--- a/NEWS Thu Jan 19 16:22:41 2023 +0100
+++ b/NEWS Thu Jan 19 17:53:05 2023 +0100
@@ -179,6 +179,9 @@
fimage_strict_mono
wfP_pfsubset
+* Theory "HOL-Library.BigO":
+ - Obsolete, moved to HOL-ex
+
* Theory "HOL-Library.Multiset":
- Strengthened lemmas. Minor INCOMPATIBILITIES.
mult_cancel
--- a/src/HOL/Library/BigO.thy Thu Jan 19 16:22:41 2023 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,796 +0,0 @@
-(* Title: HOL/Library/BigO.thy
- Authors: Jeremy Avigad and Kevin Donnelly
-*)
-
-section \<open>Big O notation\<close>
-
-theory BigO
- imports
- Complex_Main
- Function_Algebras
- Set_Algebras
-begin
-
-text \<open>
- This library is designed to support asymptotic ``big O'' calculations,
- i.e.~reasoning with expressions of the form \<open>f = O(g)\<close> and \<open>f = g + O(h)\<close>.
- An earlier version of this library is described in detail in \<^cite>\<open>"Avigad-Donnelly"\<close>.
-
- The main changes in this version are as follows:
-
- \<^item> We have eliminated the \<open>O\<close> operator on sets. (Most uses of this seem
- to be inessential.)
- \<^item> We no longer use \<open>+\<close> as output syntax for \<open>+o\<close>
- \<^item> Lemmas involving \<open>sumr\<close> have been replaced by more general lemmas
- involving `\<open>sum\<close>.
- \<^item> The library has been expanded, with e.g.~support for expressions of
- the form \<open>f < g + O(h)\<close>.
-
- Note also since the Big O library includes rules that demonstrate set
- inclusion, to use the automated reasoners effectively with the library one
- should redeclare the theorem \<open>subsetI\<close> as an intro rule, rather than as an
- \<open>intro!\<close> rule, for example, using \<^theory_text>\<open>declare subsetI [del, intro]\<close>.
-\<close>
-
-
-subsection \<open>Definitions\<close>
-
-definition bigo :: "('a \<Rightarrow> 'b::linordered_idom) \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(1O'(_'))")
- where "O(f:: 'a \<Rightarrow> 'b) = {h. \<exists>c. \<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>}"
-
-lemma bigo_pos_const:
- "(\<exists>c::'a::linordered_idom. \<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>) \<longleftrightarrow>
- (\<exists>c. 0 < c \<and> (\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>))"
- by (metis (no_types, opaque_lifting) abs_ge_zero abs_not_less_zero abs_of_nonneg dual_order.trans
- mult_1 zero_less_abs_iff zero_less_mult_iff zero_less_one)
-
-lemma bigo_alt_def: "O(f) = {h. \<exists>c. 0 < c \<and> (\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>)}"
- by (auto simp add: bigo_def bigo_pos_const)
-
-lemma bigo_elt_subset [intro]: "f \<in> O(g) \<Longrightarrow> O(f) \<le> O(g)"
- apply (auto simp add: bigo_alt_def)
- by (metis (no_types, opaque_lifting) mult.assoc mult_le_cancel_iff2 order.trans
- zero_less_mult_iff)
-
-lemma bigo_refl [intro]: "f \<in> O(f)"
- using bigo_def comm_monoid_mult_class.mult_1 dual_order.eq_iff by blast
-
-lemma bigo_zero: "0 \<in> O(g)"
- using bigo_def mult_le_cancel_left1 by fastforce
-
-lemma bigo_zero2: "O(\<lambda>x. 0) = {\<lambda>x. 0}"
- by (auto simp add: bigo_def)
-
-lemma bigo_plus_self_subset [intro]: "O(f) + O(f) \<subseteq> O(f)"
- apply (auto simp add: bigo_alt_def set_plus_def)
- apply (rule_tac x = "c + ca" in exI)
- by (smt (verit, best) abs_triangle_ineq add_mono add_pos_pos comm_semiring_class.distrib dual_order.trans)
-
-lemma bigo_plus_idemp [simp]: "O(f) + O(f) = O(f)"
- by (simp add: antisym bigo_plus_self_subset bigo_zero set_zero_plus2)
-
-lemma bigo_plus_subset [intro]: "O(f + g) \<subseteq> O(f) + O(g)"
- apply (rule subsetI)
- apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)
- apply (subst bigo_pos_const [symmetric])+
- apply (rule_tac x = "\<lambda>n. if \<bar>g n\<bar> \<le> \<bar>f n\<bar> then x n else 0" in exI)
- apply (rule conjI)
- apply (rule_tac x = "c + c" in exI)
- apply (clarsimp)
- apply (subgoal_tac "c * \<bar>f xa + g xa\<bar> \<le> (c + c) * \<bar>f xa\<bar>")
- apply (metis mult_2 order_trans)
- apply (subgoal_tac "c * \<bar>f xa + g xa\<bar> \<le> c * (\<bar>f xa\<bar> + \<bar>g xa\<bar>)")
- apply auto[1]
- using abs_triangle_ineq mult_le_cancel_iff2 apply blast
- apply (simp add: order_less_le)
- apply (rule_tac x = "\<lambda>n. if \<bar>f n\<bar> < \<bar>g n\<bar> then x n else 0" in exI)
- apply (rule conjI)
- apply (rule_tac x = "c + c" in exI)
- apply auto
- apply (subgoal_tac "c * \<bar>f xa + g xa\<bar> \<le> (c + c) * \<bar>g xa\<bar>")
- apply (metis mult_2 order.trans)
- apply simp
- done
-
-lemma bigo_plus_subset2 [intro]: "A \<subseteq> O(f) \<Longrightarrow> B \<subseteq> O(f) \<Longrightarrow> A + B \<subseteq> O(f)"
- using bigo_plus_idemp set_plus_mono2 by blast
-
-lemma bigo_plus_eq: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. 0 \<le> g x \<Longrightarrow> O(f + g) = O(f) + O(g)"
- apply (rule equalityI)
- apply (rule bigo_plus_subset)
- apply (simp add: bigo_alt_def set_plus_def func_plus)
- apply clarify
- apply (rule_tac x = "max c ca" in exI)
- apply (rule conjI)
- apply (subgoal_tac "c \<le> max c ca")
- apply linarith
- apply (rule max.cobounded1)
- apply clarify
- apply (drule_tac x = "xa" in spec)+
- apply (subgoal_tac "0 \<le> f xa + g xa")
- apply (simp add: ring_distribs)
- apply (subgoal_tac "\<bar>a xa + b xa\<bar> \<le> \<bar>a xa\<bar> + \<bar>b xa\<bar>")
- apply (subgoal_tac "\<bar>a xa\<bar> + \<bar>b xa\<bar> \<le> max c ca * f xa + max c ca * g xa")
- apply force
- apply (metis add_mono le_max_iff_disj max_mult_distrib_right)
- using abs_triangle_ineq apply blast
- using add_nonneg_nonneg by blast
-
-lemma bigo_bounded_alt: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> c * g x \<Longrightarrow> f \<in> O(g)"
- apply (auto simp add: bigo_def)
- apply (rule_tac x = "\<bar>c\<bar>" in exI)
- apply auto
- apply (drule_tac x = x in spec)+
- apply (simp flip: abs_mult)
- done
-
-lemma bigo_bounded: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> g x \<Longrightarrow> f \<in> O(g)"
- apply (erule bigo_bounded_alt [of f 1 g])
- apply simp
- done
-
-lemma bigo_bounded2: "\<forall>x. lb x \<le> f x \<Longrightarrow> \<forall>x. f x \<le> lb x + g x \<Longrightarrow> f \<in> lb +o O(g)"
- apply (rule set_minus_imp_plus)
- apply (rule bigo_bounded)
- apply (auto simp add: fun_Compl_def func_plus)
- apply (drule_tac x = x in spec)+
- apply force
- done
-
-lemma bigo_abs: "(\<lambda>x. \<bar>f x\<bar>) =o O(f)"
- apply (unfold bigo_def)
- apply auto
- apply (rule_tac x = 1 in exI)
- apply auto
- done
-
-lemma bigo_abs2: "f =o O(\<lambda>x. \<bar>f x\<bar>)"
- apply (unfold bigo_def)
- apply auto
- apply (rule_tac x = 1 in exI)
- apply auto
- done
-
-lemma bigo_abs3: "O(f) = O(\<lambda>x. \<bar>f x\<bar>)"
- apply (rule equalityI)
- apply (rule bigo_elt_subset)
- apply (rule bigo_abs2)
- apply (rule bigo_elt_subset)
- apply (rule bigo_abs)
- done
-
-lemma bigo_abs4: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o (\<lambda>x. \<bar>g x\<bar>) +o O(h)"
- apply (drule set_plus_imp_minus)
- apply (rule set_minus_imp_plus)
- apply (subst fun_diff_def)
-proof -
- assume *: "f - g \<in> O(h)"
- have "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) =o O(\<lambda>x. \<bar>\<bar>f x\<bar> - \<bar>g x\<bar>\<bar>)"
- by (rule bigo_abs2)
- also have "\<dots> \<subseteq> O(\<lambda>x. \<bar>f x - g x\<bar>)"
- apply (rule bigo_elt_subset)
- apply (rule bigo_bounded)
- apply force
- apply (rule allI)
- apply (rule abs_triangle_ineq3)
- done
- also have "\<dots> \<subseteq> O(f - g)"
- apply (rule bigo_elt_subset)
- apply (subst fun_diff_def)
- apply (rule bigo_abs)
- done
- also from * have "\<dots> \<subseteq> O(h)"
- by (rule bigo_elt_subset)
- finally show "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) \<in> O(h)".
