minor tidying up (ordered rewriting in Integ.ML)
authorlcp
Thu, 23 Jun 1994 17:52:58 +0200
changeset 438 52e8393ccd77
parent 437 435875e4b21d
child 439 ad3f46c13f1e
minor tidying up (ordered rewriting in Integ.ML)
src/ZF/ex/Acc.ML
src/ZF/ex/Integ.ML
src/ZF/ex/Primrec0.ML
src/ZF/ex/Ramsey.ML
src/ZF/ex/TF.ML
--- a/src/ZF/ex/Acc.ML	Thu Jun 23 17:38:12 1994 +0200
+++ b/src/ZF/ex/Acc.ML	Thu Jun 23 17:52:58 1994 +0200
@@ -30,17 +30,17 @@
     "[| a : acc(r);						\
 \       !!x. [| x: acc(r);  ALL y. <y,x>:r --> P(y) |] ==> P(x)	\
 \    |] ==> P(a)";
-br (major RS Acc.induct) 1;
-br indhyp 1;
+by (rtac (major RS Acc.induct) 1);
+by (rtac indhyp 1);
 by (fast_tac ZF_cs 2);
 by (resolve_tac Acc.intrs 1);
-ba 2;
+by (assume_tac 2);
 by (fast_tac ZF_cs 1);
 val acc_induct = result();
 
 goal Acc.thy "wf[acc(r)](r)";
-br wf_onI2 1;
-be acc_induct 1;
+by (rtac wf_onI2 1);
+by (etac acc_induct 1);
 by (fast_tac ZF_cs 1);
 val wf_on_acc = result();
 
--- a/src/ZF/ex/Integ.ML	Thu Jun 23 17:38:12 1994 +0200
+++ b/src/ZF/ex/Integ.ML	Thu Jun 23 17:52:58 1994 +0200
@@ -20,40 +20,34 @@
 
 (*** Proving that intrel is an equivalence relation ***)
 
-val prems = goal Arith.thy 
-    "[| m #+ n = m' #+ n';  m: nat; m': nat |]   \
-\    ==> m #+ (n #+ k) = m' #+ (n' #+ k)";
-by (asm_simp_tac (arith_ss addsimps ([add_assoc RS sym] @ prems)) 1);
-val add_assoc_cong = result();
-
-val prems = goal Arith.thy 
-    "[| m: nat; n: nat |]   \
-\    ==> m #+ (n #+ k) = n #+ (m #+ k)";
-by (REPEAT (resolve_tac ([add_commute RS add_assoc_cong] @ prems) 1));
-val add_assoc_swap = result();
-
 val add_kill = (refl RS add_cong);
 
-val add_assoc_swap_kill = add_kill RSN (3, add_assoc_swap RS trans);
+val add_left_commute_kill = add_kill RSN (3, add_left_commute RS trans);
 
 (*By luck, requires no typing premises for y1, y2,y3*)
 val eqa::eqb::prems = goal Arith.thy 
     "[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2;  \
 \       x1: nat; x2: nat; x3: nat |]    ==>    x1 #+ y3 = x3 #+ y1";
 by (res_inst_tac [("k","x2")] add_left_cancel 1);
-by (resolve_tac prems 1);
-by (rtac (add_assoc_swap RS trans) 1 THEN typechk_tac prems);
+by (resolve_tac prems 2);
+by (rtac (add_left_commute RS trans) 1 THEN typechk_tac prems);
 by (rtac (eqb RS ssubst) 1);
-by (rtac (add_assoc_swap RS trans) 1 THEN typechk_tac prems);
+by (rtac (add_left_commute RS trans) 1 THEN typechk_tac prems);
 by (rtac (eqa RS ssubst) 1);
-by (rtac (add_assoc_swap) 1 THEN typechk_tac prems);
+by (rtac (add_left_commute) 1 THEN typechk_tac prems);
 val integ_trans_lemma = result();
 
 (** Natural deduction for intrel **)
 
