using case; yields the case operator for one part*)
+  fun call_case case_list = 
+    let fun call_f (free,[]) = Abs("null", iT, free)
+	  | call_f (free,args) =
+		CP.ap_split (foldr1 CP.mk_prod (map (#2 o dest_Free) args))
+			    Ind_Syntax.iT 
+			    free 
+    in  fold_bal (app Su.elim) (map call_f case_list)  end;
+
+  (** Generating function variables for the case definition
+      Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
+
+  (*The function variable for a single constructor*)
+  fun add_case (((_, T, _), name, args, _), (opno, cases)) =
+    if Syntax.is_identifier name then
+      (opno, (Free (case_varname ^ "_" ^ name, T), args) :: cases)
+    else
+      (opno + 1, (Free (case_varname ^ "_op_" ^ string_of_int opno, T), args) 
+       :: cases);
+
+  (*Treatment of a list of constructors, for one part
+    Result adds a list of terms, each a function variable with arguments*)
+  fun add_case_list (con_ty_list, (opno, case_lists)) =
+    let val (opno', case_list) = foldr add_case (con_ty_list, (opno, []))
+    in (opno', case_list :: case_lists) end;
+
+  (*Treatment of all parts*)
+  val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
+
+  (*extract the types of all the variables*)
+  val case_typ = flat (map (map (#2 o #1)) con_ty_lists) ---> (iT-->iT);
+
+  val case_base_name = big_rec_base_name ^ "_case";
+  val case_name = full_name case_base_name;
+
+  (*The list of all the function variables*)
+  val case_args = flat (map (map #1) case_lists);
+
+  val case_const = Const (case_name, case_typ); 
+  val case_tm = list_comb (case_const, case_args);
+
+  val case_def = Logic.mk_defpair
+           (case_tm, fold_bal (app Su.elim) (map call_case case_lists));
+
+
+  (** Generating function variables for the recursor definition
+      Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
+
+  (*a recursive call for x is the application rec`x  *)
+  val rec_call = Ind_Syntax.apply_const $ Free ("rec", iT);
+
+  (*look back down the "case args" (which have been reversed) to 
+    determine the de Bruijn index*)
+  fun make_rec_call ([], _) arg = error
+	  "Internal error in datatype (variable name mismatch)" 
+    | make_rec_call (a::args, i) arg = 
+	   if a = arg then rec_call $ Bound i
+	   else make_rec_call (args, i+1) arg;
+
+  (*creates one case of the "X_case" definition of the recursor*)
+  fun call_recursor ((case_var, case_args), (recursor_var, recursor_args)) = 
+      let fun add_abs (Free(a,T), u) = Abs(a,T,u)
+	  val ncase_args = length case_args
+	  val bound_args = map Bound ((ncase_args - 1) downto 0)
+	  val rec_args = map (make_rec_call (rev case_args,0))
+			 (List.drop(recursor_args, ncase_args))
+      in
+	  foldr add_abs
+	    (case_args, list_comb (recursor_var,
+				   bound_args @ rec_args))
+      end
+
+  (*Find each recursive argument and add a recursive call for it*)
+  fun rec_args [] = []
+    | rec_args ((Const("op :",_)$arg$X)::prems) =
+       (case head_of X of
+	    Const(a,_) => (*recursive occurrence?*)
+			  if Sign.base_name a mem_string rec_base_names
+			      then arg :: rec_args prems 
+			  else rec_args prems
+	  | _ => rec_args prems)
+    | rec_args (_::prems) = rec_args prems;	  
+
+  (*Add an argument position for each occurrence of a recursive set.
