--- a/src/HOL/HOL.ML Mon Jul 19 15:18:16 1999 +0200
+++ b/src/HOL/HOL.ML Mon Jul 19 15:19:11 1999 +0200
@@ -29,13 +29,12 @@
a = b
| |
c = d *)
-qed_goal "box_equals" HOL.thy
- "[| a=b; a=c; b=d |] ==> c=d"
- (fn prems=>
- [ (rtac trans 1),
- (rtac trans 1),
- (rtac sym 1),
- (REPEAT (resolve_tac prems 1)) ]);
+Goal "[| a=b; a=c; b=d |] ==> c=d";
+by (rtac trans 1);
+by (rtac trans 1);
+by (rtac sym 1);
+by (REPEAT (assume_tac 1)) ;
+qed "box_equals";
(** Congruence rules for meta-application **)
@@ -58,9 +57,10 @@
(** Equality of booleans -- iff **)
section "iff";
-qed_goal "iffI" HOL.thy
- "[| P ==> Q; Q ==> P |] ==> P=Q"
- (fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]);
+val prems = Goal
+ "[| P ==> Q; Q ==> P |] ==> P=Q";
+by (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1));
+qed "iffI";
qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P"
(fn prems =>
@@ -81,7 +81,7 @@
section "True";
qed_goalw "TrueI" HOL.thy [True_def] "True"
- (fn _ => [rtac refl 1]);
+ (fn _ => [(rtac refl 1)]);
qed_goal "eqTrueI" HOL.thy "P ==> P=True"
(fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
@@ -94,19 +94,19 @@
section "!";
qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
- (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]);
+ (fn prems => [(resolve_tac (prems RL [eqTrueI RS ext]) 1)]);
qed_goalw "spec" HOL.thy [All_def] "! x::'a. P(x) ==> P(x)"
(fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
-qed_goal "allE" HOL.thy "[| !x. P(x); P(x) ==> R |] ==> R"
- (fn major::prems=>
- [ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]);
+val major::prems= goal HOL.thy "[| !x. P(x); P(x) ==> R |] ==> R";
+by (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ;
+qed "allE";
-qed_goal "all_dupE" HOL.thy
- "[| ! x. P(x); [| P(x); ! x. P(x) |] ==> R |] ==> R"
- (fn prems =>
- [ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]);
+val prems = goal HOL.thy
+ "[| ! x. P(x); [| P(x); ! x. P(x) |] ==> R |] ==> R";
+by (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ;
+qed "all_dupE";
(** False ** Depends upon spec; it is impossible to do propositional logic
@@ -127,10 +127,10 @@
(fn prems=> [rtac impI 1, eresolve_tac prems 1]);
qed_goal "False_not_True" HOL.thy "False ~= True"
- (K [rtac notI 1, etac False_neq_True 1]);
+ (fn _ => [rtac notI 1, etac False_neq_True 1]);
qed_goal "True_not_False" HOL.thy "True ~= False"
- (K [rtac notI 1, dtac sym 1, etac False_neq_True 1]);
+ (fn _ => [rtac notI 1, dtac sym 1, etac False_neq_True 1]);
qed_goalw "notE" HOL.thy [not_def] "[| ~P; P |] ==> R"
(fn prems => [rtac (prems MRS mp RS FalseE) 1]);
@@ -144,21 +144,24 @@
(** Implication **)
section "-->";
-qed_goal "impE" HOL.thy "[| P-->Q; P; Q ==> R |] ==> R"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
+val prems = Goal "[| P-->Q; P; Q ==> R |] ==> R";
+by (REPEAT (resolve_tac (prems@[mp]) 1));
+qed "impE";
(* Reduces Q to P-->Q, allowing substitution in P. *)
-qed_goal "rev_mp" HOL.thy "[| P; P --> Q |] ==> Q"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
+Goal "[| P; P --> Q |] ==> Q";
+by (REPEAT (ares_tac [mp] 1)) ;
+qed "rev_mp";
-qed_goal "contrapos" HOL.thy "[| ~Q; P==>Q |] ==> ~P"
- (fn [major,minor]=>
- [ (rtac (major RS notE RS notI) 1),
- (etac minor 1) ]);
+val [major,minor] = Goal "[| ~Q; P==>Q |] ==> ~P";
+by (rtac (major RS notE RS notI) 1);
+by (etac minor 1) ;
+qed "contrapos";
-qed_goal "rev_contrapos" HOL.thy "[| P==>Q; ~Q |] ==> ~P"
- (fn [major,minor]=>