-val prems = goalw Integ.thy [intrel_def]
-    "[| x1#+y2 = x2#+y1; x1: nat; y1: nat; x2: nat; y2: nat |] ==> \
-\    <<x1,y1>,<x2,y2>>: intrel";
+goalw Integ.thy [intrel_def]
+    "<<x1,y1>,<x2,y2>>: intrel <-> \
+\    x1: nat & y1: nat & x2: nat & y2: nat & x1#+y2 = x2#+y1";
+by (fast_tac ZF_cs 1);
+val intrel_iff = result();
+
+goalw Integ.thy [intrel_def]
+    "!!x1 x2. [| x1#+y2 = x2#+y1; x1: nat; y1: nat; x2: nat; y2: nat |] ==> \
+\             <<x1,y1>,<x2,y2>>: intrel";
 by (fast_tac (ZF_cs addIs prems) 1);
 val intrelI = result();
 
@@ -76,50 +70,31 @@
 
 val intrel_cs = ZF_cs addSIs [intrelI] addSEs [intrelE];
 
-goal Integ.thy
-    "<<x1,y1>,<x2,y2>>: intrel <-> \
-\    x1#+y2 = x2#+y1 & x1: nat & y1: nat & x2: nat & y2: nat";
-by (fast_tac intrel_cs 1);
-val intrel_iff = result();
-
-val prems = goalw Integ.thy [equiv_def] "equiv(nat*nat, intrel)";
-by (safe_tac intrel_cs);
-by (rewtac refl_def);
-by (fast_tac intrel_cs 1);
-by (rewtac sym_def);
-by (fast_tac (intrel_cs addSEs [sym]) 1);
-by (rewtac trans_def);
-by (fast_tac (intrel_cs addSEs [integ_trans_lemma]) 1);
+goalw Integ.thy [equiv_def, refl_def, sym_def, trans_def]
+    "equiv(nat*nat, intrel)";
+by (fast_tac (intrel_cs addSEs [sym, integ_trans_lemma]) 1);
 val equiv_intrel = result();
 
 
 val intrel_ss = 
-    arith_ss addsimps [equiv_intrel RS eq_equiv_class_iff, intrel_iff];
+    arith_ss addsimps [equiv_intrel RS eq_equiv_class_iff, intrel_iff,
+		       add_0_right, add_succ_right]
+             addcongs [conj_cong];
 
-(*Roughly twice as fast as simplifying with intrel_ss*)
-fun INTEG_SIMP_TAC ths = 
-  let val ss = arith_ss addsimps ths 
-  in fn i =>
-       EVERY [asm_simp_tac ss i,
-	      rtac (intrelI RS (equiv_intrel RS equiv_class_eq)) i,
-	      typechk_tac (ZF_typechecks@nat_typechecks@arith_typechecks),
-	      asm_simp_tac ss i]
-  end;
-
+val eq_intrelD = equiv_intrel RSN (2,eq_equiv_class);
 
 (** znat: the injection from nat to integ **)
 
-val prems = goalw Integ.thy [integ_def,quotient_def,znat_def]
-    "m : nat ==> $#m : integ";
-by (fast_tac (ZF_cs addSIs (nat_0I::prems)) 1);
+goalw Integ.thy [integ_def,quotient_def,znat_def]
+    "!!m. m : nat ==> $#m : integ";
+by (fast_tac (ZF_cs addSIs [nat_0I]) 1);
 val znat_type = result();
 
-val [major,nnat] = goalw Integ.thy [znat_def]
-    "[| $#m = $#n;  n: nat |] ==> m=n";
-by (rtac (make_elim (major RS eq_equiv_class)) 1);
-by (rtac equiv_intrel 1);
-by (typechk_tac [nat_0I,nnat,SigmaI]);
-by (safe_tac (intrel_cs addSEs [box_equals,add_0_right]));
+goalw Integ.thy [znat_def]
+    "!!m n. [| $#m = $#n;  n: nat |] ==> m=n";
+by (dtac eq_intrelD 1);
+by (typechk_tac [nat_0I, SigmaI]);
+by (asm_full_simp_tac intrel_ss 1);
 val znat_inject = result();
 
 
@@ -128,36 +103,30 @@
 goalw Integ.thy [congruent_def]
     "congruent(intrel, split(%x y. intrel``{<y,x>}))";
 by (safe_tac intrel_cs);
-by (ALLGOALS (asm_simp_tac intrel_ss));
-by (etac (box_equals RS sym) 1);
-by (REPEAT (ares_tac [add_commute] 1));
+by (asm_full_simp_tac (intrel_ss addsimps add_ac) 1);
 val zminus_congruent = result();
 
