became int.ML
authornipkow
Wed, 25 Sep 2002 07:55:56 +0200
changeset 13578 54b031ccfb53
parent 13577 25b14a786c08
child 13579 57c12adaec85
became int.ML
src/HOL/Integ/Int.ML
--- a/src/HOL/Integ/Int.ML	Wed Sep 25 07:54:33 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,554 +0,0 @@
-(*  Title:      HOL/Integ/Int.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1998  University of Cambridge
-
-Type "int" is a linear order
-
-And many further lemmas
-*)
-
-
-Goal "int 0 = (0::int)";
-by (simp_tac (simpset() addsimps [Zero_int_def]) 1);
-qed "int_0";
-
-Goal "int 1 = 1";
-by (simp_tac (simpset() addsimps [One_int_def]) 1); 
-qed "int_1";
-
-Goal "int (Suc 0) = 1";
-by (simp_tac (simpset() addsimps [One_int_def, One_nat_def]) 1); 
-qed "int_Suc0_eq_1";
-
-Goalw [zdiff_def,zless_def] "neg x = (x < 0)";
-by Auto_tac; 
-qed "neg_eq_less_0"; 
-
-Goalw [zle_def] "(~neg x) = (0 <= x)";
-by (simp_tac (simpset() addsimps [neg_eq_less_0]) 1); 
-qed "not_neg_eq_ge_0"; 
-
-(** Needed to simplify inequalities when Numeral1 can get simplified to 1 **)
-
-Goal "~ neg 0";
-by (simp_tac (simpset() addsimps [One_int_def, neg_eq_less_0]) 1);  
-qed "not_neg_0"; 
-
-Goal "~ neg 1";
-by (simp_tac (simpset() addsimps [One_int_def, neg_eq_less_0]) 1);  
-qed "not_neg_1"; 
-
-Goal "iszero 0";
-by (simp_tac (simpset() addsimps [iszero_def]) 1);
-qed "iszero_0"; 
-
-Goal "~ iszero 1";
-by (simp_tac (simpset() addsimps [Zero_int_def, One_int_def, One_nat_def, 
-                                  iszero_def]) 1);
-qed "not_iszero_1"; 
-
-Goal "0 < (1::int)";
-by (simp_tac (simpset() addsimps [Zero_int_def, One_int_def, One_nat_def]) 1); 
-qed "int_0_less_1";
-
-Goal "0 \\<noteq> (1::int)";
-by (simp_tac (simpset() addsimps [Zero_int_def, One_int_def, One_nat_def]) 1); 
-qed "int_0_neq_1";
-
-Addsimps [int_0, int_1, int_0_neq_1];
-
-
-(*** Abel_Cancel simproc on the integers ***)
-
-(* Lemmas needed for the simprocs *)
-
-(*Deletion of other terms in the formula, seeking the -x at the front of z*)
-Goal "((x::int) + (y + z) = y + u) = ((x + z) = u)";
-by (stac zadd_left_commute 1);
-by (rtac zadd_left_cancel 1);
-qed "zadd_cancel_21";
-
-(*A further rule to deal with the case that
-  everything gets cancelled on the right.*)
-Goal "((x::int) + (y + z) = y) = (x = -z)";
-by (stac zadd_left_commute 1);
-by (res_inst_tac [("t", "y")] (zadd_0_right RS subst) 1
-    THEN stac zadd_left_cancel 1);
-by (simp_tac (simpset() addsimps [eq_zdiff_eq RS sym]) 1);
-qed "zadd_cancel_end";
-
-
-structure Int_Cancel_Data =
-struct
-  val ss		= HOL_ss
-  val eq_reflection	= eq_reflection
-
-  val sg_ref 		= Sign.self_ref (Theory.sign_of (the_context ()))
-  val T		= HOLogic.intT
-  val zero		= Const ("0", HOLogic.intT)
-  val restrict_to_left  = restrict_to_left
-  val add_cancel_21	= zadd_cancel_21
-  val add_cancel_end	= zadd_cancel_end
-  val add_left_cancel	= zadd_left_cancel