- [ (rtac (minor RS contrapos) 1), (etac major 1) ]);
+val [major,minor] = Goal "[| P==>Q; ~Q |] ==> ~P";
+by (rtac (minor RS contrapos) 1);
+by (etac major 1) ;
+qed "rev_contrapos";
(* ~(?t = ?s) ==> ~(?s = ?t) *)
bind_thm("not_sym", sym COMP rev_contrapos);
@@ -226,21 +229,25 @@
val ccontr = FalseE RS classical;
(*Double negation law*)
-qed_goal "notnotD" HOL.thy "~~P ==> P"
- (fn [major]=>
- [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
+Goal "~~P ==> P";
+by (rtac classical 1);
+by (etac notE 1);
+by (assume_tac 1);
+qed "notnotD";
-qed_goal "contrapos2" HOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [
- rtac classical 1,
- dtac p2 1,
- etac notE 1,
- rtac p1 1]);
+val [p1,p2] = Goal "[| Q; ~ P ==> ~ Q |] ==> P";
+by (rtac classical 1);
+by (dtac p2 1);
+by (etac notE 1);
+by (rtac p1 1);
+qed "contrapos2";
-qed_goal "swap2" HOL.thy "[| P; Q ==> ~ P |] ==> ~ Q" (fn [p1,p2] => [
- rtac notI 1,
- dtac p2 1,
- etac notE 1,
- rtac p1 1]);
+val [p1,p2] = Goal "[| P; Q ==> ~ P |] ==> ~ Q";
+by (rtac notI 1);
+by (dtac p2 1);
+by (etac notE 1);
+by (rtac p1 1);
+qed "swap2";
(** Unique existence **)
section "?!";
@@ -251,10 +258,11 @@
[REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
(*Sometimes easier to use: the premises have no shared variables. Safe!*)
-qed_goal "ex_ex1I" HOL.thy
- "[| ? x. P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)"
- (fn [ex,eq] => [ (rtac (ex RS exE) 1),
- (REPEAT (ares_tac [ex1I,eq] 1)) ]);
+val [ex,eq] = Goal
+ "[| ? x. P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)";
+by (rtac (ex RS exE) 1);
+by (REPEAT (ares_tac [ex1I,eq] 1)) ;
+qed "ex_ex1I";
qed_goalw "ex1E" HOL.thy [Ex1_def]
"[| ?! x. P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R"
@@ -272,90 +280,102 @@
section "@";
(*Easier to apply than selectI: conclusion has only one occurrence of P*)
-qed_goal "selectI2" HOL.thy
- "[| P a; !!x. P x ==> Q x |] ==> Q (@x. P x)"
- (fn prems => [ resolve_tac prems 1,
- rtac selectI 1,
- resolve_tac prems 1 ]);
+val prems = Goal
+ "[| P a; !!x. P x ==> Q x |] ==> Q (@x. P x)";
+by (resolve_tac prems 1);
+by (rtac selectI 1);
+by (resolve_tac prems 1) ;
+qed "selectI2";
(*Easier to apply than selectI2 if witness ?a comes from an EX-formula*)
qed_goal "selectI2EX" HOL.thy
"[| ? a. P a; !!x. P x ==> Q x |] ==> Q (Eps P)"
(fn [major,minor] => [rtac (major RS exE) 1, etac selectI2 1, etac minor 1]);
-qed_goal "select_equality" HOL.thy
- "[| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a"
- (fn prems => [ rtac selectI2 1,
- REPEAT (ares_tac prems 1) ]);
-
-qed_goalw "select1_equality" HOL.thy [Ex1_def]
- "!!P. [| ?!x. P x; P a |] ==> (@x. P x) = a" (K [
- rtac select_equality 1, atac 1,
- etac exE 1, etac conjE 1,
- rtac allE 1, atac 1,
- etac impE 1, atac 1, etac ssubst 1,
- etac allE 1, etac impE 1, atac 1, etac ssubst 1,
- rtac refl 1]);
+val prems = Goal
+ "[| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a";
+by (rtac selectI2 1);
+by (REPEAT (ares_tac prems 1)) ;
+qed "select_equality";
-qed_goal "select_eq_Ex" HOL.thy "P (@ x. P x) = (? x. P x)" (K [
- rtac iffI 1,
- etac exI 1,
- etac exE 1,
- etac selectI 1]);
+Goalw [Ex1_def] "[| ?!x. P x; P a |] ==> (@x. P x) = a";
+by (rtac select_equality 1);
+by (atac 1);
+by (etac exE 1);
+by (etac conjE 1);
+by (rtac allE 1);
+by (atac 1);
+by (etac impE 1);
+by (atac 1);
+by (etac ssubst 1);
+by (etac allE 1);
+by (etac mp 1);
+by (atac 1);
+qed "select1_equality";