-qed
-
-lemma bigo_abs5: "f =o O(g) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o O(g)"
- by (auto simp: bigo_def)
-
-lemma bigo_elt_subset2 [intro]:
- assumes *: "f \<in> g +o O(h)"
- shows "O(f) \<subseteq> O(g) + O(h)"
-proof -
- note *
- also have "g +o O(h) \<subseteq> O(g) + O(h)"
- by (auto del: subsetI)
- also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
- by (subst bigo_abs3 [symmetric])+ (rule refl)
- also have "\<dots> = O((\<lambda>x. \<bar>g x\<bar>) + (\<lambda>x. \<bar>h x\<bar>))"
- by (rule bigo_plus_eq [symmetric]) auto
- finally have "f \<in> \<dots>" .
- then have "O(f) \<subseteq> \<dots>"
- by (elim bigo_elt_subset)
- also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
- by (rule bigo_plus_eq, auto)
- finally show ?thesis
- by (simp flip: bigo_abs3)
-qed
-
-lemma bigo_mult [intro]: "O(f)*O(g) \<subseteq> O(f * g)"
- apply (rule subsetI)
- apply (subst bigo_def)
- apply (auto simp add: bigo_alt_def set_times_def func_times)
- apply (rule_tac x = "c * ca" in exI)
- apply (rule allI)
- apply (erule_tac x = x in allE)+
- apply (subgoal_tac "c * ca * \<bar>f x * g x\<bar> = (c * \<bar>f x\<bar>) * (ca * \<bar>g x\<bar>)")
- apply (erule ssubst)
- apply (subst abs_mult)
- apply (rule mult_mono)
- apply assumption+
- apply auto
- apply (simp add: ac_simps abs_mult)
- done
-
-lemma bigo_mult2 [intro]: "f *o O(g) \<subseteq> O(f * g)"
- apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult)
- apply (rule_tac x = c in exI)
- apply auto
- apply (drule_tac x = x in spec)
- apply (subgoal_tac "\<bar>f x\<bar> * \<bar>b x\<bar> \<le> \<bar>f x\<bar> * (c * \<bar>g x\<bar>)")
- apply (force simp add: ac_simps)
- apply (rule mult_left_mono, assumption)
- apply (rule abs_ge_zero)
- done
-
-lemma bigo_mult3: "f \<in> O(h) \<Longrightarrow> g \<in> O(j) \<Longrightarrow> f * g \<in> O(h * j)"
- apply (rule subsetD)
- apply (rule bigo_mult)
- apply (erule set_times_intro, assumption)
- done
-
-lemma bigo_mult4 [intro]: "f \<in> k +o O(h) \<Longrightarrow> g * f \<in> (g * k) +o O(g * h)"
- apply (drule set_plus_imp_minus)
- apply (rule set_minus_imp_plus)
- apply (drule bigo_mult3 [where g = g and j = g])
- apply (auto simp add: algebra_simps)
- done
-
-lemma bigo_mult5:
- fixes f :: "'a \<Rightarrow> 'b::linordered_field"
- assumes "\<forall>x. f x \<noteq> 0"
- shows "O(f * g) \<subseteq> f *o O(g)"
-proof
- fix h
- assume "h \<in> O(f * g)"
- then have "(\<lambda>x. 1 / (f x)) * h \<in> (\<lambda>x. 1 / f x) *o O(f * g)"
- by auto
- also have "\<dots> \<subseteq> O((\<lambda>x. 1 / f x) * (f * g))"
- by (rule bigo_mult2)
- also have "(\<lambda>x. 1 / f x) * (f * g) = g"
- apply (simp add: func_times)
- apply (rule ext)
- apply (simp add: assms nonzero_divide_eq_eq ac_simps)
- done
- finally have "(\<lambda>x. (1::'b) / f x) * h \<in> O(g)" .
- then have "f * ((\<lambda>x. (1::'b) / f x) * h) \<in> f *o O(g)"
- by auto
- also have "f * ((\<lambda>x. (1::'b) / f x) * h) = h"
- apply (simp add: func_times)
- apply (rule ext)
- apply (simp add: assms nonzero_divide_eq_eq ac_simps)
- done
- finally show "h \<in> f *o O(g)" .
-qed
-
-lemma bigo_mult6: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = f *o O(g)"
- for f :: "'a \<Rightarrow> 'b::linordered_field"
- apply (rule equalityI)
- apply (erule bigo_mult5)
- apply (rule bigo_mult2)
- done
-
-lemma bigo_mult7: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) \<subseteq> O(f) * O(g)"
- for f :: "'a \<Rightarrow> 'b::linordered_field"
- apply (subst bigo_mult6)
- apply assumption
- apply (rule set_times_mono3)
- apply (rule bigo_refl)
- done
-
-lemma bigo_mult8: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = O(f) * O(g)"
- for f :: "'a \<Rightarrow> 'b::linordered_field"
- apply (rule equalityI)
- apply (erule bigo_mult7)
- apply (rule bigo_mult)
- done
-
-lemma bigo_minus [intro]: "f \<in> O(g) \<Longrightarrow> - f \<in> O(g)"
- by (auto simp add: bigo_def fun_Compl_def)
-
-lemma bigo_minus2: "f \<in> g +o O(h) \<Longrightarrow> - f \<in> -g +o O(h)"
- apply (rule set_minus_imp_plus)
- apply (drule set_plus_imp_minus)
- apply (drule bigo_minus)
- apply simp
- done
-
-lemma bigo_minus3: "O(- f) = O(f)"
- by (auto simp add: bigo_def fun_Compl_def)
-
-lemma bigo_plus_absorb_lemma1:
- assumes *: "f \<in> O(g)"
- shows "f +o O(g) \<subseteq> O(g)"
-proof -
- have "f \<in> O(f)" by auto
- then have "f +o O(g) \<subseteq> O(f) + O(g)"
- by (auto del: subsetI)
- also have "\<dots> \<subseteq> O(g) + O(g)"
- proof -
- from * have "O(f) \<subseteq> O(g)"
- by (auto del: subsetI)
- then show ?thesis
- by (auto del: subsetI)
- qed
- also have "\<dots> \<subseteq> O(g)" by simp
- finally show ?thesis .
-qed
-
-lemma bigo_plus_absorb_lemma2:
- assumes *: "f \<in> O(g)"
- shows "O(g) \<subseteq> f +o O(g)"
-proof -
- from * have "- f \<in> O(g)"
- by auto
- then have "- f +o O(g) \<subseteq> O(g)"
- by (elim bigo_plus_absorb_lemma1)
- then have "f +o (- f +o O(g)) \<subseteq> f +o O(g)"
- by auto
- also have "f +o (- f +o O(g)) = O(g)"
- by (simp add: set_plus_rearranges)
- finally show ?thesis .
