--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Types/Numbers.thy Wed Dec 06 11:47:21 2000 +0100
@@ -0,0 +1,179 @@
+(* ID: $Id$ *)
+theory Numbers = Main:
+
+ML "Pretty.setmargin 64"
+
+
+text{*
+
+numeric literals; default simprules; can re-orient
+*}
+
+lemma "#2 * m = m + m"
+oops
+
+text{*
+proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{0}}\isanewline
+\isanewline
+goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
+{\isacharparenleft}{\isacharhash}{\isadigit{2}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharasterisk}\ m\ {\isacharequal}\ m\ {\isacharplus}\ m\isanewline
+\ {\isadigit{1}}{\isachardot}\ {\isacharparenleft}{\isacharhash}{\isadigit{2}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharasterisk}\ m\ {\isacharequal}\ m\ {\isacharplus}\ m
+
+
+@{thm[display] numeral_0_eq_0[no_vars]}
+\rulename{numeral_0_eq_0}
+
+@{thm[display] numeral_1_eq_1[no_vars]}
+\rulename{numeral_1_eq_1}
+
+@{thm[display] add_2_eq_Suc[no_vars]}
+\rulename{add_2_eq_Suc}
+
+@{thm[display] add_2_eq_Suc'[no_vars]}
+\rulename{add_2_eq_Suc'}
+
+@{thm[display] add_assoc[no_vars]}
+\rulename{add_assoc}
+
+@{thm[display] add_commute[no_vars]}
+\rulename{add_commute}
+
+@{thm[display] add_left_commute[no_vars]}
+\rulename{add_left_commute}
+
+these form add_ac; similarly there is mult_ac
+*}
+
+lemma "Suc(i + j*l*k + m*n) = f (n*m + i + k*j*l)"
+apply (simp add: add_ac mult_ac)
+oops
+
+text{*
+proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{0}}\isanewline
+\isanewline
+goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
+Suc\ {\isacharparenleft}i\ {\isacharplus}\ j\ {\isacharasterisk}\ l\ {\isacharasterisk}\ k\ {\isacharplus}\ m\ {\isacharasterisk}\ n{\isacharparenright}\ {\isacharequal}\ f\ {\isacharparenleft}n\ {\isacharasterisk}\ m\ {\isacharplus}\ i\ {\isacharplus}\ k\ {\isacharasterisk}\ j\ {\isacharasterisk}\ l{\isacharparenright}\isanewline
+\ {\isadigit{1}}{\isachardot}\ Suc\ {\isacharparenleft}i\ {\isacharplus}\ j\ {\isacharasterisk}\ l\ {\isacharasterisk}\ k\ {\isacharplus}\ m\ {\isacharasterisk}\ n{\isacharparenright}\ {\isacharequal}\ f\ {\isacharparenleft}n\ {\isacharasterisk}\ m\ {\isacharplus}\ i\ {\isacharplus}\ k\ {\isacharasterisk}\ j\ {\isacharasterisk}\ l{\isacharparenright}
+
+proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline
+\isanewline
+goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
+Suc\ {\isacharparenleft}i\ {\isacharplus}\ j\ {\isacharasterisk}\ l\ {\isacharasterisk}\ k\ {\isacharplus}\ m\ {\isacharasterisk}\ n{\isacharparenright}\ {\isacharequal}\ f\ {\isacharparenleft}n\ {\isacharasterisk}\ m\ {\isacharplus}\ i\ {\isacharplus}\ k\ {\isacharasterisk}\ j\ {\isacharasterisk}\ l{\isacharparenright}\isanewline
