--- a/src/HOL/Analysis/Infinite_Set_Sum.thy Thu Aug 31 14:32:23 2017 +0200
+++ b/src/HOL/Analysis/Infinite_Set_Sum.thy Thu Aug 31 17:48:20 2017 +0200
@@ -350,6 +350,25 @@
shows "(\<lambda>x. f x * c) abs_summable_on A"
using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_mult_left)
+lemma abs_summable_on_prod_PiE:
+ fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c :: {real_normed_field,banach,second_countable_topology}"
+ assumes finite: "finite A" and countable: "\<And>x. x \<in> A \<Longrightarrow> countable (B x)"
+ assumes summable: "\<And>x. x \<in> A \<Longrightarrow> f x abs_summable_on B x"
+ shows "(\<lambda>g. \<Prod>x\<in>A. f x (g x)) abs_summable_on PiE A B"
+proof -
+ define B' where "B' = (\<lambda>x. if x \<in> A then B x else {})"
+ from assms have [simp]: "countable (B' x)" for x
+ by (auto simp: B'_def)
+ then interpret product_sigma_finite "count_space \<circ> B'"
+ unfolding o_def by (intro product_sigma_finite.intro sigma_finite_measure_count_space_countable)
+ from assms have "integrable (PiM A (count_space \<circ> B')) (\<lambda>g. \<Prod>x\<in>A. f x (g x))"
+ by (intro product_integrable_prod) (auto simp: abs_summable_on_def B'_def)
+ also have "PiM A (count_space \<circ> B') = count_space (PiE A B')"
+ unfolding o_def using finite by (intro count_space_PiM_finite) simp_all
+ also have "PiE A B' = PiE A B" by (intro PiE_cong) (simp_all add: B'_def)
+ finally show ?thesis by (simp add: abs_summable_on_def)
+qed
+
lemma not_summable_infsetsum_eq:
@@ -366,6 +385,18 @@
by (subst integral_restrict_space [symmetric])
(auto simp: restrict_count_space_subset infsetsum_def)
+lemma nn_integral_conv_infsetsum:
+ assumes "f abs_summable_on A" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
+ shows "nn_integral (count_space A) f = ennreal (infsetsum f A)"
+ using assms unfolding infsetsum_def abs_summable_on_def
+ by (subst nn_integral_eq_integral) auto
+
+lemma infsetsum_conv_nn_integral:
+ assumes "nn_integral (count_space A) f \<noteq> \<infinity>" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
+ shows "infsetsum f A = enn2real (nn_integral (count_space A) f)"
+ unfolding infsetsum_def using assms
+ by (subst integral_eq_nn_integral) auto
+
lemma infsetsum_cong [cong]:
"(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> A = B \<Longrightarrow> infsetsum f A = infsetsum g B"
unfolding infsetsum_def by (intro Bochner_Integration.integral_cong) auto
--- a/src/HOL/Probability/Probability_Mass_Function.thy Thu Aug 31 14:32:23 2017 +0200
+++ b/src/HOL/Probability/Probability_Mass_Function.thy Thu Aug 31 17:48:20 2017 +0200
@@ -529,6 +529,25 @@
shows "integral\<^sup>L (map_pmf g p) f = integral\<^sup>L p (\<lambda>x. f (g x))"
by (simp add: integral_distr map_pmf_rep_eq)
+lemma pmf_abs_summable [intro]: "pmf p abs_summable_on A"
+ by (rule abs_summable_on_subset[OF _ subset_UNIV])
+ (auto simp: abs_summable_on_def integrable_iff_bounded nn_integral_pmf)
+
+lemma measure_pmf_conv_infsetsum: "measure (measure_pmf p) A = infsetsum (pmf p) A"
+ unfolding infsetsum_def by (simp add: integral_eq_nn_integral nn_integral_pmf measure_def)
+
+lemma infsetsum_pmf_eq_1:
+ assumes "set_pmf p \<subseteq> A"
+ shows "infsetsum (pmf p) A = 1"
+proof -
+ have "infsetsum (pmf p) A = lebesgue_integral (count_space UNIV) (pmf p)"
+ using assms unfolding infsetsum_altdef
+ by (intro Bochner_Integration.integral_cong) (auto simp: indicator_def set_pmf_eq)
+ also have "\<dots> = 1"
+ by (subst integral_eq_nn_integral) (auto simp: nn_integral_pmf)
+ finally show ?thesis .
+qed
+
lemma map_return_pmf [simp]: "map_pmf f (return_pmf x) = return_pmf (f x)"
by transfer (simp add: distr_return)
@@ -2079,6 +2098,20 @@
"measure (measure_pmf p) (A \<inter> set_pmf p) = measure (measure_pmf p) A"
using emeasure_Int_set_pmf[of p A] by (simp add: Sigma_Algebra.measure_def)
+lemma measure_prob_cong_0:
+ assumes "\<And>x. x \<in> A - B \<Longrightarrow> pmf p x = 0"
+ assumes "\<And>x. x \<in> B - A \<Longrightarrow> pmf p x = 0"
+ shows "measure (measure_pmf p) A = measure (measure_pmf p) B"
+proof -
+ have "measure_pmf.prob p A = measure_pmf.prob p (A \<inter> set_pmf p)"
+ by (simp add: measure_Int_set_pmf)
+ also have "A \<inter> set_pmf p = B \<inter> set_pmf p"
+ using assms by (auto simp: set_pmf_eq)
+ also have "measure_pmf.prob p \<dots> = measure_pmf.prob p B"
+ by (simp add: measure_Int_set_pmf)
+ finally show ?thesis .
+qed
+
lemma emeasure_pmf_of_list:
assumes "pmf_of_list_wf xs"
shows "emeasure (pmf_of_list xs) A = ennreal (sum_list (map snd (filter (\<lambda>x. fst x \<in> A) xs)))"