-  val add_assoc		= zadd_assoc
-  val add_commute	= zadd_commute
-  val add_left_commute	= zadd_left_commute
-  val add_0		= zadd_0
-  val add_0_right	= zadd_0_right
-
-  val eq_diff_eq	= eq_zdiff_eq
-  val eqI_rules		= [zless_eqI, zeq_eqI, zle_eqI]
-  fun dest_eqI th = 
-      #1 (HOLogic.dest_bin "op =" HOLogic.boolT
-	      (HOLogic.dest_Trueprop (concl_of th)))
-
-  val diff_def		= zdiff_def
-  val minus_add_distrib	= zminus_zadd_distrib
-  val minus_minus	= zminus_zminus
-  val minus_0		= zminus_0
-  val add_inverses	= [zadd_zminus_inverse, zadd_zminus_inverse2]
-  val cancel_simps	= [zadd_zminus_cancel, zminus_zadd_cancel]
-end;
-
-structure Int_Cancel = Abel_Cancel (Int_Cancel_Data);
-
-Addsimprocs [Int_Cancel.sum_conv, Int_Cancel.rel_conv];
-
-
-
-(*** misc ***)
-
-Goal "- (z - y) = y - (z::int)";
-by (Simp_tac 1);
-qed "zminus_zdiff_eq";
-Addsimps [zminus_zdiff_eq];
-
-Goal "(w<z) = neg(w-z)";
-by (simp_tac (simpset() addsimps [zless_def]) 1);
-qed "zless_eq_neg";
-
-Goal "(w=z) = iszero(w-z)";
-by (simp_tac (simpset() addsimps [iszero_def, zdiff_eq_eq]) 1);
-qed "eq_eq_iszero";
-
-Goal "(w<=z) = (~ neg(z-w))";
-by (simp_tac (simpset() addsimps [zle_def, zless_def]) 1);
-qed "zle_eq_not_neg";
-
-(** Inequality reasoning **)
-
-Goal "(w < z + (1::int)) = (w<z | w=z)";
-by (auto_tac (claset(),
-	      simpset() addsimps [zless_iff_Suc_zadd, int_Suc,
-                                  gr0_conv_Suc, zero_reorient]));
-by (res_inst_tac [("x","Suc n")] exI 1); 
-by (simp_tac (simpset() addsimps [int_Suc]) 1); 
-qed "zless_add1_eq";
-
-Goal "(w + (1::int) <= z) = (w<z)";
-by (asm_full_simp_tac (simpset() addsimps [zle_def, zless_add1_eq]) 1); 
-by (auto_tac (claset() addIs [zle_anti_sym],
-	      simpset() addsimps [order_less_imp_le, symmetric zle_def]));
-qed "add1_zle_eq";
-
-Goal "((1::int) + w <= z) = (w<z)";
-by (stac zadd_commute 1);
-by (rtac add1_zle_eq 1);
-qed "add1_left_zle_eq";
-
-
-(*** Monotonicity results ***)
-
-Goal "(v+z < w+z) = (v < (w::int))";
-by (Simp_tac 1);
-qed "zadd_right_cancel_zless";
-
-Goal "(z+v < z+w) = (v < (w::int))";
-by (Simp_tac 1);
-qed "zadd_left_cancel_zless";
-
-Addsimps [zadd_right_cancel_zless, zadd_left_cancel_zless];
-
-Goal "(v+z <= w+z) = (v <= (w::int))";
-by (Simp_tac 1);
-qed "zadd_right_cancel_zle";
-
-Goal "(z+v <= z+w) = (v <= (w::int))";
-by (Simp_tac 1);
-qed "zadd_left_cancel_zle";
-
-Addsimps [zadd_right_cancel_zle, zadd_left_cancel_zle];
-
-(*"v<=w ==> v+z <= w+z"*)
-bind_thm ("zadd_zless_mono1", zadd_right_cancel_zless RS iffD2);
-
-(*"v<=w ==> z+v <= z+w"*)
-bind_thm ("zadd_zless_mono2", zadd_left_cancel_zless RS iffD2);
-
-(*"v<=w ==> v+z <= w+z"*)
-bind_thm ("zadd_zle_mono1", zadd_right_cancel_zle RS iffD2);
-
-(*"v<=w ==> z+v <= z+w"*)
-bind_thm ("zadd_zle_mono2", zadd_left_cancel_zle RS iffD2);
-
-Goal "[| w'<=w; z'<=z |] ==> w' + z' <= w + (z::int)";