 (*Resolve th against the corresponding facts for zminus*)
 val zminus_ize = RSLIST [equiv_intrel, zminus_congruent];
 
-val [prem] = goalw Integ.thy [integ_def,zminus_def]
-    "z : integ ==> $~z : integ";
-by (typechk_tac [split_type, SigmaI, prem, zminus_ize UN_equiv_class_type,
+goalw Integ.thy [integ_def,zminus_def]
+    "!!z. z : integ ==> $~z : integ";
+by (typechk_tac [split_type, SigmaI, zminus_ize UN_equiv_class_type,
 		 quotientI]);
 val zminus_type = result();
 
-val major::prems = goalw Integ.thy [integ_def,zminus_def]
-    "[| $~z = $~w;  z: integ;  w: integ |] ==> z=w";
-by (rtac (major RS zminus_ize UN_equiv_class_inject) 1);
-by (REPEAT (ares_tac prems 1));
-by (REPEAT (etac SigmaE 1));
-by (etac rev_mp 1);
-by (asm_simp_tac ZF_ss 1);
-by (fast_tac (intrel_cs addSIs [SigmaI, equiv_intrel]
-			addSEs [box_equals RS sym, add_commute,
-			        make_elim eq_equiv_class]) 1);
+goalw Integ.thy [integ_def,zminus_def]
+    "!!z w. [| $~z = $~w;  z: integ;  w: integ |] ==> z=w";
+by (etac (zminus_ize UN_equiv_class_inject) 1);
+by (safe_tac intrel_cs);
+(*The setloop is only needed because assumptions are in the wrong order!*)
+by (asm_full_simp_tac (intrel_ss addsimps add_ac
+		       setloop dtac eq_intrelD) 1);
 val zminus_inject = result();
 
-val prems = goalw Integ.thy [zminus_def]
-    "[| x: nat;  y: nat |] ==> $~ (intrel``{<x,y>}) = intrel `` {<y,x>}";
-by (asm_simp_tac 
-    (ZF_ss addsimps (prems@[zminus_ize UN_equiv_class, SigmaI])) 1);
+goalw Integ.thy [zminus_def]
+    "!!x y.[| x: nat;  y: nat |] ==> $~ (intrel``{<x,y>}) = intrel `` {<y,x>}";
+by (asm_simp_tac (ZF_ss addsimps [zminus_ize UN_equiv_class, SigmaI]) 1);
 val zminus = result();
 
 goalw Integ.thy [integ_def] "!!z. z : integ ==> $~ ($~ z) = z";
@@ -172,13 +141,10 @@
 
 (**** znegative: the test for negative integers ****)
 
-goalw Integ.thy [znegative_def, znat_def]
-    "~ znegative($# n)";
-by (safe_tac intrel_cs);
-by (rtac (add_le_self2 RS le_imp_not_lt RS notE) 1);
-by (etac ssubst 3);
-by (asm_simp_tac (arith_ss addsimps [add_0_right]) 3);
-by (REPEAT (assume_tac 1));
+goalw Integ.thy [znegative_def, znat_def]  "~ znegative($# n)";
+by (asm_full_simp_tac (intrel_ss setloop K(safe_tac intrel_cs)) 1);
+be rev_mp 1;
+by (asm_simp_tac (arith_ss addsimps [add_le_self2 RS le_imp_not_lt]) 1);
 val not_znegative_znat = result();
 
 goalw Integ.thy [znegative_def, znat_def]
@@ -197,33 +163,33 @@
 by (safe_tac intrel_cs);
 by (ALLGOALS (asm_simp_tac intrel_ss));
 by (etac rev_mp 1);
-by (res_inst_tac [("m","x1"),("n","y1")] diff_induct 1);
-by (REPEAT (assume_tac 1));
-by (asm_simp_tac (arith_ss addsimps [add_succ_right,succ_inject_iff]) 3);
-by (asm_simp_tac
+by (res_inst_tac [("m","x1"),("n","y1")] diff_induct 1 THEN 
+    REPEAT (assume_tac 1));
+by (asm_simp_tac (intrel_ss addsimps [succ_inject_iff]) 3);
+by (asm_simp_tac  (*this one's very sensitive to order of rewrites*)
     (arith_ss addsimps [diff_add_inverse,diff_add_0,add_0_right]) 2);
-by (asm_simp_tac (arith_ss addsimps [add_0_right]) 1);
+by (asm_simp_tac intrel_ss 1);
 by (rtac impI 1);
 by (etac subst 1);
-by (res_inst_tac [("m1","x")] (add_commute RS ssubst) 1);
-by (REPEAT (assume_tac 1));
-by (asm_simp_tac (arith_ss addsimps [diff_add_inverse,diff_add_0]) 1);
+by (res_inst_tac [("m1","x")] (add_commute RS ssubst) 1 THEN
+    REPEAT (assume_tac 1));
+by (asm_simp_tac (arith_ss addsimps [diff_add_inverse, diff_add_0]) 1);
 val zmagnitude_congruent = result();
 