-qed
-
-lemma bigo_plus_absorb [simp]: "f \<in> O(g) \<Longrightarrow> f +o O(g) = O(g)"
- apply (rule equalityI)
- apply (erule bigo_plus_absorb_lemma1)
- apply (erule bigo_plus_absorb_lemma2)
- done
-
-lemma bigo_plus_absorb2 [intro]: "f \<in> O(g) \<Longrightarrow> A \<subseteq> O(g) \<Longrightarrow> f +o A \<subseteq> O(g)"
- apply (subgoal_tac "f +o A \<subseteq> f +o O(g)")
- apply force+
- done
-
-lemma bigo_add_commute_imp: "f \<in> g +o O(h) \<Longrightarrow> g \<in> f +o O(h)"
- apply (subst set_minus_plus [symmetric])
- apply (subgoal_tac "g - f = - (f - g)")
- apply (erule ssubst)
- apply (rule bigo_minus)
- apply (subst set_minus_plus)
- apply assumption
- apply (simp add: ac_simps)
- done
-
-lemma bigo_add_commute: "f \<in> g +o O(h) \<longleftrightarrow> g \<in> f +o O(h)"
- apply (rule iffI)
- apply (erule bigo_add_commute_imp)+
- done
-
-lemma bigo_const1: "(\<lambda>x. c) \<in> O(\<lambda>x. 1)"
- by (auto simp add: bigo_def ac_simps)
-
-lemma bigo_const2 [intro]: "O(\<lambda>x. c) \<subseteq> O(\<lambda>x. 1)"
- apply (rule bigo_elt_subset)
- apply (rule bigo_const1)
- done
-
-lemma bigo_const3: "c \<noteq> 0 \<Longrightarrow> (\<lambda>x. 1) \<in> O(\<lambda>x. c)"
- for c :: "'a::linordered_field"
- apply (simp add: bigo_def)
- apply (rule_tac x = "\<bar>inverse c\<bar>" in exI)
- apply (simp flip: abs_mult)
- done
-
-lemma bigo_const4: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. 1) \<subseteq> O(\<lambda>x. c)"
- for c :: "'a::linordered_field"
- apply (rule bigo_elt_subset)
- apply (rule bigo_const3)
- apply assumption
- done
-
-lemma bigo_const [simp]: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. c) = O(\<lambda>x. 1)"
- for c :: "'a::linordered_field"
- apply (rule equalityI)
- apply (rule bigo_const2)
- apply (rule bigo_const4)
- apply assumption
- done
-
-lemma bigo_const_mult1: "(\<lambda>x. c * f x) \<in> O(f)"
- apply (simp add: bigo_def)
- apply (rule_tac x = "\<bar>c\<bar>" in exI)
- apply (auto simp flip: abs_mult)
- done
-
-lemma bigo_const_mult2: "O(\<lambda>x. c * f x) \<subseteq> O(f)"
- apply (rule bigo_elt_subset)
- apply (rule bigo_const_mult1)
- done
-
-lemma bigo_const_mult3: "c \<noteq> 0 \<Longrightarrow> f \<in> O(\<lambda>x. c * f x)"
- for c :: "'a::linordered_field"
- apply (simp add: bigo_def)
- apply (rule_tac x = "\<bar>inverse c\<bar>" in exI)
- apply (simp add: abs_mult mult.assoc [symmetric])
- done
-
-lemma bigo_const_mult4: "c \<noteq> 0 \<Longrightarrow> O(f) \<subseteq> O(\<lambda>x. c * f x)"
- for c :: "'a::linordered_field"
- apply (rule bigo_elt_subset)
- apply (rule bigo_const_mult3)
- apply assumption
- done
-
-lemma bigo_const_mult [simp]: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. c * f x) = O(f)"
- for c :: "'a::linordered_field"
- apply (rule equalityI)
- apply (rule bigo_const_mult2)
- apply (erule bigo_const_mult4)
- done
-
-lemma bigo_const_mult5 [simp]: "c \<noteq> 0 \<Longrightarrow> (\<lambda>x. c) *o O(f) = O(f)"
- for c :: "'a::linordered_field"
- apply (auto del: subsetI)
- apply (rule order_trans)
- apply (rule bigo_mult2)
- apply (simp add: func_times)
- apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
- apply (rule_tac x = "\<lambda>y. inverse c * x y" in exI)
- apply (simp add: mult.assoc [symmetric] abs_mult)
- apply (rule_tac x = "\<bar>inverse c\<bar> * ca" in exI)
- apply auto
- done
-
-lemma bigo_const_mult6 [intro]: "(\<lambda>x. c) *o O(f) \<subseteq> O(f)"
- apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
- apply (rule_tac x = "ca * \<bar>c\<bar>" in exI)
- apply (rule allI)
- apply (subgoal_tac "ca * \<bar>c\<bar> * \<bar>f x\<bar> = \<bar>c\<bar> * (ca * \<bar>f x\<bar>)")
- apply (erule ssubst)
- apply (subst abs_mult)
- apply (rule mult_left_mono)
- apply (erule spec)
- apply simp
- apply (simp add: ac_simps)
- done
-
-lemma bigo_const_mult7 [intro]:
- assumes *: "f =o O(g)"
- shows "(\<lambda>x. c * f x) =o O(g)"
-proof -
- from * have "(\<lambda>x. c) * f =o (\<lambda>x. c) *o O(g)"
- by auto
- also have "(\<lambda>x. c) * f = (\<lambda>x. c * f x)"
- by (simp add: func_times)
- also have "(\<lambda>x. c) *o O(g) \<subseteq> O(g)"
- by (auto del: subsetI)
- finally show ?thesis .
-qed
-
-lemma bigo_compose1: "f =o O(g) \<Longrightarrow> (\<lambda>x. f (k x)) =o O(\<lambda>x. g (k x))"
- by (auto simp: bigo_def)
-
-lemma bigo_compose2: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. f (k x)) =o (\<lambda>x. g (k x)) +o O(\<lambda>x. h(k x))"
- apply (simp only: set_minus_plus [symmetric] fun_Compl_def func_plus)
- apply (drule bigo_compose1)
- apply (simp add: fun_diff_def)
- done
-
-
-subsection \<open>Sum\<close>
-
-lemma bigo_sum_main: "\<forall>x. \<forall>y \<in> A x. 0 \<le> h x y \<Longrightarrow>
- \<exists>c. \<forall>x. \<forall>y \<in> A x. \<bar>f x y\<bar> \<le> c * h x y \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
- apply (auto simp add: bigo_def)
- apply (rule_tac x = "\<bar>c\<bar>" in exI)
- apply (subst abs_of_nonneg) back back
- apply (rule sum_nonneg)
- apply force
- apply (subst sum_distrib_left)
- apply (rule allI)
- apply (rule order_trans)
- apply (rule sum_abs)
- apply (rule sum_mono)
- apply (rule order_trans)
- apply (drule spec)+
- apply (drule bspec)+
- apply assumption+
- apply (drule bspec)
- apply assumption+
- apply (rule mult_right_mono)
- apply (rule abs_ge_self)
- apply force
- done
-
-lemma bigo_sum1: "\<forall>x y. 0 \<le> h x y \<Longrightarrow>
- \<exists>c. \<forall>x y. \<bar>f x y\<bar> \<le> c * h x y \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
- apply (rule bigo_sum_main)
- apply force
- apply clarsimp
- apply (rule_tac x = c in exI)
- apply force
- done
-
-lemma bigo_sum2: "\<forall>y. 0 \<le> h y \<Longrightarrow>
- \<exists>c. \<forall>y. \<bar>f y\<bar> \<le> c * (h y) \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. f y) =o O(\<lambda>x. \<Sum>y \<in> A x. h y)"
- by (rule bigo_sum1) auto
-
-lemma bigo_sum3: "f =o O(h) \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
- apply (rule bigo_sum1)
- apply (rule allI)+
- apply (rule abs_ge_zero)
- apply (unfold bigo_def)
- apply auto
- apply (rule_tac x = c in exI)
- apply (rule allI)+
- apply (subst abs_mult)+
- apply (subst mult.left_commute)
- apply (rule mult_left_mono)
- apply (erule spec)
- apply (rule abs_ge_zero)
- done
-
-lemma bigo_sum4: "f =o g +o O(h) \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
- (\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
- O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
- apply (rule set_minus_imp_plus)
- apply (subst fun_diff_def)
- apply (subst sum_subtractf [symmetric])