-by (etac (zadd_zle_mono1 RS zle_trans) 1);
-by (Simp_tac 1);
-qed "zadd_zle_mono";
-
-Goal "[| w'<w; z'<=z |] ==> w' + z' < w + (z::int)";
-by (etac (zadd_zless_mono1 RS order_less_le_trans) 1);
-by (Simp_tac 1);
-qed "zadd_zless_mono";
-
-
-(*** Comparison laws ***)
-
-Goal "(- x < - y) = (y < (x::int))";
-by (simp_tac (simpset() addsimps [zless_def, zdiff_def] @ zadd_ac) 1);
-qed "zminus_zless_zminus"; 
-Addsimps [zminus_zless_zminus];
-
-Goal "(- x <= - y) = (y <= (x::int))";
-by (simp_tac (simpset() addsimps [zle_def]) 1);
-qed "zminus_zle_zminus"; 
-Addsimps [zminus_zle_zminus];
-
-(** The next several equations can make the simplifier loop! **)
-
-Goal "(x < - y) = (y < - (x::int))";
-by (simp_tac (simpset() addsimps [zless_def, zdiff_def] @ zadd_ac) 1);
-qed "zless_zminus"; 
-
-Goal "(- x < y) = (- y < (x::int))";
-by (simp_tac (simpset() addsimps [zless_def, zdiff_def] @ zadd_ac) 1);
-qed "zminus_zless"; 
-
-Goal "(x <= - y) = (y <= - (x::int))";
-by (simp_tac (simpset() addsimps [zle_def, zminus_zless]) 1);
-qed "zle_zminus"; 
-
-Goal "(- x <= y) = (- y <= (x::int))";
-by (simp_tac (simpset() addsimps [zle_def, zless_zminus]) 1);
-qed "zminus_zle"; 
-
-Goal "(x = - y) = (y = - (x::int))";
-by Auto_tac;
-qed "equation_zminus";
-
-Goal "(- x = y) = (- (y::int) = x)";
-by Auto_tac;
-qed "zminus_equation";
-
-
-(** Instances of the equations above, for zero **)
-
-(*instantiate a variable to zero and simplify*)
-fun zero_instance v th = simplify (simpset()) (inst v "0" th);
-
-Addsimps [zero_instance "x" zless_zminus,
-          zero_instance "y" zminus_zless,
-          zero_instance "x" zle_zminus,
-          zero_instance "y" zminus_zle,
-          zero_instance "x" equation_zminus,
-          zero_instance "y" zminus_equation];
-
-
-Goal "- (int (Suc n)) < 0";
-by (simp_tac (simpset() addsimps [zless_def]) 1);
-qed "negative_zless_0"; 
-
-Goal "- (int (Suc n)) < int m";
-by (rtac (negative_zless_0 RS order_less_le_trans) 1);
-by (Simp_tac 1); 
-qed "negative_zless"; 
-AddIffs [negative_zless]; 
-
-Goal "- int n <= 0";
-by (simp_tac (simpset() addsimps [zminus_zle]) 1);
-qed "negative_zle_0"; 
-
-Goal "- int n <= int m";
-by (simp_tac (simpset() addsimps [zless_def, zle_def, zdiff_def, zadd_int]) 1);
-qed "negative_zle"; 
-AddIffs [negative_zle]; 
-
-Goal "~(0 <= - (int (Suc n)))";
-by (stac zle_zminus 1);
-by (Simp_tac 1);
-qed "not_zle_0_negative"; 
-Addsimps [not_zle_0_negative]; 
-
-Goal "(int n <= - int m) = (n = 0 & m = 0)"; 
-by Safe_tac; 
-by (Simp_tac 3); 
-by (dtac (zle_zminus RS iffD1) 2); 
-by (ALLGOALS (dtac (negative_zle_0 RSN(2,zle_trans)))); 
-by (ALLGOALS Asm_full_simp_tac); 
-qed "int_zle_neg"; 
-
-Goal "~(int n < - int m)";
-by (simp_tac (simpset() addsimps [symmetric zle_def]) 1); 
-qed "not_int_zless_negative"; 
-
-Goal "(- int n = int m) = (n = 0 & m = 0)"; 
-by (rtac iffI 1);