+
 (*Resolve th against the corresponding facts for zmagnitude*)
 val zmagnitude_ize = RSLIST [equiv_intrel, zmagnitude_congruent];
 
-val [prem] = goalw Integ.thy [integ_def,zmagnitude_def]
-    "z : integ ==> zmagnitude(z) : nat";
-by (typechk_tac [split_type, prem, zmagnitude_ize UN_equiv_class_type,
+goalw Integ.thy [integ_def,zmagnitude_def]
+    "!!z. z : integ ==> zmagnitude(z) : nat";
+by (typechk_tac [split_type, zmagnitude_ize UN_equiv_class_type,
 		 add_type, diff_type]);
 val zmagnitude_type = result();
 
-val prems = goalw Integ.thy [zmagnitude_def]
-    "[| x: nat;  y: nat |] ==> \
-\    zmagnitude (intrel``{<x,y>}) = (y #- x) #+ (x #- y)";
-by (asm_simp_tac 
-    (ZF_ss addsimps (prems@[zmagnitude_ize UN_equiv_class, SigmaI])) 1);
+goalw Integ.thy [zmagnitude_def]
+    "!!x y. [| x: nat;  y: nat |] ==> \
+\           zmagnitude (intrel``{<x,y>}) = (y #- x) #+ (x #- y)";
+by (asm_simp_tac (ZF_ss addsimps [zmagnitude_ize UN_equiv_class, SigmaI]) 1);
 val zmagnitude = result();
 
 goalw Integ.thy [znat_def]
@@ -233,7 +199,7 @@
 
 goalw Integ.thy [znat_def]
     "!!n. n: nat ==> zmagnitude($~ $# n) = n";
-by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus ,add_0_right]) 1);
+by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus]) 1);
 val zmagnitude_zminus_znat = result();
 
 
@@ -246,76 +212,75 @@
 \         split(%x1 y1. split(%x2 y2. intrel `` {<x1#+x2, y1#+y2>}, p2), p1))";
 (*Proof via congruent2_commuteI seems longer*)
 by (safe_tac intrel_cs);
-by (INTEG_SIMP_TAC [add_assoc] 1);
-(*The rest should be trivial, but rearranging terms is hard*)
-by (res_inst_tac [("m1","x1a")] (add_assoc_swap RS ssubst) 1);
-by (res_inst_tac [("m1","x2a")] (add_assoc_swap RS ssubst) 3);
+by (asm_simp_tac (intrel_ss addsimps [add_assoc]) 1);
+(*The rest should be trivial, but rearranging terms is hard;
+  add_ac does not help rewriting with the assumptions.*)
+by (res_inst_tac [("m1","x1a")] (add_left_commute RS ssubst) 1);
+by (res_inst_tac [("m1","x2a")] (add_left_commute RS ssubst) 3);
 by (typechk_tac [add_type]);
 by (asm_simp_tac (arith_ss addsimps [add_assoc RS sym]) 1);
 val zadd_congruent2 = result();
 
+
 (*Resolve th against the corresponding facts for zadd*)
 val zadd_ize = RSLIST [equiv_intrel, zadd_congruent2];
 
-val prems = goalw Integ.thy [integ_def,zadd_def]
-    "[| z: integ;  w: integ |] ==> z $+ w : integ";
-by (REPEAT (ares_tac (prems@[zadd_ize UN_equiv_class_type2,
-			     split_type, add_type, quotientI, SigmaI]) 1));
+goalw Integ.thy [integ_def,zadd_def]
+    "!!z w. [| z: integ;  w: integ |] ==> z $+ w : integ";
+by (REPEAT (ares_tac [zadd_ize UN_equiv_class_type2,
+		      split_type, add_type, quotientI, SigmaI] 1));
 val zadd_type = result();
 
