--- a/src/HOL/Matrix/matrixlp.ML Fri Feb 10 23:36:02 2012 +0100
+++ b/src/HOL/Matrix/matrixlp.ML Fri Feb 10 23:49:17 2012 +0100
@@ -4,9 +4,6 @@
signature MATRIX_LP =
sig
- val lp_dual_estimate_prt : string -> int -> thm
- val lp_dual_estimate_prt_primitive :
- cterm * (cterm * cterm) * (cterm * cterm) * cterm * (cterm * cterm) -> thm
val matrix_compute : cterm -> thm
val matrix_simplify : thm -> thm
val prove_bound : string -> int -> thm
@@ -16,69 +13,45 @@
structure MatrixLP : MATRIX_LP =
struct
-fun inst_real thm =
- let val certT = ctyp_of (Thm.theory_of_thm thm) in
- Drule.export_without_context (Thm.instantiate
- ([(certT (TVar (hd (Misc_Legacy.term_tvars (prop_of thm)))), certT HOLogic.realT)], []) thm)
- end
-
-local
-
-val cert = cterm_of @{theory}
+val compute_thms = ComputeHOL.prep_thms @{thms "ComputeHOL.compute_list_case" "ComputeHOL.compute_let"
+ "ComputeHOL.compute_if" "ComputeFloat.arith" "SparseMatrix.sparse_row_matrix_arith_simps"
+ "ComputeHOL.compute_bool" "ComputeHOL.compute_pair"
+ "SparseMatrix.sorted_sp_simps" "ComputeNumeral.number_norm"
+ "ComputeNumeral.natnorm"};
-in
-
-fun lp_dual_estimate_prt_primitive (y, (A1, A2), (c1, c2), b, (r1, r2)) =
- let
- val th = inst_real @{thm "spm_mult_le_dual_prts_no_let"}
- fun var s x = (cert (Var ((s,0), FloatSparseMatrixBuilder.spmatT)), x)
- val th = Thm.instantiate ([], [var "A1" A1, var "A2" A2, var "y" y, var "c1" c1, var "c2" c2,
- var "r1" r1, var "r2" r2, var "b" b]) th
- in th end
+val spm_mult_le_dual_prts_no_let_real = @{thm "spm_mult_le_dual_prts_no_let" [where ?'a = real]}
fun lp_dual_estimate_prt lptfile prec =
- let
- val certificate =
- let
- open Fspmlp
- val l = load lptfile prec false
- in
- (y l |> cert, A l |> pairself cert, c l |> pairself cert, b l |> cert, r12 l |> pairself cert)
- end
- in
- lp_dual_estimate_prt_primitive certificate
- end
+ let
+ val cert = cterm_of @{theory}
+ fun var s x = (cert (Var ((s, 0), FloatSparseMatrixBuilder.spmatT)), x)
+ val l = Fspmlp.load lptfile prec false
+ val (y, (A1, A2), (c1, c2), b, (r1, r2)) =
+ let
+ open Fspmlp
+ in
+ (y l |> cert, A l |> pairself cert, c l |> pairself cert, b l |> cert, r12 l |> pairself cert)
+ end
+ in
+ Thm.instantiate ([],
+ [var "A1" A1, var "A2" A2, var "y" y, var "c1" c1, var "c2" c2, var "r1" r1, var "r2" r2, var "b" b])
+ spm_mult_le_dual_prts_no_let_real
+ end
-end
-
-local
- val ths = ComputeHOL.prep_thms @{thms "ComputeHOL.compute_list_case" "ComputeHOL.compute_let"
- "ComputeHOL.compute_if" "ComputeFloat.arith" "SparseMatrix.sparse_row_matrix_arith_simps"
- "ComputeHOL.compute_bool" "ComputeHOL.compute_pair"
- "SparseMatrix.sorted_sp_simps" "ComputeNumeral.number_norm"
- "ComputeNumeral.natnorm"};
- val computer = PCompute.make Compute.SML @{theory} ths []
-in
+val computer = PCompute.make Compute.SML @{theory} compute_thms []
fun matrix_compute c = hd (PCompute.rewrite computer [c])
-end
-
fun matrix_simplify th =
- let
- val simp_th = matrix_compute (cprop_of th)
- val th = Thm.strip_shyps (Thm.equal_elim simp_th th)
- fun removeTrue th = removeTrue (Thm.implies_elim th TrueI) handle THM _ => th
- in
- removeTrue th
- end
+ let
+ val simp_th = matrix_compute (cprop_of th)
+ val th = Thm.strip_shyps (Thm.equal_elim simp_th th)
+ fun removeTrue th = removeTrue (Thm.implies_elim th TrueI) handle THM _ => th
+ in
+ removeTrue th
+ end
-fun prove_bound lptfile prec =
- let
- val th = lp_dual_estimate_prt lptfile prec
- in
- matrix_simplify th
- end
+fun prove_bound lptfile prec = matrix_simplify (lp_dual_estimate_prt lptfile prec);
val realFromStr = the o Real.fromString;
fun float2real (x, y) = realFromStr x * Math.pow (2.0, realFromStr y);