-by (rtac (int_zle_neg RS iffD1) 1); 
-by (dtac sym 1); 
-by (ALLGOALS Asm_simp_tac); 
-qed "negative_eq_positive"; 
-
-Addsimps [negative_eq_positive, not_int_zless_negative]; 
-
-
-Goal "(w <= z) = (EX n. z = w + int n)";
-by (auto_tac (claset() addIs [inst "x" "0::nat" exI]
-		       addSIs [not_sym RS not0_implies_Suc],
-	      simpset() addsimps [zless_iff_Suc_zadd, int_le_less]));
-qed "zle_iff_zadd";
-
-Goal "abs (int m) = int m";
-by (simp_tac (simpset() addsimps [zabs_def]) 1); 
-qed "abs_int_eq";
-Addsimps [abs_int_eq];
-
-
-(**** nat: magnitide of an integer, as a natural number ****)
-
-Goalw [nat_def] "nat(int n) = n";
-by Auto_tac;
-qed "nat_int";
-Addsimps [nat_int];
-
-Goalw [nat_def] "nat(- (int n)) = 0";
-by (auto_tac (claset(),
-     simpset() addsimps [neg_eq_less_0, zero_reorient, zminus_zless])); 
-qed "nat_zminus_int";
-Addsimps [nat_zminus_int];
-
-Goalw [Zero_int_def] "nat 0 = 0";
-by (rtac nat_int 1);
-qed "nat_zero";
-Addsimps [nat_zero];
-
-Goal "~ neg z ==> int (nat z) = z"; 
-by (dtac (not_neg_eq_ge_0 RS iffD1) 1); 
-by (dtac zle_imp_zless_or_eq 1); 
-by (auto_tac (claset(), simpset() addsimps [zless_iff_Suc_zadd])); 
-qed "not_neg_nat"; 
-
-Goal "neg x ==> EX n. x = - (int (Suc n))"; 
-by (auto_tac (claset(), 
-	      simpset() addsimps [neg_eq_less_0, zless_iff_Suc_zadd,
-				  zdiff_eq_eq RS sym, zdiff_def])); 
-qed "negD"; 
-
-Goalw [nat_def] "neg z ==> nat z = 0"; 
-by Auto_tac; 
-qed "neg_nat"; 
-
-Goal "(m < nat z) = (int m < z)";
-by (case_tac "neg z" 1);
-by (etac (not_neg_nat RS subst) 2);
-by (auto_tac (claset(), simpset() addsimps [neg_nat])); 
-by (auto_tac (claset() addDs [order_less_trans], 
-	      simpset() addsimps [neg_eq_less_0])); 
-qed "zless_nat_eq_int_zless";
-
-Goal "0 <= z ==> int (nat z) = z"; 
-by (asm_full_simp_tac
-    (simpset() addsimps [neg_eq_less_0, zle_def, not_neg_nat]) 1); 
-qed "nat_0_le"; 
-
-Goal "z <= 0 ==> nat z = 0"; 
-by (auto_tac (claset(), 
-	      simpset() addsimps [order_le_less, neg_eq_less_0, 
-				  zle_def, neg_nat])); 
-qed "nat_le_0"; 
-Addsimps [nat_0_le, nat_le_0];
-
-(*An alternative condition is  0 <= w  *)
-Goal "0 < z ==> (nat w < nat z) = (w < z)";
-by (stac (zless_int RS sym) 1);
-by (asm_simp_tac (simpset() addsimps [not_neg_nat, not_neg_eq_ge_0, 
-				      order_le_less]) 1);
-by (case_tac "neg w" 1);
-by (asm_simp_tac (simpset() addsimps [not_neg_nat]) 2);
-by (asm_full_simp_tac (simpset() addsimps [neg_eq_less_0, neg_nat]) 1);
-by (blast_tac (claset() addIs [order_less_trans]) 1);
-val lemma = result();
-
-Goal "(nat w < nat z) = (0 < z & w < z)";
-by (case_tac "0 < z" 1);
-by (auto_tac (claset(), simpset() addsimps [lemma, linorder_not_less])); 
-qed "zless_nat_conj";
-
-
-(* a case theorem distinguishing non-negative and negative int *)  
-
-val prems = Goal
-     "[|!! n. z = int n ==> P;  !! n. z =  - (int (Suc n)) ==> P |] ==> P"; 