-val prems = goalw Integ.thy [zadd_def]
-  "[| x1: nat; y1: nat;  x2: nat; y2: nat |] ==> \
-\ (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) = intrel `` {<x1#+x2, y1#+y2>}";
-by (asm_simp_tac (ZF_ss addsimps 
-		  (prems @ [zadd_ize UN_equiv_class2, SigmaI])) 1);
+goalw Integ.thy [zadd_def]
+  "!!x1 y1. [| x1: nat; y1: nat;  x2: nat; y2: nat |] ==>	\
+\           (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =	\
+\	    intrel `` {<x1#+x2, y1#+y2>}";
+by (asm_simp_tac (ZF_ss addsimps [zadd_ize UN_equiv_class2, SigmaI]) 1);
 val zadd = result();
 
 goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> $#0 $+ z = z";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
 by (asm_simp_tac (arith_ss addsimps [zadd]) 1);
 val zadd_0 = result();
 
 goalw Integ.thy [integ_def]
     "!!z w. [| z: integ;  w: integ |] ==> $~ (z $+ w) = $~ z $+ $~ w";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
 by (asm_simp_tac (arith_ss addsimps [zminus,zadd]) 1);
 val zminus_zadd_distrib = result();
 
 goalw Integ.thy [integ_def]
     "!!z w. [| z: integ;  w: integ |] ==> z $+ w = w $+ z";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zadd] 1);
-by (REPEAT (ares_tac [add_commute,add_cong] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (intrel_ss addsimps (add_ac @ [zadd])) 1);
 val zadd_commute = result();
 
 goalw Integ.thy [integ_def]
     "!!z1 z2 z3. [| z1: integ;  z2: integ;  z3: integ |] ==> \
 \                (z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
 (*rewriting is much faster without intrel_iff, etc.*)
-by (asm_simp_tac (arith_ss addsimps [zadd,add_assoc]) 1);
+by (asm_simp_tac (arith_ss addsimps [zadd, add_assoc]) 1);
 val zadd_assoc = result();
 
-val prems = goalw Integ.thy [znat_def]
-    "[| m: nat;  n: nat |] ==> $# (m #+ n) = ($#m) $+ ($#n)";
-by (asm_simp_tac (arith_ss addsimps (zadd::prems)) 1);
+goalw Integ.thy [znat_def]
+    "!!m n. [| m: nat;  n: nat |] ==> $# (m #+ n) = ($#m) $+ ($#n)";
+by (asm_simp_tac (arith_ss addsimps [zadd]) 1);
 val znat_add = result();
 
 goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> z $+ ($~ z) = $#0";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (asm_simp_tac (intrel_ss addsimps [zminus,zadd,add_0_right]) 1);
-by (REPEAT (ares_tac [add_commute] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (intrel_ss addsimps [zminus, zadd, add_commute]) 1);
 val zadd_zminus_inverse = result();
 
-val prems = goal Integ.thy 
-    "z : integ ==> ($~ z) $+ z = $#0";
-by (rtac (zadd_commute RS trans) 1);
-by (REPEAT (resolve_tac (prems@[zminus_type, zadd_zminus_inverse]) 1));
+goal Integ.thy "!!z. z : integ ==> ($~ z) $+ z = $#0";
+by (asm_simp_tac
+    (ZF_ss addsimps [zadd_commute, zminus_type, zadd_zminus_inverse]) 1);
 val zadd_zminus_inverse2 = result();
 
-val prems = goal Integ.thy "z:integ ==> z $+ $#0 = z";
+goal Integ.thy "!!z. z:integ ==> z $+ $#0 = z";
 by (rtac (zadd_commute RS trans) 1);
-by (REPEAT (resolve_tac (prems@[znat_type,nat_0I,zadd_0]) 1));
+by (REPEAT (ares_tac [znat_type, nat_0I, zadd_0] 1));
 val zadd_0_right = result();
 
 
@@ -327,102 +292,85 @@
 
 (** Congruence property for multiplication **)
 
