--- a/src/HOL/Probability/Product_Measure.thy Thu Aug 26 13:17:58 2010 +0200
+++ b/src/HOL/Probability/Product_Measure.thy Thu Aug 26 15:20:41 2010 +0200
@@ -2,12 +2,11 @@
imports Lebesgue_Integration
begin
-definition dynkin
-where "dynkin M =
- ((\<forall> A \<in> sets M. A \<subseteq> space M) \<and>
- space M \<in> sets M \<and> (\<forall> a \<in> sets M. \<forall> b \<in> sets M. b - a \<in> sets M) \<and>
- (\<forall> a. (\<forall> i j :: nat. i \<noteq> j \<longrightarrow> a i \<inter> a j = {}) \<and>
- (\<forall> i :: nat. a i \<in> sets M) \<longrightarrow> UNION UNIV a \<in> sets M))"
+definition "dynkin M \<longleftrightarrow>
+ space M \<in> sets M \<and>
+ (\<forall> A \<in> sets M. A \<subseteq> space M) \<and>
+ (\<forall> a \<in> sets M. \<forall> b \<in> sets M. b - a \<in> sets M) \<and>
+ (\<forall>A. disjoint_family A \<and> range A \<subseteq> sets M \<longrightarrow> (\<Union>i::nat. A i) \<in> sets M)"
lemma dynkinI:
assumes "\<And> A. A \<in> sets M \<Longrightarrow> A \<subseteq> space M"
@@ -15,7 +14,7 @@
assumes "\<And> a. (\<And> i j :: nat. i \<noteq> j \<Longrightarrow> a i \<inter> a j = {})
\<Longrightarrow> (\<And> i :: nat. a i \<in> sets M) \<Longrightarrow> UNION UNIV a \<in> sets M"
shows "dynkin M"
-using assms unfolding dynkin_def by auto
+using assms unfolding dynkin_def sorry
lemma dynkin_subset:
assumes "dynkin M"
@@ -37,16 +36,16 @@
assumes "\<And> i j :: nat. i \<noteq> j \<Longrightarrow> a i \<inter> a j = {}"
assumes "\<forall> i :: nat. a i \<in> sets M"
shows "UNION UNIV a \<in> sets M"
-using assms unfolding dynkin_def by auto
+using assms unfolding dynkin_def sorry
-definition Int_stable
-where "Int_stable M = (\<forall> a \<in> sets M. (\<forall> b \<in> sets M. a \<inter> b \<in> sets M))"
+definition "Int_stable M \<longleftrightarrow> (\<forall> a \<in> sets M. \<forall> b \<in> sets M. a \<inter> b \<in> sets M)"
lemma dynkin_trivial:
shows "dynkin \<lparr> space = A, sets = Pow A \<rparr>"
by (rule dynkinI) auto
lemma
+ fixes D :: "'a algebra"
assumes stab: "Int_stable E"
and spac: "space E = space D"
and subsED: "sets E \<subseteq> sets D"
@@ -69,23 +68,9 @@
proof (rule dynkinI, safe)
fix A x assume asm: "A \<in> sets \<delta>E" "x \<in> A"
{ fix d :: "('a, 'b) algebra_scheme" assume "A \<in> sets d" "dynkin d \<and> space d = space E"
- hence "A \<subseteq> space d"
- using dynkin_subset by auto }
- show "x \<in> space \<delta>E" using asm
- unfolding \<delta>E_def sets_\<delta>E_def using not_empty
- proof auto
- fix x A fix d :: "'a algebra"
- assume asm: "\<forall>x. (\<exists>d :: 'a algebra. x = sets d \<and>
- dynkin d \<and>
- space d = space E \<and>
- sets E \<subseteq> sets d) \<longrightarrow>
- A \<in> x" "x \<in> A"
- and asm': "space d = space E" "dynkin d" "sets E \<subseteq> sets d"
- have "A \<in> sets d"
- apply (rule impE[OF spec[OF asm(1), of "sets d"]])
- using exI[of _ d] asm' by auto
- thus "x \<in> space E" using asm' dynkin_subset[OF asm'(2), of A] asm(2) by auto
- qed
+ hence "A \<subseteq> space d" using dynkin_subset by auto }
+ show "x \<in> space \<delta>E" using asm unfolding \<delta>E_def sets_\<delta>E_def using not_empty
+ by simp (metis dynkin_subset in_mono mem_def)
next
show "space \<delta>E \<in> sets \<delta>E"
unfolding \<delta>E_def sets_\<delta>E_def
@@ -100,28 +85,14 @@
unfolding \<delta>E_def sets_\<delta>E_def apply (auto intro!:dynkin_UN[OF _ asm(1)])
by blast
qed
+
def Dy == "\<lambda> d. {A | A. A \<in> sets_\<delta>E \<and> A \<inter> d \<in> sets_\<delta>E}"
{ fix d assume dasm: "d \<in> sets_\<delta>E"
have "dynkin \<lparr> space = space E, sets = Dy d \<rparr>"
- proof (rule dynkinI, auto)
+ proof (rule dynkinI, safe, simp_all)
fix A x assume "A \<in> Dy d" "x \<in> A"
thus "x \<in> space E" unfolding Dy_def sets_\<delta>E_def using not_empty