-qed_goal "Eps_eq" HOL.thy "(@y. y=x) = x" (K [
- rtac select_equality 1,
- rtac refl 1,
- atac 1]);
+Goal "P (@ x. P x) = (? x. P x)";
+by (rtac iffI 1);
+by (etac exI 1);
+by (etac exE 1);
+by (etac selectI 1);
+qed "select_eq_Ex";
-qed_goal "Eps_sym_eq" HOL.thy "(Eps (op = x)) = x" (K [
- rtac select_equality 1,
- rtac refl 1,
- etac sym 1]);
+Goal "(@y. y=x) = x";
+by (rtac select_equality 1);
+by (rtac refl 1);
+by (atac 1);
+qed "Eps_eq";
+
+Goal "(Eps (op = x)) = x";
+by (rtac select_equality 1);
+by (rtac refl 1);
+by (etac sym 1);
+qed "Eps_sym_eq";
(** Classical intro rules for disjunction and existential quantifiers *)
section "classical intro rules";
-qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q"
- (fn prems=>
- [ (rtac classical 1),
- (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
- (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
+val prems= Goal "(~Q ==> P) ==> P|Q";
+by (rtac classical 1);
+by (REPEAT (ares_tac (prems@[disjI1,notI]) 1));
+by (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ;
+qed "disjCI";
-qed_goal "excluded_middle" HOL.thy "~P | P"
- (fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]);
+Goal "~P | P";
+by (REPEAT (ares_tac [disjCI] 1)) ;
+qed "excluded_middle";
(*For disjunctive case analysis*)
fun excluded_middle_tac sP =
res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
(*Classical implies (-->) elimination. *)
-qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R"
- (fn major::prems=>
- [ rtac (excluded_middle RS disjE) 1,
- REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]);
+val major::prems = Goal "[| P-->Q; ~P ==> R; Q ==> R |] ==> R";
+by (rtac (excluded_middle RS disjE) 1);
+by (REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1)));
+qed "impCE";
(*This version of --> elimination works on Q before P. It works best for
those cases in which P holds "almost everywhere". Can't install as
default: would break old proofs.*)
-qed_goal "impCE'" thy
- "[| P-->Q; Q ==> R; ~P ==> R |] ==> R"
- (fn major::prems=>
- [ (resolve_tac [excluded_middle RS disjE] 1),
- (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
+val major::prems = Goal
+ "[| P-->Q; Q ==> R; ~P ==> R |] ==> R";
+by (resolve_tac [excluded_middle RS disjE] 1);
+by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
+qed "impCE'";
(*Classical <-> elimination. *)
-qed_goal "iffCE" HOL.thy
- "[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R"
- (fn major::prems =>
- [ (rtac (major RS iffE) 1),
- (REPEAT (DEPTH_SOLVE_1
- (eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]);
+val major::prems = Goal
+ "[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R";
+by (rtac (major RS iffE) 1);
+by (REPEAT (DEPTH_SOLVE_1
+ (eresolve_tac ([asm_rl,impCE,notE]@prems) 1)));
+qed "iffCE";
-qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)"
- (fn prems=>
- [ (rtac ccontr 1),
- (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1)) ]);
+val prems = Goal "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)";
+by (rtac ccontr 1);
+by (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1)) ;
+qed "exCI";
(* case distinction *)
@@ -425,7 +445,7 @@
local
-fun gen_rulify x = Attrib.no_args (Drule.rule_attribute (K (normalize_thm [RSspec, RSmp]))) x;
+fun gen_rulify x = Attrib.no_args (Drule.rule_attribute (fn _ => (normalize_thm [RSspec, RSmp]))) x;
in
--- a/src/HOL/Option.ML Mon Jul 19 15:18:16 1999 +0200
+++ b/src/HOL/Option.ML Mon Jul 19 15:19:11 1999 +0200
@@ -5,77 +5,92 @@