+\ {\isadigit{1}}{\isachardot}\ Suc\ {\isacharparenleft}i\ {\isacharplus}\ {\isacharparenleft}m\ {\isacharasterisk}\ n\ {\isacharplus}\ j\ {\isacharasterisk}\ {\isacharparenleft}k\ {\isacharasterisk}\ l{\isacharparenright}{\isacharparenright}{\isacharparenright}\ {\isacharequal}\isanewline
+\ \ \ \ f\ {\isacharparenleft}i\ {\isacharplus}\ {\isacharparenleft}m\ {\isacharasterisk}\ n\ {\isacharplus}\ j\ {\isacharasterisk}\ {\isacharparenleft}k\ {\isacharasterisk}\ l{\isacharparenright}{\isacharparenright}{\isacharparenright}
+*}
+
+text{*
+
+@{thm[display] mult_le_mono[no_vars]}
+\rulename{mult_le_mono}
+
+@{thm[display] mult_less_mono1[no_vars]}
+\rulename{mult_less_mono1}
+
+@{thm[display] div_le_mono[no_vars]}
+\rulename{div_le_mono}
+
+@{thm[display] add_mult_distrib[no_vars]}
+\rulename{add_mult_distrib}
+
+@{thm[display] diff_mult_distrib[no_vars]}
+\rulename{diff_mult_distrib}
+
+@{thm[display] mod_mult_distrib[no_vars]}
+\rulename{mod_mult_distrib}
+
+@{thm[display] nat_diff_split[no_vars]}
+\rulename{nat_diff_split}
+*}
+
+
+lemma "(n-1)*(n+1) = n*n - 1"
+apply (simp split: nat_diff_split)
+done
+
+text{*
+@{thm[display] mod_if[no_vars]}
+\rulename{mod_if}
+
+@{thm[display] mod_div_equality[no_vars]}
+\rulename{mod_div_equality}
+
+
+@{thm[display] div_mult1_eq[no_vars]}
+\rulename{div_mult1_eq}
+
+@{thm[display] mod_mult1_eq[no_vars]}
+\rulename{mod_mult1_eq}
+
+@{thm[display] div_mult2_eq[no_vars]}
+\rulename{div_mult2_eq}
+
+@{thm[display] mod_mult2_eq[no_vars]}
+\rulename{mod_mult2_eq}
+
+@{thm[display] div_mult_mult1[no_vars]}
+\rulename{div_mult_mult1}
+
+@{thm[display] DIVISION_BY_ZERO_DIV[no_vars]}
+\rulename{DIVISION_BY_ZERO_DIV}
+
+@{thm[display] DIVISION_BY_ZERO_MOD[no_vars]}
+\rulename{DIVISION_BY_ZERO_MOD}
+
+@{thm[display] dvd_anti_sym[no_vars]}
+\rulename{dvd_anti_sym}
+
+@{thm[display] dvd_add[no_vars]}
+\rulename{dvd_add}
+
+For the integers, I'd list a few theorems that somehow involve negative
+numbers.
+
+Division, remainder of negatives
+
+
+@{thm[display] pos_mod_sign[no_vars]}
+\rulename{pos_mod_sign}
+
+@{thm[display] pos_mod_bound[no_vars]}
+\rulename{pos_mod_bound}
+
+@{thm[display] neg_mod_sign[no_vars]}
+\rulename{neg_mod_sign}
+
+@{thm[display] neg_mod_bound[no_vars]}
+\rulename{neg_mod_bound}
+
+@{thm[display] zdiv_zadd1_eq[no_vars]}
+\rulename{zdiv_zadd1_eq}
+
+@{thm[display] zmod_zadd1_eq[no_vars]}
+\rulename{zmod_zadd1_eq}
+
+@{thm[display] zdiv_zmult1_eq[no_vars]}
+\rulename{zdiv_zmult1_eq}
+
+@{thm[display] zmod_zmult1_eq[no_vars]}
+\rulename{zmod_zmult1_eq}
+
+@{thm[display] zdiv_zmult2_eq[no_vars]}
+\rulename{zdiv_zmult2_eq}
+
+@{thm[display] zmod_zmult2_eq[no_vars]}
+\rulename{zmod_zmult2_eq}
+
+@{thm[display] abs_mult[no_vars]}
+\rulename{abs_mult}
+*}
+
+(*NO REALS YET; Needs HOL-Real as parent
+For the reals, perhaps just a few results to indicate what is there.
+
+@{thm[display] realpow_abs[no_vars]}
+\rulename{realpow_abs}
+
+More once rinv (the most important constant) is sorted.
+*)
+
+end