- apply (subst right_diff_distrib [symmetric])
- apply (rule bigo_sum3)
- apply (subst fun_diff_def [symmetric])
- apply (erule set_plus_imp_minus)
- done
-
-lemma bigo_sum5: "f =o O(h) \<Longrightarrow> \<forall>x y. 0 \<le> l x y \<Longrightarrow>
- \<forall>x. 0 \<le> h x \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
- O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
- apply (subgoal_tac "(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y)) =
- (\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)")
- apply (erule ssubst)
- apply (erule bigo_sum3)
- apply (rule ext)
- apply (rule sum.cong)
- apply (rule refl)
- apply (subst abs_of_nonneg)
- apply auto
- done
-
-lemma bigo_sum6: "f =o g +o O(h) \<Longrightarrow> \<forall>x y. 0 \<le> l x y \<Longrightarrow>
- \<forall>x. 0 \<le> h x \<Longrightarrow>
- (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
- (\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
- O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
- apply (rule set_minus_imp_plus)
- apply (subst fun_diff_def)
- apply (subst sum_subtractf [symmetric])
- apply (subst right_diff_distrib [symmetric])
- apply (rule bigo_sum5)
- apply (subst fun_diff_def [symmetric])
- apply (drule set_plus_imp_minus)
- apply auto
- done
-
-
-subsection \<open>Misc useful stuff\<close>
-
-lemma bigo_useful_intro: "A \<subseteq> O(f) \<Longrightarrow> B \<subseteq> O(f) \<Longrightarrow> A + B \<subseteq> O(f)"
- apply (subst bigo_plus_idemp [symmetric])
- apply (rule set_plus_mono2)
- apply assumption+
- done
-
-lemma bigo_useful_add: "f =o O(h) \<Longrightarrow> g =o O(h) \<Longrightarrow> f + g =o O(h)"
- apply (subst bigo_plus_idemp [symmetric])
- apply (rule set_plus_intro)
- apply assumption+
- done
-
-lemma bigo_useful_const_mult: "c \<noteq> 0 \<Longrightarrow> (\<lambda>x. c) * f =o O(h) \<Longrightarrow> f =o O(h)"
- for c :: "'a::linordered_field"
- apply (rule subsetD)
- apply (subgoal_tac "(\<lambda>x. 1 / c) *o O(h) \<subseteq> O(h)")
- apply assumption
- apply (rule bigo_const_mult6)
- apply (subgoal_tac "f = (\<lambda>x. 1 / c) * ((\<lambda>x. c) * f)")
- apply (erule ssubst)
- apply (erule set_times_intro2)
- apply (simp add: func_times)
- done
-
-lemma bigo_fix: "(\<lambda>x::nat. f (x + 1)) =o O(\<lambda>x. h (x + 1)) \<Longrightarrow> f 0 = 0 \<Longrightarrow> f =o O(h)"
- apply (simp add: bigo_alt_def)
- apply auto
- apply (rule_tac x = c in exI)
- apply auto
- apply (case_tac "x = 0")
- apply simp
- apply (subgoal_tac "x = Suc (x - 1)")
- apply (erule ssubst) back
- apply (erule spec)
- apply simp
- done
-
-lemma bigo_fix2:
- "(\<lambda>x. f ((x::nat) + 1)) =o (\<lambda>x. g(x + 1)) +o O(\<lambda>x. h(x + 1)) \<Longrightarrow>
- f 0 = g 0 \<Longrightarrow> f =o g +o O(h)"
- apply (rule set_minus_imp_plus)
- apply (rule bigo_fix)
- apply (subst fun_diff_def)
- apply (subst fun_diff_def [symmetric])
- apply (rule set_plus_imp_minus)
- apply simp
- apply (simp add: fun_diff_def)
- done
-
-
-subsection \<open>Less than or equal to\<close>
-
-definition lesso :: "('a \<Rightarrow> 'b::linordered_idom) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" (infixl "<o" 70)
- where "f <o g = (\<lambda>x. max (f x - g x) 0)"
-
-lemma bigo_lesseq1: "f =o O(h) \<Longrightarrow> \<forall>x. \<bar>g x\<bar> \<le> \<bar>f x\<bar> \<Longrightarrow> g =o O(h)"
- apply (unfold bigo_def)
- apply clarsimp
- apply (rule_tac x = c in exI)
- apply (rule allI)
- apply (rule order_trans)
- apply (erule spec)+
- done
-
-lemma bigo_lesseq2: "f =o O(h) \<Longrightarrow> \<forall>x. \<bar>g x\<bar> \<le> f x \<Longrightarrow> g =o O(h)"
- apply (erule bigo_lesseq1)
- apply (rule allI)
- apply (drule_tac x = x in spec)
- apply (rule order_trans)
- apply assumption
- apply (rule abs_ge_self)
- done
-
-lemma bigo_lesseq3: "f =o O(h) \<Longrightarrow> \<forall>x. 0 \<le> g x \<Longrightarrow> \<forall>x. g x \<le> f x \<Longrightarrow> g =o O(h)"
- apply (erule bigo_lesseq2)
- apply (rule allI)
- apply (subst abs_of_nonneg)
- apply (erule spec)+
- done
-
-lemma bigo_lesseq4: "f =o O(h) \<Longrightarrow>
- \<forall>x. 0 \<le> g x \<Longrightarrow> \<forall>x. g x \<le> \<bar>f x\<bar> \<Longrightarrow> g =o O(h)"
- apply (erule bigo_lesseq1)
- apply (rule allI)
- apply (subst abs_of_nonneg)
- apply (erule spec)+
- done
-
-lemma bigo_lesso1: "\<forall>x. f x \<le> g x \<Longrightarrow> f <o g =o O(h)"
- apply (unfold lesso_def)
- apply (subgoal_tac "(\<lambda>x. max (f x - g x) 0) = 0")
- apply (erule ssubst)
- apply (rule bigo_zero)
- apply (unfold func_zero)
- apply (rule ext)
- apply (simp split: split_max)
- done
-
-lemma bigo_lesso2: "f =o g +o O(h) \<Longrightarrow> \<forall>x. 0 \<le> k x \<Longrightarrow> \<forall>x. k x \<le> f x \<Longrightarrow> k <o g =o O(h)"
- apply (unfold lesso_def)
- apply (rule bigo_lesseq4)
- apply (erule set_plus_imp_minus)
- apply (rule allI)
- apply (rule max.cobounded2)
- apply (rule allI)
- apply (subst fun_diff_def)
- apply (case_tac "0 \<le> k x - g x")
- apply simp
- apply (subst abs_of_nonneg)
- apply (drule_tac x = x in spec) back
- apply (simp add: algebra_simps)
- apply (subst diff_conv_add_uminus)+
- apply (rule add_right_mono)
- apply (erule spec)
- apply (rule order_trans)
- prefer 2
- apply (rule abs_ge_zero)
- apply (simp add: algebra_simps)
- done
-
-lemma bigo_lesso3: "f =o g +o O(h) \<Longrightarrow> \<forall>x. 0 \<le> k x \<Longrightarrow> \<forall>x. g x \<le> k x \<Longrightarrow> f <o k =o O(h)"
- apply (unfold lesso_def)
- apply (rule bigo_lesseq4)
- apply (erule set_plus_imp_minus)
- apply (rule allI)
- apply (rule max.cobounded2)
- apply (rule allI)
- apply (subst fun_diff_def)
- apply (case_tac "0 \<le> f x - k x")
- apply simp
- apply (subst abs_of_nonneg)
- apply (drule_tac x = x in spec) back
- apply (simp add: algebra_simps)
- apply (subst diff_conv_add_uminus)+
- apply (rule add_left_mono)
- apply (rule le_imp_neg_le)
- apply (erule spec)
- apply (rule order_trans)
- prefer 2
- apply (rule abs_ge_zero)
- apply (simp add: algebra_simps)
- done
-
-lemma bigo_lesso4: "f <o g =o O(k) \<Longrightarrow> g =o h +o O(k) \<Longrightarrow> f <o h =o O(k)"
- for k :: "'a \<Rightarrow> 'b::linordered_field"
- apply (unfold lesso_def)
- apply (drule set_plus_imp_minus)
- apply (drule bigo_abs5) back
- apply (simp add: fun_diff_def)
- apply (drule bigo_useful_add)
- apply assumption
- apply (erule bigo_lesseq2) back
- apply (rule allI)
- apply (auto simp add: func_plus fun_diff_def algebra_simps split: split_max abs_split)
- done
-
-lemma bigo_lesso5: "f <o g =o O(h) \<Longrightarrow> \<exists>C. \<forall>x. f x \<le> g x + C * \<bar>h x\<bar>"