Derived rules
*)
-open Option;
-qed_goal "not_None_eq" thy "(x ~= None) = (? y. x = Some y)"
- (K [induct_tac "x" 1, Auto_tac]);
+Goal "(x ~= None) = (? y. x = Some y)";
+by (induct_tac "x" 1);
+by Auto_tac;
+qed "not_None_eq";
AddIffs[not_None_eq];
-qed_goal "not_Some_eq" thy "(!y. x ~= Some y) = (x = None)"
- (K [induct_tac "x" 1, Auto_tac]);
+Goal "(!y. x ~= Some y) = (x = None)";
+by (induct_tac "x" 1);
+by Auto_tac;
+qed "not_Some_eq";
AddIffs[not_Some_eq];
section "case analysis in premises";
-val optionE = prove_goal thy
- "[| opt = None ==> P; !!x. opt = Some x ==> P |] ==> P" (fn prems => [
- case_tac "opt = None" 1,
- eresolve_tac prems 1,
- dtac (not_None_eq RS iffD1) 1,
- etac exE 1,
- eresolve_tac prems 1]);
-fun optionE_tac s = res_inst_tac [("opt",s)] optionE THEN_ALL_NEW hyp_subst_tac;
+val prems = Goal
+ "[| opt = None ==> P; !!x. opt = Some x ==> P |] ==> P";
+by (case_tac "opt = None" 1);
+by (eresolve_tac prems 1);
+by (dtac (not_None_eq RS iffD1) 1);
+by (etac exE 1);
+by (eresolve_tac prems 1);
+qed "optionE";
-qed_goal "option_caseE" thy "[|case x of None => P | Some y => Q y; \
-\ [|x = None; P |] ==> R; \
-\ !!y. [|x = Some y; Q y|] ==> R|] ==> R" (fn prems => [
- cut_facts_tac prems 1,
- res_inst_tac [("opt","x")] optionE 1,
- forward_tac prems 1,
- forward_tac prems 3,
- Auto_tac]);
-fun option_case_tac i = EVERY [
- etac option_caseE i,
- hyp_subst_tac (i+1),
- hyp_subst_tac i];
+val prems = Goal
+ "[| case x of None => P | Some y => Q y; \
+\ [| x = None; P |] ==> R; \
+\ !!y. [|x = Some y; Q y|] ==> R|] ==> R";
+by (cut_facts_tac prems 1);
+by (res_inst_tac [("opt","x")] optionE 1);
+by (forward_tac prems 1);
+by (forward_tac prems 3);
+by Auto_tac;
+qed "option_caseE";
section "the";
-qed_goalw "the_Some" thy [the_def]
- "the (Some x) = x" (K [Simp_tac 1]);
+Goalw [the_def] "the (Some x) = x";
+by (Simp_tac 1);
+qed "the_Some";
+
Addsimps [the_Some];
section "option_map";
-qed_goalw "option_map_None" thy [option_map_def]
- "option_map f None = None" (K [Simp_tac 1]);
-qed_goalw "option_map_Some" thy [option_map_def]
- "option_map f (Some x) = Some (f x)" (K [Simp_tac 1]);
+Goalw [option_map_def] "option_map f None = None";
+by (Simp_tac 1);
+qed "option_map_None";
+
+Goalw [option_map_def] "option_map f (Some x) = Some (f x)";
+by (Simp_tac 1);
+qed "option_map_Some";
+
Addsimps [option_map_None, option_map_Some];
-val option_map_eq_Some = prove_goalw thy [option_map_def]
- "(option_map f xo = Some y) = (? z. xo = Some z & f z = y)"
- (K [asm_full_simp_tac (simpset() addsplits [option.split]) 1]);
+Goalw [option_map_def]
+ "(option_map f xo = Some y) = (? z. xo = Some z & f z = y)";
+by (asm_full_simp_tac (simpset() addsplits [option.split]) 1);
+qed "option_map_eq_Some";
AddIffs[option_map_eq_Some];
section "o2s";
-qed_goal "ospec" thy
- "!!x. [| !x:o2s A. P x; A = Some x |] ==> P x" (K [Auto_tac]);
+Goal "[| !x:o2s A. P x; A = Some x |] ==> P x";
+by Auto_tac;
+qed "ospec";
AddDs[ospec];
+
claset_ref() := claset() addSD2 ("ospec", ospec);
-val elem_o2s = prove_goal thy "!!X. x : o2s xo = (xo = Some x)"
- (K [optionE_tac "xo" 1, Auto_tac]);
+Goal "x : o2s xo = (xo = Some x)";
+by (exhaust_tac "xo" 1);
+by Auto_tac;
+qed "elem_o2s";
AddIffs [elem_o2s];
-val o2s_empty_eq = prove_goal thy "(o2s xo = {}) = (xo = None)"
- (K [optionE_tac "xo" 1, Auto_tac]);
+Goal "(o2s xo = {}) = (xo = None)";
+by (exhaust_tac "xo" 1);
+by Auto_tac;
+qed "o2s_empty_eq";
+
Addsimps [o2s_empty_eq];