-by (case_tac "neg z" 1); 
-by (fast_tac (claset() addSDs [negD] addSEs prems) 1); 
-by (dtac (not_neg_nat RS sym) 1);
-by (eresolve_tac prems 1);
-qed "int_cases"; 
-
-fun int_case_tac x = res_inst_tac [("z",x)] int_cases; 
-
-
-(*** Monotonicity of Multiplication ***)
-
-Goal "i <= (j::int) ==> i * int k <= j * int k";
-by (induct_tac "k" 1);
-by (stac int_Suc 2);
-by (ALLGOALS 
-    (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2, zadd_zle_mono, 
-                                       int_Suc0_eq_1])));
-val lemma = result();
-
-Goal "[| i <= j;  (0::int) <= k |] ==> i*k <= j*k";
-by (res_inst_tac [("t", "k")] (not_neg_nat RS subst) 1);
-by (etac lemma 2);
-by (full_simp_tac (simpset() addsimps [not_neg_eq_ge_0]) 1);
-qed "zmult_zle_mono1";
-
-Goal "[| i <= j;  k <= (0::int) |] ==> j*k <= i*k";
-by (rtac (zminus_zle_zminus RS iffD1) 1);
-by (asm_simp_tac (simpset() addsimps [zmult_zminus_right RS sym,
-				      zmult_zle_mono1, zle_zminus]) 1);
-qed "zmult_zle_mono1_neg";
-
-Goal "[| i <= j;  (0::int) <= k |] ==> k*i <= k*j";
-by (dtac zmult_zle_mono1 1);
-by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
-qed "zmult_zle_mono2";
-
-Goal "[| i <= j;  k <= (0::int) |] ==> k*j <= k*i";
-by (dtac zmult_zle_mono1_neg 1);
-by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
-qed "zmult_zle_mono2_neg";
-
-(* <= monotonicity, BOTH arguments*)
-Goal "[| i <= j;  k <= l;  (0::int) <= j;  (0::int) <= k |] ==> i*k <= j*l";
-by (etac (zmult_zle_mono1 RS order_trans) 1);
-by (assume_tac 1);
-by (etac zmult_zle_mono2 1);
-by (assume_tac 1);
-qed "zmult_zle_mono";
-
-
-(** strict, in 1st argument; proof is by induction on k>0 **)
-
-Goal "i<j ==> 0<k --> int k * i < int k * j";
-by (induct_tac "k" 1);
-by (stac int_Suc 2);
-by (case_tac "n=0" 2);
-by (ALLGOALS (asm_full_simp_tac
-	      (simpset() addsimps [zadd_zmult_distrib, zadd_zless_mono, 
-				   int_Suc0_eq_1, order_le_less])));
-val lemma = result();
-
-Goal "[| i<j;  (0::int) < k |] ==> k*i < k*j";
-by (res_inst_tac [("t", "k")] (not_neg_nat RS subst) 1);
-by (etac (lemma RS mp) 2);
-by (asm_simp_tac (simpset() addsimps [not_neg_eq_ge_0, 
-				      order_le_less]) 1);
-by (forward_tac [conjI RS (zless_nat_conj RS iffD2)] 1);
-by Auto_tac;
-qed "zmult_zless_mono2";
-
-Goal "[| i<j;  (0::int) < k |] ==> i*k < j*k";
-by (dtac zmult_zless_mono2 1);
-by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
-qed "zmult_zless_mono1";
-
-(* < monotonicity, BOTH arguments*)
-Goal "[| i < j;  k < l;  (0::int) < j;  (0::int) < k |] ==> i*k < j*l";
-by (etac (zmult_zless_mono1 RS order_less_trans) 1);
-by (assume_tac 1);
-by (etac zmult_zless_mono2 1);
-by (assume_tac 1);
-qed "zmult_zless_mono";
-
-Goal "[| i<j;  k < (0::int) |] ==> j*k < i*k";
-by (rtac (zminus_zless_zminus RS iffD1) 1);
-by (asm_simp_tac (simpset() addsimps [zmult_zminus_right RS sym,