- apply (simp only: lesso_def bigo_alt_def)
- apply clarsimp
- apply (rule_tac x = c in exI)
- apply (rule allI)
- apply (drule_tac x = x in spec)
- apply (subgoal_tac "\<bar>max (f x - g x) 0\<bar> = max (f x - g x) 0")
- apply (clarsimp simp add: algebra_simps)
- apply (rule abs_of_nonneg)
- apply (rule max.cobounded2)
- done
-
-lemma lesso_add: "f <o g =o O(h) \<Longrightarrow> k <o l =o O(h) \<Longrightarrow> (f + k) <o (g + l) =o O(h)"
- apply (unfold lesso_def)
- apply (rule bigo_lesseq3)
- apply (erule bigo_useful_add)
- apply assumption
- apply (force split: split_max)
- apply (auto split: split_max simp add: func_plus)
- done
-
-lemma bigo_LIMSEQ1: "f =o O(g) \<Longrightarrow> g \<longlonglongrightarrow> 0 \<Longrightarrow> f \<longlonglongrightarrow> 0"
- for f g :: "nat \<Rightarrow> real"
- apply (simp add: LIMSEQ_iff bigo_alt_def)
- apply clarify
- apply (drule_tac x = "r / c" in spec)
- apply (drule mp)
- apply simp
- apply clarify
- apply (rule_tac x = no in exI)
- apply (rule allI)
- apply (drule_tac x = n in spec)+
- apply (rule impI)
- apply (drule mp)
- apply assumption
- apply (rule order_le_less_trans)
- apply assumption
- apply (rule order_less_le_trans)
- apply (subgoal_tac "c * \<bar>g n\<bar> < c * (r / c)")
- apply assumption
- apply (erule mult_strict_left_mono)
- apply assumption
- apply simp
- done
-
-lemma bigo_LIMSEQ2: "f =o g +o O(h) \<Longrightarrow> h \<longlonglongrightarrow> 0 \<Longrightarrow> f \<longlonglongrightarrow> a \<Longrightarrow> g \<longlonglongrightarrow> a"
- for f g h :: "nat \<Rightarrow> real"
- apply (drule set_plus_imp_minus)
- apply (drule bigo_LIMSEQ1)
- apply assumption
- apply (simp only: fun_diff_def)
- apply (erule Lim_transform2)
- apply assumption
- done
-
-end
--- a/src/HOL/Library/Library.thy Thu Jan 19 16:22:41 2023 +0100
+++ b/src/HOL/Library/Library.thy Thu Jan 19 17:53:05 2023 +0100
@@ -3,7 +3,6 @@
imports
AList
Adhoc_Overloading
- BigO
BNF_Axiomatization
BNF_Corec
Bourbaki_Witt_Fixpoint
--- a/src/HOL/Library/Set_Algebras.thy Thu Jan 19 16:22:41 2023 +0100
+++ b/src/HOL/Library/Set_Algebras.thy Thu Jan 19 17:53:05 2023 +0100
@@ -12,8 +12,8 @@
text \<open>
This library lifts operations like addition and multiplication to sets. It
- was designed to support asymptotic calculations. See the comments at the top
- of \<^file>\<open>BigO.thy\<close>.
+ was designed to support asymptotic calculations for the now-obsolete BigO theory,
+ but has other uses.
\<close>
instantiation set :: (plus) plus
--- a/src/HOL/ROOT Thu Jan 19 16:22:41 2023 +0100
+++ b/src/HOL/ROOT Thu Jan 19 17:53:05 2023 +0100
@@ -669,6 +669,7 @@
Argo_Examples
Arith_Examples
Ballot
+ BigO
BinEx
Birthday_Paradox
Bubblesort
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/BigO.thy Thu Jan 19 17:53:05 2023 +0100
@@ -0,0 +1,503 @@
+(* Title: HOL/ex/BigO.thy
+ Authors: Jeremy Avigad and Kevin Donnelly; proofs tidied by LCP
+*)
+
+section \<open>Big O notation\<close>
+
+theory BigO
+ imports
+ Complex_Main
+ "HOL-Library.Function_Algebras"
+ "HOL-Library.Set_Algebras"
+begin
+
+text \<open>
+ This library is designed to support asymptotic ``big O'' calculations,
+ i.e.~reasoning with expressions of the form \<open>f = O(g)\<close> and \<open>f = g + O(h)\<close>.
+ An earlier version of this library is described in detail in \<^cite>\<open>"Avigad-Donnelly"\<close>.
+
+ The main changes in this version are as follows:
+
+ \<^item> We have eliminated the \<open>O\<close> operator on sets. (Most uses of this seem
+ to be inessential.)
+ \<^item> We no longer use \<open>+\<close> as output syntax for \<open>+o\<close>
+ \<^item> Lemmas involving \<open>sumr\<close> have been replaced by more general lemmas
+ involving `\<open>sum\<close>.
+ \<^item> The library has been expanded, with e.g.~support for expressions of
+ the form \<open>f < g + O(h)\<close>.
+
+ Note also since the Big O library includes rules that demonstrate set
+ inclusion, to use the automated reasoners effectively with the library one
+ should redeclare the theorem \<open>subsetI\<close> as an intro rule, rather than as an
+ \<open>intro!\<close> rule, for example, using \<^theory_text>\<open>declare subsetI [del, intro]\<close>.
+\<close>
+
+
+subsection \<open>Definitions\<close>
+
+definition bigo :: "('a \<Rightarrow> 'b::linordered_idom) \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(1O'(_'))")
+ where "O(f:: 'a \<Rightarrow> 'b) = {h. \<exists>c. \<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>}"
+
+lemma bigo_pos_const:
+ "(\<exists>c::'a::linordered_idom. \<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>) \<longleftrightarrow>
+ (\<exists>c. 0 < c \<and> (\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>))"
+ by (metis (no_types, opaque_lifting) abs_ge_zero abs_not_less_zero abs_of_nonneg dual_order.trans
+ mult_1 zero_less_abs_iff zero_less_mult_iff zero_less_one)
+
+lemma bigo_alt_def: "O(f) = {h. \<exists>c. 0 < c \<and> (\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>)}"
+ by (auto simp add: bigo_def bigo_pos_const)
+
+lemma bigo_elt_subset [intro]: "f \<in> O(g) \<Longrightarrow> O(f) \<le> O(g)"
+ apply (auto simp add: bigo_alt_def)
+ by (metis (no_types, opaque_lifting) mult.assoc mult_le_cancel_iff2 order.trans
+ zero_less_mult_iff)
+
+lemma bigo_refl [intro]: "f \<in> O(f)"
+ using bigo_def comm_monoid_mult_class.mult_1 dual_order.eq_iff by blast
+
+lemma bigo_zero: "0 \<in> O(g)"
+ using bigo_def mult_le_cancel_left1 by fastforce
+
+lemma bigo_zero2: "O(\<lambda>x. 0) = {\<lambda>x. 0}"
+ by (auto simp add: bigo_def)
+
+lemma bigo_plus_self_subset [intro]: "O(f) + O(f) \<subseteq> O(f)"
+ apply (auto simp add: bigo_alt_def set_plus_def)
+ apply (rule_tac x = "c + ca" in exI)
+ by (smt (verit, best) abs_triangle_ineq add_mono add_pos_pos comm_semiring_class.distrib dual_order.trans)
+
+lemma bigo_plus_idemp [simp]: "O(f) + O(f) = O(f)"
+ by (simp add: antisym bigo_plus_self_subset bigo_zero set_zero_plus2)
+
+lemma bigo_plus_subset [intro]: "O(f + g) \<subseteq> O(f) + O(g)"
+ apply (rule subsetI)
+ apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)
+ apply (subst bigo_pos_const [symmetric])+
+ apply (rule_tac x = "\<lambda>n. if \<bar>g n\<bar> \<le> \<bar>f n\<bar> then x n else 0" in exI)
+ apply (rule conjI)
+ apply (rule_tac x = "c + c" in exI)
+ apply (clarsimp)
+ apply (smt (verit, ccfv_threshold) mult.commute abs_triangle_ineq add_le_cancel_left dual_order.trans mult.left_commute mult_2 mult_le_cancel_iff2)
+ apply (simp add: order_less_le)
+ apply (rule_tac x = "\<lambda>n. if \<bar>f n\<bar> < \<bar>g n\<bar> then x n else 0" in exI)