+    Strictly speaking, the recursive arguments are the LAST of the function
+    variable, but they all have type "i" anyway*)
+  fun add_rec_args args' T = (map (fn _ => iT) args') ---> T
+
+  (*Plug in the function variable type needed for the recursor
+    as well as the new arguments (recursive calls)*)
+  fun rec_ty_elem ((id, T, syn), name, args, prems) =
+      let val args' = rec_args prems 
+      in ((id, add_rec_args args' T, syn), 
+	  name, args @ args', prems)
+      end;
+
+  val rec_ty_lists = (map (map rec_ty_elem) con_ty_lists); 
+
+  (*Treatment of all parts*)
+  val (_, recursor_lists) = foldr add_case_list (rec_ty_lists, (1,[]));
+
+  (*extract the types of all the variables*)
+  val recursor_typ = flat (map (map (#2 o #1)) rec_ty_lists)
+			 ---> (iT-->iT);
+
+  val recursor_base_name = big_rec_base_name ^ "_rec";
+  val recursor_name = full_name recursor_base_name;
+
+  (*The list of all the function variables*)
+  val recursor_args = flat (map (map #1) recursor_lists);
+
+  val recursor_tm =
+    list_comb (Const (recursor_name, recursor_typ), recursor_args); 
+
+  val recursor_cases = map call_recursor 
+			 (flat case_lists ~~ flat recursor_lists)
+
+  val recursor_def = 
+      Logic.mk_defpair
+        (recursor_tm, 
+	 Ind_Syntax.Vrecursor_const $ 
+  	   absfree ("rec", iT, list_comb (case_const, recursor_cases)));
+
+  (* Build the new theory *)
+
+  val need_recursor = 
+      (#1 (dest_Const Fp.oper) = "lfp" andalso recursor_typ <> case_typ);
+
+  fun add_recursor thy = 
+      if need_recursor then
+	   thy |> Theory.add_consts_i 
+	            [(recursor_base_name, recursor_typ, NoSyn)]
+	       |> PureThy.add_defs_i [Attribute.none recursor_def]
+      else thy;
+
+  val thy0 = thy_path
+	     |> Theory.add_consts_i 
+		 ((case_base_name, case_typ, NoSyn) ::
+		  map #1 (flat con_ty_lists))
+	     |> PureThy.add_defs_i
+		 (map Attribute.none 
+		  (case_def :: 
+		   flat (ListPair.map mk_con_defs
+			 (1 upto npart, con_ty_lists))))
+	     |> add_recursor
+	     |> Theory.parent_path
+
+  val con_defs = get_def thy0 case_name :: 
+		 map (get_def thy0 o #2) (flat con_ty_lists);
+
+  val (thy1, ind_result) = 
+         thy0  |> Ind_Package.add_inductive_i
+	            false (rec_tms, dom_sum, intr_tms, 
+			   monos, con_defs, 
+			   type_intrs @ Datatype_Arg.intrs, 
+			   type_elims @ Datatype_Arg.elims)
+
+  (**** Now prove the datatype theorems in this theory ****)
+
+
+  (*** Prove the case theorems ***)
+
+  (*Each equation has the form 
+    case(f_con1,...,f_conn)(coni(args)) = f_coni(args) *)
+  fun mk_case_eqn (((_,T,_), name, args, _), case_free) = 
+    FOLogic.mk_Trueprop
+      (FOLogic.mk_eq
+       (case_tm $
+	 (list_comb (Const (Sign.intern_const (sign_of thy1) name,T), 
+		     args)),
+	list_comb (case_free, args)));
+
+  val case_trans = hd con_defs RS Ind_Syntax.def_trans
+  and split_trans = Pr.split_eq RS meta_eq_to_obj_eq RS trans;
+
+  (*Proves a single case equation.  Could use simp_tac, but it's slower!*)
+  fun case_tacsf con_def _ = 
+    [rewtac con_def,
+     rtac case_trans 1,
+     REPEAT (resolve_tac [refl, split_trans, 
+			  Su.case_inl RS trans, 
+			  Su.case_inr RS trans] 1)];
+
+  fun prove_case_eqn (arg,con_def) =
+      prove_goalw_cterm [] 
+	(Ind_Syntax.traceIt "next case equation = "
+	   (cterm_of (sign_of thy1) (mk_case_eqn arg)))
+	(case_tacsf con_def);
+
+  val con_iffs = con_defs RL [Ind_Syntax.def_swap_iff];
+
+  val case_eqns = 
+      map prove_case_eqn 
+	 (flat con_ty_lists ~~ case_args ~~ tl con_defs);
+
+  (*** Prove the recursor theorems ***)
+
+  val recursor_eqns = case try (get_def thy1) recursor_base_name of
+     None => (writeln "  [ No recursion operator ]";
+	      [])
+   | Some recursor_def => 
+      let
+	(*Replace subterms rec`x (where rec is a Free var) by recursor_tm(x) *)
+	fun subst_rec (Const("op `",_) $ Free _ $ arg) = recursor_tm $ arg
+	  | subst_rec tm = 
+	      let val (head, args) = strip_comb tm 
+	      in  list_comb (head, map subst_rec args)  end;
+
+	(*Each equation has the form 
+	  REC(coni(args)) = f_coni(args, REC(rec_arg), ...) 