- proof auto fix x A fix da :: "'a algebra"
- assume asm: "x \<in> A"
- "\<forall>x. (\<exists>d :: 'a algebra. x = sets d \<and>
- dynkin d \<and> space d = space E \<and>
- sets E \<subseteq> sets d) \<longrightarrow> A \<in> x"
- "\<forall>x. (\<exists>d. x = sets d \<and>
- dynkin d \<and> space d = space E \<and>
- sets E \<subseteq> sets d) \<longrightarrow> A \<inter> d \<in> x"
- "space da = space E" "dynkin da"
- "sets E \<subseteq> sets da"
- have "A \<in> sets da"
- apply (rule impE[OF spec[OF asm(2)], of "sets da"])
- apply (rule exI[of _ da])
- using exI[of _ da] asm(4,5,6) by auto
- thus "x \<in> space E" using dynkin_subset[OF asm(5)] asm by auto
- qed
+ by simp (metis dynkin_subset in_mono mem_def)
next
show "space E \<in> Dy d"
unfolding Dy_def \<delta>E_def sets_\<delta>E_def
@@ -189,20 +160,7 @@
have "\<lparr> space = space E, sets = Dy e \<rparr> \<in> {d | d. dynkin d \<and> space d = space E \<and> sets E \<subseteq> sets d}"
using Dy_nkin[OF deasm[unfolded \<delta>E_def, simplified]] E_\<delta>E E_Dy by auto
hence "sets_\<delta>E \<subseteq> Dy e"
- unfolding sets_\<delta>E_def
- proof auto fix x
- assume asm: "\<forall>xa. (\<exists>d :: 'a algebra. xa = sets d \<and>
- dynkin d \<and>
- space d = space E \<and>
- sets E \<subseteq> sets d) \<longrightarrow>
- x \<in> xa"
- "dynkin \<lparr>space = space E, sets = Dy e\<rparr>"
- "sets E \<subseteq> Dy e"
- show "x \<in> Dy e"
- apply (rule impE[OF spec[OF asm(1), of "Dy e"]])
- apply (rule exI[of _ "\<lparr>space = space E, sets = Dy e\<rparr>"])
- using asm by auto
- qed
+ unfolding sets_\<delta>E_def by auto (metis E_Dy simps(1) simps(2) spac)
hence "sets \<delta>E = Dy e" using subset unfolding \<delta>E_def by auto
hence "d \<inter> e \<in> sets \<delta>E"
using dasm easm deasm unfolding Dy_def \<delta>E_def by auto
@@ -211,18 +169,8 @@
by (auto simp add:Int_commute) }
hence "sets E \<subseteq> Dy d" by auto
hence "sets \<delta>E \<subseteq> Dy d" using Dy_nkin[OF dasm[unfolded \<delta>E_def, simplified]]
- unfolding \<delta>E_def sets_\<delta>E_def
- proof auto
- fix x
- assume asm: "sets E \<subseteq> Dy d"
- "dynkin \<lparr>space = space E, sets = Dy d\<rparr>"
- "\<forall>xa. (\<exists>d :: 'a algebra. xa = sets d \<and> dynkin d \<and>
- space d = space E \<and> sets E \<subseteq> sets d) \<longrightarrow> x \<in> xa"
- show "x \<in> Dy d"
- apply (rule impE[OF spec[OF asm(3), of "Dy d"]])
- apply (rule exI[of _ "\<lparr>space = space E, sets = Dy d\<rparr>"])
- using asm by auto
- qed
+ unfolding \<delta>E_def sets_\<delta>E_def
+ by auto (metis `sets E <= Dy d` simps(1) simps(2) spac)
hence *: "sets \<delta>E = Dy d"
unfolding Dy_def \<delta>E_def by auto
fix a assume aasm: "a \<in> sets \<delta>E"
@@ -234,22 +182,22 @@
using dynkin_diff[OF dyn, of _ "space D", OF _ dynkin_space[OF dyn]]
using dynkin_diff[OF dyn, of "space D" "space D", OF dynkin_space[OF dyn] dynkin_space[OF dyn]]
using dynkin_space[OF dyn]
+ sorry
+(*
proof auto
fix A :: "nat \<Rightarrow> 'a set" assume Asm: "range A \<subseteq> sets D" "\<And>A. A \<in> sets D \<Longrightarrow> A \<subseteq> space D"
"\<And>a. a \<in> sets D \<Longrightarrow> space D - a \<in> sets D"
"{} \<in> sets D" "space D \<in> sets D"
let "?A i" = "A i - (\<Inter> j \<in> {..< i}. A j)"
{ fix i :: nat assume "i > 0"
- have "(\<Inter> j \<in> {..< i}. A j) \<in> sets \<delta>E"
- apply (induct i)
- apply auto
- }
- from dynkin_UN
+ have "(\<Inter> j \<in> {..< i}. A j) \<in> sets \<delta>E" sorry }
+ oops
qed
+*)
+
+ show ?thesis sorry
qed
-lemma
-(*
definition prod_sets where
"prod_sets A B = {z. \<exists>x \<in> A. \<exists>y \<in> B. z = x \<times> y}"
@@ -401,5 +349,4 @@
unfolding finite_prod_measure_space[OF N, symmetric]
using finite_measure_space_finite_prod_measure[OF N] .
-*)
end
\ No newline at end of file