+ apply (rule conjI)
+ apply (rule_tac x = "c + c" in exI)
+ apply auto
+ apply (subgoal_tac "c * \<bar>f xa + g xa\<bar> \<le> (c + c) * \<bar>g xa\<bar>")
+ apply (metis mult_2 order.trans)
+ apply simp
+ done
+
+lemma bigo_plus_subset2 [intro]: "A \<subseteq> O(f) \<Longrightarrow> B \<subseteq> O(f) \<Longrightarrow> A + B \<subseteq> O(f)"
+ using bigo_plus_idemp set_plus_mono2 by blast
+
+lemma bigo_plus_eq: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. 0 \<le> g x \<Longrightarrow> O(f + g) = O(f) + O(g)"
+ apply (rule equalityI)
+ apply (rule bigo_plus_subset)
+ apply (simp add: bigo_alt_def set_plus_def func_plus)
+ apply clarify
+ apply (rule_tac x = "max c ca" in exI)
+ by (smt (verit, del_insts) add.commute abs_triangle_ineq add_mono_thms_linordered_field(3) distrib_left less_max_iff_disj linorder_not_less max.orderE max_mult_distrib_right order_le_less)
+
+lemma bigo_bounded_alt: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> c * g x \<Longrightarrow> f \<in> O(g)"
+ by (simp add: bigo_def) (metis abs_mult abs_of_nonneg order_trans)
+
+lemma bigo_bounded: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> g x \<Longrightarrow> f \<in> O(g)"
+ by (metis bigo_bounded_alt mult_1)
+
+lemma bigo_bounded2: "\<forall>x. lb x \<le> f x \<Longrightarrow> \<forall>x. f x \<le> lb x + g x \<Longrightarrow> f \<in> lb +o O(g)"
+ by (simp add: add.commute bigo_bounded diff_le_eq set_minus_imp_plus)
+
+lemma bigo_abs: "(\<lambda>x. \<bar>f x\<bar>) =o O(f)"
+ by (smt (verit, del_insts) abs_abs bigo_def bigo_refl mem_Collect_eq)
+
+lemma bigo_abs2: "f =o O(\<lambda>x. \<bar>f x\<bar>)"
+ by (smt (verit, del_insts) abs_abs bigo_def bigo_refl mem_Collect_eq)
+
+lemma bigo_abs3: "O(f) = O(\<lambda>x. \<bar>f x\<bar>)"
+ using bigo_abs bigo_abs2 bigo_elt_subset by blast
+
+lemma bigo_abs4: assumes "f =o g +o O(h)" shows "(\<lambda>x. \<bar>f x\<bar>) =o (\<lambda>x. \<bar>g x\<bar>) +o O(h)"
+proof -
+ { assume *: "f - g \<in> O(h)"
+ have "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) =o O(\<lambda>x. \<bar>\<bar>f x\<bar> - \<bar>g x\<bar>\<bar>)"
+ by (rule bigo_abs2)
+ also have "\<dots> \<subseteq> O(\<lambda>x. \<bar>f x - g x\<bar>)"
+ by (simp add: abs_triangle_ineq3 bigo_bounded bigo_elt_subset)
+ also have "\<dots> \<subseteq> O(f - g)"
+ using bigo_abs3 by fastforce
+ also from * have "\<dots> \<subseteq> O(h)"
+ by (rule bigo_elt_subset)
+ finally have "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) \<in> O(h)" . }
+ then show ?thesis
+ by (smt (verit) assms bigo_alt_def fun_diff_def mem_Collect_eq set_minus_imp_plus set_plus_imp_minus)
+qed
+
+lemma bigo_abs5: "f =o O(g) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o O(g)"
+ by (auto simp: bigo_def)
+
+lemma bigo_elt_subset2 [intro]:
+ assumes *: "f \<in> g +o O(h)"
+ shows "O(f) \<subseteq> O(g) + O(h)"
+proof -
+ note *
+ also have "g +o O(h) \<subseteq> O(g) + O(h)"
+ by (auto del: subsetI)
+ also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
+ by (subst bigo_abs3 [symmetric])+ (rule refl)
+ also have "\<dots> = O((\<lambda>x. \<bar>g x\<bar>) + (\<lambda>x. \<bar>h x\<bar>))"
+ by (rule bigo_plus_eq [symmetric]) auto
+ finally have "f \<in> \<dots>" .
+ then have "O(f) \<subseteq> \<dots>"
+ by (elim bigo_elt_subset)
+ also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
+ by (rule bigo_plus_eq, auto)
+ finally show ?thesis
+ by (simp flip: bigo_abs3)
+qed
+
+lemma bigo_mult [intro]: "O(f)*O(g) \<subseteq> O(f * g)"
+ apply (rule subsetI)
+ apply (subst bigo_def)
+ apply (clarsimp simp add: bigo_alt_def set_times_def func_times)
+ apply (rule_tac x = "c * ca" in exI)
+ by (smt (verit, ccfv_threshold) mult.commute mult.assoc abs_ge_zero abs_mult dual_order.trans mult_mono)
+
+lemma bigo_mult2 [intro]: "f *o O(g) \<subseteq> O(f * g)"
+ by (metis bigo_mult bigo_refl dual_order.trans mult.commute set_times_mono4)
+
+lemma bigo_mult3: "f \<in> O(h) \<Longrightarrow> g \<in> O(j) \<Longrightarrow> f * g \<in> O(h * j)"
+ using bigo_mult mult.commute mult.commute set_times_intro subsetD by blast
+
+lemma bigo_mult4 [intro]: "f \<in> k +o O(h) \<Longrightarrow> g * f \<in> (g * k) +o O(g * h)"
+ by (metis bigo_mult3 bigo_refl left_diff_distrib' mult.commute set_minus_imp_plus set_plus_imp_minus)
+
+lemma bigo_mult5:
+ fixes f :: "'a \<Rightarrow> 'b::linordered_field"
+ assumes "\<forall>x. f x \<noteq> 0"
+ shows "O(f * g) \<subseteq> f *o O(g)"
+proof
+ fix h
+ assume "h \<in> O(f * g)"
+ then have "(\<lambda>x. 1 / (f x)) * h \<in> (\<lambda>x. 1 / f x) *o O(f * g)"
+ by auto
+ also have "\<dots> \<subseteq> O((\<lambda>x. 1 / f x) * (f * g))"
+ by (rule bigo_mult2)
+ also have "(\<lambda>x. 1 / f x) * (f * g) = g"
+ using assms by auto
+ finally have "(\<lambda>x. (1::'b) / f x) * h \<in> O(g)" .
+ then have "f * ((\<lambda>x. (1::'b) / f x) * h) \<in> f *o O(g)"
+ by auto
+ also have "f * ((\<lambda>x. (1::'b) / f x) * h) = h"
+ by (simp add: assms times_fun_def)
+ finally show "h \<in> f *o O(g)" .
+qed
+
+lemma bigo_mult6: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = f *o O(g)"
+ for f :: "'a \<Rightarrow> 'b::linordered_field"
+ by (simp add: bigo_mult2 bigo_mult5 subset_antisym)
+
+lemma bigo_mult7: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) \<subseteq> O(f) * O(g)"
+ for f :: "'a \<Rightarrow> 'b::linordered_field"
+ by (metis bigo_mult6 bigo_refl mult.commute set_times_mono4)
+
+lemma bigo_mult8: "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = O(f) * O(g)"
+ for f :: "'a \<Rightarrow> 'b::linordered_field"
+ by (simp add: bigo_mult bigo_mult7 subset_antisym)
+
+lemma bigo_minus [intro]: "f \<in> O(g) \<Longrightarrow> - f \<in> O(g)"
+ by (auto simp add: bigo_def fun_Compl_def)
+
+lemma bigo_minus2:
+ assumes "f \<in> g +o O(h)" shows "- f \<in> -g +o O(h)"
+proof -
+ have "- f + g \<in> O(h)"
+ by (metis assms bigo_minus minus_diff_eq set_plus_imp_minus uminus_add_conv_diff)
+ then show ?thesis
+ by (simp add: set_minus_imp_plus)
+qed
+
+lemma bigo_minus3: "O(- f) = O(f)"
+ by (auto simp add: bigo_def fun_Compl_def)
+
+lemma bigo_plus_absorb_lemma1:
+ assumes *: "f \<in> O(g)"
+ shows "f +o O(g) \<subseteq> O(g)"
+ using assms bigo_plus_idemp set_plus_mono4 by blast
+
+lemma bigo_plus_absorb_lemma2:
+ assumes *: "f \<in> O(g)"
+ shows "O(g) \<subseteq> f +o O(g)"
+proof -
+ from * have "- f \<in> O(g)"
+ by auto
+ then have "- f +o O(g) \<subseteq> O(g)"
+ by (elim bigo_plus_absorb_lemma1)
+ then have "f +o (- f +o O(g)) \<subseteq> f +o O(g)"
+ by auto
+ also have "f +o (- f +o O(g)) = O(g)"
+ by (simp add: set_plus_rearranges)
+ finally show ?thesis .