+	  where REC = recursor(f_con1,...,f_conn) and rec_arg is a recursive
+	  constructor argument.*)
+	fun mk_recursor_eqn (((_,T,_), name, args, _), recursor_case) = 
+	  FOLogic.mk_Trueprop
+	   (FOLogic.mk_eq
+	    (recursor_tm $
+	     (list_comb (Const (Sign.intern_const (sign_of thy1) name,T), 
+			 args)),
+	     subst_rec (foldl betapply (recursor_case, args))));
+
+	val recursor_trans = recursor_def RS def_Vrecursor RS trans;
+
+	(*Proves a single recursor equation.*)
+	fun recursor_tacsf _ = 
+	  [rtac recursor_trans 1,
+	   simp_tac (rank_ss addsimps case_eqns) 1,
+	   IF_UNSOLVED (simp_tac (rank_ss addsimps tl con_defs) 1)];
+
+	fun prove_recursor_eqn arg =
+	    prove_goalw_cterm [] 
+	      (Ind_Syntax.traceIt "next recursor equation = "
+		(cterm_of (sign_of thy1) (mk_recursor_eqn arg)))
+	      recursor_tacsf
+      in
+	 map prove_recursor_eqn (flat con_ty_lists ~~ recursor_cases)
+      end
+
+  val constructors =
+      map (head_of o #1 o Logic.dest_equals o #prop o rep_thm) (tl con_defs);
+
+  val free_iffs = con_iffs @ 
+    [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff];
+
+  val free_SEs = Ind_Syntax.mk_free_SEs con_iffs @ Su.free_SEs;
+
+  val {elim, induct, mutual_induct, ...} = ind_result
+
+  (*Typical theorems have the form ~con1=con2, con1=con2==>False,
+    con1(x)=con1(y) ==> x=y, con1(x)=con1(y) <-> x=y, etc.  *)
+  fun mk_free s =
+      prove_goalw (theory_of_thm elim)   (*Don't use thy1: it will be stale*)
+                  con_defs s
+	(fn prems => [cut_facts_tac prems 1, 
+		      fast_tac (ZF_cs addSEs free_SEs) 1]);
+
+  val simps = case_eqns @ recursor_eqns;
+
+  val dt_info =
+	{inductive = true,
+	 constructors = constructors,
+	 rec_rewrites = recursor_eqns,
+	 case_rewrites = case_eqns,
+	 induct = induct,
+	 mutual_induct = mutual_induct,
+	 exhaustion = elim};
+
+  val con_info =
+        {big_rec_name = big_rec_name,
+	 constructors = constructors,
+            (*let primrec handle definition by cases*)
+	 rec_rewrites = (case recursor_eqns of
+			     [] => case_eqns | _ => recursor_eqns)};
+
+  (*associate with each constructor the datatype name and rewrites*)
+  val con_pairs = map (fn c => (#1 (dest_Const c), con_info)) constructors
+
+ in
+  (*Updating theory components: simprules and datatype info*)
+  (thy1 |> Theory.add_path big_rec_base_name
+        |> PureThy.add_tthmss [(("simps", Attribute.tthms_of simps), 
+				[Simplifier.simp_add_global])] 
+        |> DatatypesData.put 
+	    (Symtab.update
+	     ((big_rec_name, dt_info), DatatypesData.get thy1)) 
+        |> ConstructorsData.put
+	     (foldr Symtab.update (con_pairs, ConstructorsData.get thy1))
+	|> Theory.parent_path,
+   ind_result,
+   {con_defs = con_defs,
+    case_eqns = case_eqns,
+    recursor_eqns = recursor_eqns,
+    free_iffs = free_iffs,
+    free_SEs = free_SEs,
+    mk_free = mk_free})
+  end;
+
+
+fun add_datatype (sdom, srec_tms, scon_ty_lists, 
+		  monos, type_intrs, type_elims) thy =
+  let val sign = sign_of thy
+      val rec_tms = map (readtm sign Ind_Syntax.iT) srec_tms
+      val dom_sum = 
+          if sdom = "" then
+	      Ind_Syntax.data_domain (#1 (dest_Const Fp.oper) <> "lfp") rec_tms
+          else readtm sign Ind_Syntax.iT sdom
+      and con_ty_lists	= Ind_Syntax.read_constructs sign scon_ty_lists
+  in 
+      add_datatype_i (dom_sum, rec_tms, con_ty_lists, 
+		      monos, type_intrs, type_elims) thy
+  end		    
+
+end;