-				      zmult_zless_mono1, zless_zminus]) 1);
-qed "zmult_zless_mono1_neg";
-
-Goal "[| i<j;  k < (0::int) |] ==> k*j < k*i";
-by (rtac (zminus_zless_zminus RS iffD1) 1);
-by (asm_simp_tac (simpset() addsimps [zmult_zminus RS sym,
-				      zmult_zless_mono2, zless_zminus]) 1);
-qed "zmult_zless_mono2_neg";
-
-
-Goal "(m*n = (0::int)) = (m = 0 | n = 0)";
-by (case_tac "m < (0::int)" 1);
-by (auto_tac (claset(), 
-	      simpset() addsimps [linorder_not_less, order_le_less, 
-				  linorder_neq_iff])); 
-by (REPEAT 
-    (force_tac (claset() addDs [zmult_zless_mono1_neg, zmult_zless_mono1], 
-		simpset()) 1));
-qed "zmult_eq_0_iff";
-AddIffs [zmult_eq_0_iff];
-
-
-(** Cancellation laws for k*m < k*n and m*k < n*k, also for <= and =,
-    but not (yet?) for k*m < n*k. **)
-
-Goal "(m*k < n*k) = (((0::int) < k & m<n) | (k < 0 & n<m))";
-by (case_tac "k = (0::int)" 1);
-by (auto_tac (claset(), simpset() addsimps [linorder_neq_iff, 
-                              zmult_zless_mono1, zmult_zless_mono1_neg]));  
-by (auto_tac (claset(), 
-              simpset() addsimps [linorder_not_less,
-				  inst "y1" "m*k" (linorder_not_le RS sym),
-                                  inst "y1" "m" (linorder_not_le RS sym)]));
-by (ALLGOALS (etac notE));
-by (auto_tac (claset(), simpset() addsimps [order_less_imp_le, zmult_zle_mono1,
-                                            zmult_zle_mono1_neg]));  
-qed "zmult_zless_cancel2";
-
-
-Goal "(k*m < k*n) = (((0::int) < k & m<n) | (k < 0 & n<m))";
-by (simp_tac (simpset() addsimps [inst "z" "k" zmult_commute, 
-                                  zmult_zless_cancel2]) 1);
-qed "zmult_zless_cancel1";
-
-Goal "(m*k <= n*k) = (((0::int) < k --> m<=n) & (k < 0 --> n<=m))";
-by (simp_tac (simpset() addsimps [linorder_not_less RS sym, 
-                                  zmult_zless_cancel2]) 1);
-qed "zmult_zle_cancel2";
-
-Goal "(k*m <= k*n) = (((0::int) < k --> m<=n) & (k < 0 --> n<=m))";
-by (simp_tac (simpset() addsimps [linorder_not_less RS sym, 
-                                  zmult_zless_cancel1]) 1);
-qed "zmult_zle_cancel1";
-
-Goal "(m*k = n*k) = (k = (0::int) | m=n)";
-by (cut_facts_tac [linorder_less_linear] 1);
-by Safe_tac;
-by Auto_tac;  
-by (REPEAT 
-    (force_tac (claset() addD2 ("mono_neg", zmult_zless_mono1_neg)
-                         addD2 ("mono_pos", zmult_zless_mono1), 
-		simpset() addsimps [linorder_neq_iff]) 1));
-
-qed "zmult_cancel2";
-
-Goal "(k*m = k*n) = (k = (0::int) | m=n)";
-by (simp_tac (simpset() addsimps [inst "z" "k" zmult_commute, 
-                                  zmult_cancel2]) 1);
-qed "zmult_cancel1";
-Addsimps [zmult_cancel1, zmult_cancel2];
-
-
-(*Analogous to zadd_int*)
-Goal "n<=m --> int m - int n = int (m-n)";
-by (induct_thm_tac diff_induct "m n" 1);
-by (auto_tac (claset(), simpset() addsimps [int_Suc, symmetric zdiff_def])); 
-qed_spec_mp "zdiff_int";