+qed
+
+lemma bigo_plus_absorb [simp]: "f \<in> O(g) \<Longrightarrow> f +o O(g) = O(g)"
+ by (simp add: bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 subset_antisym)
+
+lemma bigo_plus_absorb2 [intro]: "f \<in> O(g) \<Longrightarrow> A \<subseteq> O(g) \<Longrightarrow> f +o A \<subseteq> O(g)"
+ using bigo_plus_absorb set_plus_mono by blast
+
+lemma bigo_add_commute_imp: "f \<in> g +o O(h) \<Longrightarrow> g \<in> f +o O(h)"
+ by (metis bigo_minus minus_diff_eq set_minus_imp_plus set_plus_imp_minus)
+
+lemma bigo_add_commute: "f \<in> g +o O(h) \<longleftrightarrow> g \<in> f +o O(h)"
+ using bigo_add_commute_imp by blast
+
+lemma bigo_const1: "(\<lambda>x. c) \<in> O(\<lambda>x. 1)"
+ by (auto simp add: bigo_def ac_simps)
+
+lemma bigo_const2 [intro]: "O(\<lambda>x. c) \<subseteq> O(\<lambda>x. 1)"
+ by (metis bigo_elt_subset bigo_const1)
+
+lemma bigo_const3: "c \<noteq> 0 \<Longrightarrow> (\<lambda>x. 1) \<in> O(\<lambda>x. c)"
+ for c :: "'a::linordered_field"
+ by (metis bigo_bounded_alt le_numeral_extra(4) nonzero_divide_eq_eq zero_less_one_class.zero_le_one)
+
+lemma bigo_const4: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. 1) \<subseteq> O(\<lambda>x. c)"
+ for c :: "'a::linordered_field"
+ by (metis bigo_elt_subset bigo_const3)
+
+lemma bigo_const [simp]: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. c) = O(\<lambda>x. 1)"
+ for c :: "'a::linordered_field"
+ by (metis equalityI bigo_const2 bigo_const4)
+
+lemma bigo_const_mult1: "(\<lambda>x. c * f x) \<in> O(f)"
+ by (smt (z3) abs_mult bigo_def bigo_refl mem_Collect_eq mult.left_commute mult_commute_abs)
+
+lemma bigo_const_mult2: "O(\<lambda>x. c * f x) \<subseteq> O(f)"
+ by (metis bigo_elt_subset bigo_const_mult1)
+
+lemma bigo_const_mult3: "c \<noteq> 0 \<Longrightarrow> f \<in> O(\<lambda>x. c * f x)"
+ for c :: "'a::linordered_field"
+ by (simp add: bigo_def) (metis abs_mult field_class.field_divide_inverse mult.commute nonzero_divide_eq_eq order_refl)
+
+lemma bigo_const_mult4: "c \<noteq> 0 \<Longrightarrow> O(f) \<subseteq> O(\<lambda>x. c * f x)"
+ for c :: "'a::linordered_field"
+ by (simp add: bigo_const_mult3 bigo_elt_subset)
+
+lemma bigo_const_mult [simp]: "c \<noteq> 0 \<Longrightarrow> O(\<lambda>x. c * f x) = O(f)"
+ for c :: "'a::linordered_field"
+ by (simp add: bigo_const_mult2 bigo_const_mult4 subset_antisym)
+
+lemma bigo_const_mult5 [simp]: "(\<lambda>x. c) *o O(f) = O(f)" if "c \<noteq> 0"
+ for c :: "'a::linordered_field"
+proof
+ show "O(f) \<subseteq> (\<lambda>x. c) *o O(f)"
+ using that
+ apply (clarsimp simp add: bigo_def elt_set_times_def func_times)
+ apply (rule_tac x = "\<lambda>y. inverse c * x y" in exI)
+ apply (simp add: mult.assoc [symmetric] abs_mult)
+ apply (rule_tac x = "\<bar>inverse c\<bar> * ca" in exI)
+ apply auto
+ done
+ have "O(\<lambda>x. c * f x) \<subseteq> O(f)"
+ by (simp add: bigo_const_mult2)
+ then show "(\<lambda>x. c) *o O(f) \<subseteq> O(f)"
+ using order_trans[OF bigo_mult2] by (force simp add: times_fun_def)
+qed
+
+
+lemma bigo_const_mult6 [intro]: "(\<lambda>x. c) *o O(f) \<subseteq> O(f)"
+ apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
+ apply (rule_tac x = "ca * \<bar>c\<bar>" in exI)
+ by (smt (verit, ccfv_SIG) ab_semigroup_mult_class.mult_ac(1) abs_abs abs_le_self_iff abs_mult le_cases3 mult.commute mult_left_mono)
+
+lemma bigo_const_mult7 [intro]:
+ assumes *: "f =o O(g)"
+ shows "(\<lambda>x. c * f x) =o O(g)"
+proof -
+ from * have "(\<lambda>x. c) * f =o (\<lambda>x. c) *o O(g)"
+ by auto
+ also have "(\<lambda>x. c) * f = (\<lambda>x. c * f x)"
+ by (simp add: func_times)
+ also have "(\<lambda>x. c) *o O(g) \<subseteq> O(g)"
+ by (auto del: subsetI)
+ finally show ?thesis .
+qed
+
+lemma bigo_compose1: "f =o O(g) \<Longrightarrow> (\<lambda>x. f (k x)) =o O(\<lambda>x. g (k x))"
+ by (auto simp: bigo_def)
+
+lemma bigo_compose2: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. f (k x)) =o (\<lambda>x. g (k x)) +o O(\<lambda>x. h(k x))"
+ by (smt (verit, best) set_minus_plus bigo_def fun_diff_def mem_Collect_eq)
+
+
+subsection \<open>Sum\<close>
+
+lemma bigo_sum_main:
+ assumes "\<forall>x. \<forall>y \<in> A x. 0 \<le> h x y" and "\<forall>x. \<forall>y \<in> A x. \<bar>f x y\<bar> \<le> c * h x y"
+ shows "(\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
+proof -
+ have "(\<Sum>i\<in>A x. \<bar>f x i\<bar>) \<le> \<bar>c\<bar> * sum (h x) (A x)" for x
+ by (smt (verit, ccfv_threshold) assms abs_mult_pos abs_of_nonneg abs_of_nonpos dual_order.trans le_cases3 neg_0_le_iff_le sum_distrib_left sum_mono)
+ then show ?thesis
+ using assms by (fastforce simp add: bigo_def sum_nonneg intro: order_trans [OF sum_abs])
+qed
+
+lemma bigo_sum1: "\<forall>x y. 0 \<le> h x y \<Longrightarrow>
+ \<exists>c. \<forall>x y. \<bar>f x y\<bar> \<le> c * h x y \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
+ by (metis (no_types) bigo_sum_main)
+
+lemma bigo_sum2: "\<forall>y. 0 \<le> h y \<Longrightarrow>
+ \<exists>c. \<forall>y. \<bar>f y\<bar> \<le> c * (h y) \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. f y) =o O(\<lambda>x. \<Sum>y \<in> A x. h y)"
+ by (rule bigo_sum1) auto
+
+lemma bigo_sum3: "f =o O(h) \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
+ apply (rule bigo_sum1)
+ using abs_ge_zero apply blast
+ apply (clarsimp simp: bigo_def)
+ by (smt (verit, ccfv_threshold) abs_mult abs_not_less_zero mult.left_commute mult_le_cancel_left)
+
+lemma bigo_sum4: "f =o g +o O(h) \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
+ O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
+ using bigo_sum3 [of "f-g" h l k A]
+ apply (simp add: algebra_simps sum_subtractf)
+ by (smt (verit) bigo_alt_def minus_apply set_minus_imp_plus set_plus_imp_minus mem_Collect_eq)
+
+lemma bigo_sum5: "f =o O(h) \<Longrightarrow> \<forall>x y. 0 \<le> l x y \<Longrightarrow>
+ \<forall>x. 0 \<le> h x \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
+ O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
+ using bigo_sum3 [of f h l k A] by simp
+
