--- a/src/HOL/Library/Multiset.thy Sat Sep 15 23:53:10 2012 +0200
+++ b/src/HOL/Library/Multiset.thy Sun Sep 16 06:51:36 2012 +0200
@@ -162,7 +162,6 @@
lemma diff_add:
"(M::'a multiset) - (N + Q) = M - N - Q"
- find_theorems solves
by (simp add: multiset_eq_iff)
lemma diff_union_swap:
--- a/src/HOL/Probability/Caratheodory.thy Sat Sep 15 23:53:10 2012 +0200
+++ b/src/HOL/Probability/Caratheodory.thy Sun Sep 16 06:51:36 2012 +0200
@@ -1125,7 +1125,7 @@
note eq = this
have "(\<Sum>n. \<mu>_r (A' n)) = (\<Sum>n. \<Sum>c\<in>C'. \<mu>_r (A' n \<inter> c))"
- using C' A' find_theorems "\<Union> _ ` _"
+ using C' A'
by (subst volume_finite_additive[symmetric, OF V(1)])
(auto simp: disjoint_def disjoint_family_on_def Union_image_eq[symmetric] simp del: Union_image_eq
intro!: G.Int G.finite_Union arg_cong[where f="\<lambda>X. suminf (\<lambda>i. \<mu>_r (X i))"] ext