-val prems = goalw Integ.thy [znat_def]
-    "[| k: nat;  l: nat;  m: nat;  n: nat |] ==> 	\
-\    (k #+ l) #+ (m #+ n) = (k #+ m) #+ (n #+ l)";
-val add_commute' = read_instantiate [("m","l")] add_commute;
-by (simp_tac (arith_ss addsimps ([add_commute',add_assoc]@prems)) 1);
-val zmult_congruent_lemma = result();
-
 goal Integ.thy 
     "congruent2(intrel, %p1 p2.  		\
 \               split(%x1 y1. split(%x2 y2. 	\
 \                   intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))";
 by (rtac (equiv_intrel RS congruent2_commuteI) 1);
 by (safe_tac intrel_cs);
-by (ALLGOALS (INTEG_SIMP_TAC []));
+by (ALLGOALS (asm_simp_tac intrel_ss));
 (*Proof that zmult is congruent in one argument*)
-by (rtac (zmult_congruent_lemma RS trans) 2);
-by (rtac (zmult_congruent_lemma RS trans RS sym) 6);
-by (typechk_tac [mult_type]);
-by (asm_simp_tac (arith_ss addsimps [add_mult_distrib_left RS sym]) 2);
+by (asm_simp_tac 
+    (arith_ss addsimps (add_ac @ [add_mult_distrib_left RS sym])) 2);
+by (asm_simp_tac
+    (arith_ss addsimps ([add_assoc RS sym, add_mult_distrib_left RS sym])) 2);
 (*Proof that zmult is commutative on representatives*)
-by (rtac add_cong 1);
-by (rtac (add_commute RS trans) 2);
-by (REPEAT (ares_tac [mult_commute,add_type,mult_type,add_cong] 1));
+by (asm_simp_tac (arith_ss addsimps (mult_ac@add_ac)) 1);
 val zmult_congruent2 = result();
 
+
 (*Resolve th against the corresponding facts for zmult*)
 val zmult_ize = RSLIST [equiv_intrel, zmult_congruent2];
 
-val prems = goalw Integ.thy [integ_def,zmult_def]
-    "[| z: integ;  w: integ |] ==> z $* w : integ";
-by (REPEAT (ares_tac (prems@[zmult_ize UN_equiv_class_type2,
-			     split_type, add_type, mult_type, 
-			     quotientI, SigmaI]) 1));
+goalw Integ.thy [integ_def,zmult_def]
+    "!!z w. [| z: integ;  w: integ |] ==> z $* w : integ";
+by (REPEAT (ares_tac [zmult_ize UN_equiv_class_type2,
+		      split_type, add_type, mult_type, 
+		      quotientI, SigmaI] 1));
 val zmult_type = result();
 
-
-val prems = goalw Integ.thy [zmult_def]
-     "[| x1: nat; y1: nat;  x2: nat; y2: nat |] ==> 	\
-\     (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) = 	\
-\     intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}";
-by (asm_simp_tac (ZF_ss addsimps 
-		  (prems @ [zmult_ize UN_equiv_class2, SigmaI])) 1);
+goalw Integ.thy [zmult_def]
+     "!!x1 x2. [| x1: nat; y1: nat;  x2: nat; y2: nat |] ==> 	\
+\              (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) = 	\
+\              intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}";
+by (asm_simp_tac (ZF_ss addsimps [zmult_ize UN_equiv_class2, SigmaI]) 1);
 val zmult = result();
 
 goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> $#0 $* z = $#0";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
 by (asm_simp_tac (arith_ss addsimps [zmult]) 1);
 val zmult_0 = result();
 
 goalw Integ.thy [integ_def,znat_def]
     "!!z. z : integ ==> $#1 $* z = z";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (asm_simp_tac (arith_ss addsimps [zmult,add_0_right]) 1);
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (arith_ss addsimps [zmult, add_0_right]) 1);
 val zmult_1 = result();
 
 goalw Integ.thy [integ_def]
     "!!z w. [| z: integ;  w: integ |] ==> ($~ z) $* w = $~ (z $* w)";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zminus,zmult] 1);
-by (REPEAT (ares_tac [mult_type,add_commute,add_cong] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (intrel_ss addsimps ([zminus, zmult] @ add_ac)) 1);
 val zmult_zminus = result();
 
 goalw Integ.thy [integ_def]
     "!!z w. [| z: integ;  w: integ |] ==> ($~ z) $* ($~ w) = (z $* w)";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zminus,zmult] 1);
-by (REPEAT (ares_tac [mult_type,add_commute,add_cong] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (intrel_ss addsimps ([zminus, zmult] @ add_ac)) 1);
 val zmult_zminus_zminus = result();
 