+lemma bigo_sum6: "f =o g +o O(h) \<Longrightarrow> \<forall>x y. 0 \<le> l x y \<Longrightarrow>
+ \<forall>x. 0 \<le> h x \<Longrightarrow>
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
+ (\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
+ O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
+ using bigo_sum5 [of "f-g" h l k A]
+ apply (simp add: algebra_simps sum_subtractf)
+ by (smt (verit, del_insts) bigo_alt_def set_minus_imp_plus minus_apply set_plus_imp_minus mem_Collect_eq)
+
+
+subsection \<open>Misc useful stuff\<close>
+
+lemma bigo_useful_add: "f =o O(h) \<Longrightarrow> g =o O(h) \<Longrightarrow> f + g =o O(h)"
+ using bigo_plus_idemp set_plus_intro by blast
+
+lemma bigo_useful_const_mult: "c \<noteq> 0 \<Longrightarrow> (\<lambda>x. c) * f =o O(h) \<Longrightarrow> f =o O(h)"
+ for c :: "'a::linordered_field"
+ using bigo_elt_subset bigo_mult6 by fastforce
+
+lemma bigo_fix: "(\<lambda>x::nat. f (x + 1)) =o O(\<lambda>x. h (x + 1)) \<Longrightarrow> f 0 = 0 \<Longrightarrow> f =o O(h)"
+ by (simp add: bigo_alt_def) (metis abs_eq_0_iff abs_ge_zero abs_mult abs_of_pos not0_implies_Suc)
+
+lemma bigo_fix2:
+ "(\<lambda>x. f ((x::nat) + 1)) =o (\<lambda>x. g(x + 1)) +o O(\<lambda>x. h(x + 1)) \<Longrightarrow>
+ f 0 = g 0 \<Longrightarrow> f =o g +o O(h)"
+ apply (rule set_minus_imp_plus [OF bigo_fix])
+ apply (smt (verit, del_insts) bigo_alt_def fun_diff_def set_plus_imp_minus mem_Collect_eq)
+ apply simp
+ done
+
+
+subsection \<open>Less than or equal to\<close>
+
+definition lesso :: "('a \<Rightarrow> 'b::linordered_idom) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" (infixl "<o" 70)
+ where "f <o g = (\<lambda>x. max (f x - g x) 0)"
+
+lemma bigo_lesseq1: "f =o O(h) \<Longrightarrow> \<forall>x. \<bar>g x\<bar> \<le> \<bar>f x\<bar> \<Longrightarrow> g =o O(h)"
+ by (smt (verit, del_insts) bigo_def mem_Collect_eq order_trans)
+
+lemma bigo_lesseq2: "f =o O(h) \<Longrightarrow> \<forall>x. \<bar>g x\<bar> \<le> f x \<Longrightarrow> g =o O(h)"
+ by (metis (mono_tags, lifting) abs_ge_zero abs_of_nonneg bigo_lesseq1 dual_order.trans)
+
+lemma bigo_lesseq3: "f =o O(h) \<Longrightarrow> \<forall>x. 0 \<le> g x \<Longrightarrow> \<forall>x. g x \<le> f x \<Longrightarrow> g =o O(h)"
+ by (meson bigo_bounded bigo_elt_subset subsetD)
+
+lemma bigo_lesseq4: "f =o O(h) \<Longrightarrow> \<forall>x. 0 \<le> g x \<Longrightarrow> \<forall>x. g x \<le> \<bar>f x\<bar> \<Longrightarrow> g =o O(h)"
+ by (metis abs_of_nonneg bigo_lesseq1)
+
+lemma bigo_lesso1: "\<forall>x. f x \<le> g x \<Longrightarrow> f <o g =o O(h)"
+ by (smt (verit, del_insts) abs_ge_zero add_0 bigo_abs3 bigo_bounded diff_le_eq lesso_def max_def order_refl)
+
+lemma bigo_lesso2: "f =o g +o O(h) \<Longrightarrow> \<forall>x. 0 \<le> k x \<Longrightarrow> \<forall>x. k x \<le> f x \<Longrightarrow> k <o g =o O(h)"
+ unfolding lesso_def
+ apply (rule bigo_lesseq4 [of "f-g"])
+ apply (erule set_plus_imp_minus)
+ using max.cobounded2 apply blast
+ by (smt (verit) abs_ge_zero abs_of_nonneg diff_ge_0_iff_ge diff_mono diff_self fun_diff_def order_refl max.coboundedI2 max_def)
+
+lemma bigo_lesso3: "f =o g +o O(h) \<Longrightarrow> \<forall>x. 0 \<le> k x \<Longrightarrow> \<forall>x. g x \<le> k x \<Longrightarrow> f <o k =o O(h)"
+ unfolding lesso_def
+ apply (rule bigo_lesseq4 [of "f-g"])
+ apply (erule set_plus_imp_minus)
+ using max.cobounded2 apply blast
+ by (smt (verit) abs_eq_iff abs_ge_zero abs_if abs_minus_le_zero diff_left_mono fun_diff_def le_max_iff_disj order.trans order_eq_refl)
+
+lemma bigo_lesso4:
+ fixes k :: "'a \<Rightarrow> 'b::linordered_field"
+ assumes f: "f <o g =o O(k)" and g: "g =o h +o O(k)"
+ shows "f <o h =o O(k)"
+proof -
+ have "g - h \<in> O(k)"
+ by (simp add: g set_plus_imp_minus)
+ then have "(\<lambda>x. \<bar>g x - h x\<bar>) \<in> O(k)"
+ using bigo_abs5 by force
+ then have \<section>: "(\<lambda>x. max (f x - g x) 0) + (\<lambda>x. \<bar>g x - h x\<bar>) \<in> O(k)"
+ by (metis (mono_tags, lifting) bigo_lesseq1 bigo_useful_add dual_order.eq_iff f lesso_def)
+ have "\<bar>max (f x - h x) 0\<bar> \<le> ((\<lambda>x. max (f x - g x) 0) + (\<lambda>x. \<bar>g x - h x\<bar>)) x" for x
+ by (auto simp add: func_plus fun_diff_def algebra_simps split: split_max abs_split)
+ then show ?thesis
+ by (smt (verit, ccfv_SIG) \<section> bigo_lesseq2 lesso_def)
+qed
+
+
+lemma bigo_lesso5:
+ assumes "f <o g =o O(h)" shows "\<exists>C. \<forall>x. f x \<le> g x + C * \<bar>h x\<bar>"
+proof -
+ obtain c where "0 < c" and c: "\<And>x. f x - g x \<le> c * \<bar>h x\<bar>"
+ using assms by (auto simp: lesso_def bigo_alt_def)
+ have "\<bar>max (f x - g x) 0\<bar> = max (f x - g x) 0" for x
+ by (auto simp add: algebra_simps)
+ then show ?thesis
+ by (metis c add.commute diff_le_eq)
+qed
+
+lemma lesso_add: "f <o g =o O(h) \<Longrightarrow> k <o l =o O(h) \<Longrightarrow> (f + k) <o (g + l) =o O(h)"
+ unfolding lesso_def
+ using bigo_useful_add by (fastforce split: split_max intro: bigo_lesseq3)
+
+lemma bigo_LIMSEQ1: "f \<longlonglongrightarrow> 0" if f: "f =o O(g)" and g: "g \<longlonglongrightarrow> 0"
+ for f g :: "nat \<Rightarrow> real"
+proof -
+ { fix r::real
+ assume "0 < r"
+ obtain c::real where "0 < c" and rc: "\<And>x. \<bar>f x\<bar> \<le> c * \<bar>g x\<bar>"
+ using f by (auto simp: LIMSEQ_iff bigo_alt_def)
+ with g \<open>0 < r\<close> obtain no where "\<forall>n\<ge>no. \<bar>g n\<bar> < r/c"
+ by (fastforce simp: LIMSEQ_iff)
+ then have "\<exists>no. \<forall>n\<ge>no. \<bar>f n\<bar> < r"
+ by (metis \<open>0 < c\<close> mult.commute order_le_less_trans pos_less_divide_eq rc) }
+ then show ?thesis
+ by (auto simp: LIMSEQ_iff)
+qed
+
+lemma bigo_LIMSEQ2:
+ fixes f g :: "nat \<Rightarrow> real"
+ assumes "f =o g +o O(h)" "h \<longlonglongrightarrow> 0" and f: "f \<longlonglongrightarrow> a"
+ shows "g \<longlonglongrightarrow> a"
+proof -
+ have "f - g \<longlonglongrightarrow> 0"
+ using assms bigo_LIMSEQ1 set_plus_imp_minus by blast
+ then have "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
+ by (simp add: fun_diff_def)
+ then show ?thesis
+ using Lim_transform_eq f by blast
+qed
+
+end