 goalw Integ.thy [integ_def]
     "!!z w. [| z: integ;  w: integ |] ==> z $* w = w $* z";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zmult] 1);
-by (res_inst_tac [("m1","xc #* y")] (add_commute RS ssubst) 1);
-by (REPEAT (ares_tac [mult_type,mult_commute,add_cong] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac (intrel_ss addsimps ([zmult] @ add_ac @ mult_ac)) 1);
 val zmult_commute = result();
 
 goalw Integ.thy [integ_def]
     "!!z1 z2 z3. [| z1: integ;  z2: integ;  z3: integ |] ==> \
 \                (z1 $* z2) $* z3 = z1 $* (z2 $* z3)";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zmult, add_mult_distrib_left, 
-		    add_mult_distrib, add_assoc, mult_assoc] 1);
-(*takes 54 seconds due to wasteful type-checking*)
-by (REPEAT (ares_tac [add_type, mult_type, add_commute, add_kill, 
-		      add_assoc_swap_kill, add_assoc_swap_kill RS sym] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac 
+    (intrel_ss addsimps ([zmult, add_mult_distrib_left, 
+			  add_mult_distrib] @ add_ac @ mult_ac)) 1);
 val zmult_assoc = result();
 
 goalw Integ.thy [integ_def]
     "!!z1 z2 z3. [| z1: integ;  z2: integ;  w: integ |] ==> \
 \                (z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)";
-by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
-by (INTEG_SIMP_TAC [zadd, zmult, add_mult_distrib, add_assoc] 1);
-(*takes 30 seconds due to wasteful type-checking*)
-by (REPEAT (ares_tac [add_type, mult_type, refl, add_commute, add_kill, 
-		      add_assoc_swap_kill, add_assoc_swap_kill RS sym] 1));
+by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
+by (asm_simp_tac 
+    (intrel_ss addsimps ([zadd, zmult, add_mult_distrib] @ 
+			 add_ac @ mult_ac)) 1);
 val zadd_zmult_distrib = result();
 
 val integ_typechecks =
--- a/src/ZF/ex/Primrec0.ML	Thu Jun 23 17:38:12 1994 +0200
+++ b/src/ZF/ex/Primrec0.ML	Thu Jun 23 17:52:58 1994 +0200
@@ -386,7 +386,7 @@
     "~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec";
 by (rtac notI 1);
 by (etac (ack_bounds_primrec RS bexE) 1);
-by (rtac lt_anti_refl 1);
+by (rtac lt_irrefl 1);
 by (dres_inst_tac [("x", "[x]")] bspec 1);
 by (asm_simp_tac ack2_ss 1);
 by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1);
--- a/src/ZF/ex/Ramsey.ML	Thu Jun 23 17:38:12 1994 +0200
+++ b/src/ZF/ex/Ramsey.ML	Thu Jun 23 17:52:58 1994 +0200
@@ -221,7 +221,7 @@
 by (REPEAT (ares_tac (prems@[nat_succI]) 1));
 val ramsey = result();
 
-(*Computer Ramsey numbers according to proof above -- which, actually,
+(*Compute Ramsey numbers according to proof above -- which, actually,
   does not constrain the base case values at all!*)
 fun ram 0 j = 1
   | ram i 0 = 1
--- a/src/ZF/ex/TF.ML	Thu Jun 23 17:38:12 1994 +0200
+++ b/src/ZF/ex/TF.ML	Thu Jun 23 17:52:58 1994 +0200
@@ -60,13 +60,13 @@
 
 
 goalw TF.thy (tl TF.defs) "tree(A) = {Inl(x). x: A*forest(A)}";
-br (Part_Inl RS subst) 1;
-br (tree_forest_unfold' RS subst_context) 1;
+by (rtac (Part_Inl RS subst) 1);
+by (rtac (tree_forest_unfold' RS subst_context) 1);
 val tree_unfold = result();
 
 goalw TF.thy (tl TF.defs) "forest(A) = {Inr(x). x: {0} + tree(A)*forest(A)}";
-br (Part_Inr RS subst) 1;
-br (tree_forest_unfold' RS subst_context) 1;
+by (rtac (Part_Inr RS subst) 1);
+by (rtac (tree_forest_unfold' RS subst_context) 1);
 val forest_unfold = result();