--- a/src/HOL/Product_Type.thy Fri May 28 11:23:34 2010 +0200
+++ b/src/HOL/Product_Type.thy Fri May 28 13:37:47 2010 +0200
@@ -34,7 +34,7 @@
(Haskell -)
-subsection {* Unit *}
+subsection {* The @{text unit} type *}
typedef unit = "{True}"
proof
@@ -90,8 +90,6 @@
end
-text {* code generator setup *}
-
lemma [code]:
"eq_class.eq (u\<Colon>unit) v \<longleftrightarrow> True" unfolding eq unit_eq [of u] unit_eq [of v] by rule+
@@ -101,18 +99,18 @@
(Haskell "()")
(Scala "Unit")
+code_const Unity
+ (SML "()")
+ (OCaml "()")
+ (Haskell "()")
+ (Scala "()")
+
code_instance unit :: eq
(Haskell -)
code_const "eq_class.eq \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
(Haskell infixl 4 "==")
-code_const Unity
- (SML "()")
- (OCaml "()")
- (Haskell "()")
- (Scala "()")
-
code_reserved SML
unit
@@ -123,13 +121,11 @@
Unit
-subsection {* Pairs *}
-
-subsubsection {* Product type, basic operations and concrete syntax *}
+subsection {* The product type *}
-definition
- Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
-where
+subsubsection {* Type definition *}
+
+definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
"Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
global
@@ -149,19 +145,34 @@
consts
Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b"
- fst :: "'a \<times> 'b \<Rightarrow> 'a"
- snd :: "'a \<times> 'b \<Rightarrow> 'b"
- split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
- curry :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c"
local
defs
Pair_def: "Pair a b == Abs_Prod (Pair_Rep a b)"
- fst_def: "fst p == THE a. EX b. p = Pair a b"
- snd_def: "snd p == THE b. EX a. p = Pair a b"
- split_def: "split == (%c p. c (fst p) (snd p))"
- curry_def: "curry == (%c x y. c (Pair x y))"
+
+rep_datatype (prod) Pair proof -
+ fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
+ assume "\<And>a b. P (Pair a b)"
+ then show "P p" by (cases p) (auto simp add: Prod_def Pair_def Pair_Rep_def)
+next
+ fix a c :: 'a and b d :: 'b
+ have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
+ by (auto simp add: Pair_Rep_def expand_fun_eq)
+ moreover have "Pair_Rep a b \<in> Prod" and "Pair_Rep c d \<in> Prod"
+ by (auto simp add: Prod_def)
+ ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
+ by (simp add: Pair_def Abs_Prod_inject)
+qed
+
+
+subsubsection {* Tuple syntax *}
+
+global consts
+ split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
+
+local defs
+ split_prod_case: "split == prod_case"
text {*
Patterns -- extends pre-defined type @{typ pttrn} used in
@@ -185,8 +196,8 @@
"%(x, y, zs). b" == "CONST split (%x (y, zs). b)"
"%(x, y). b" == "CONST split (%x y. b)"
"_abs (CONST Pair x y) t" => "%(x, y). t"
- (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
- The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
+ -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
+ The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
works best with enclosing "let", if "let" does not avoid eta-contraction*)
@@ -258,57 +269,149 @@
*}
-text {* Towards a datatype declaration *}
+subsubsection {* Code generator setup *}
+
+lemma split_case_cert:
+ assumes "CASE \<equiv> split f"
+ shows "CASE (a, b) \<equiv> f a b"
+ using assms by (simp add: split_prod_case)
+
+setup {*
+ Code.add_case @{thm split_case_cert}
+*}
+
+code_type *
+ (SML infix 2 "*")
+ (OCaml infix 2 "*")
+ (Haskell "!((_),/ (_))")
+ (Scala "((_),/ (_))")
+
+code_const Pair
+ (SML "!((_),/ (_))")
+ (OCaml "!((_),/ (_))")
+ (Haskell "!((_),/ (_))")
+ (Scala "!((_),/ (_))")
+
+code_instance * :: eq
+ (Haskell -)
+
+code_const "eq_class.eq \<Colon> 'a\<Colon>eq \<times> 'b\<Colon>eq \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
+ (Haskell infixl 4 "==")
+
+types_code
+ "*" ("(_ */ _)")
+attach (term_of) {*
+fun term_of_id_42 aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
+*}
+attach (test) {*
+fun gen_id_42 aG aT bG bT i =
+ let
+ val (x, t) = aG i;
+ val (y, u) = bG i
+ in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
+*}
+
+consts_code
+ "Pair" ("(_,/ _)")
+
+setup {*
+let
+
+fun strip_abs_split 0 t = ([], t)
+ | strip_abs_split i (Abs (s, T, t)) =
+ let
+ val s' = Codegen.new_name t s;
+ val v = Free (s', T)
+ in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
+ | strip_abs_split i (u as Const (@{const_name split}, _) $ t) =
+ (case strip_abs_split (i+1) t of
+ (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
+ | _ => ([], u))
+ | strip_abs_split i t =
+ strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
+
+fun let_codegen thy defs dep thyname brack t gr =
+ (case strip_comb t of
+ (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
+ let
+ fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
+ (case strip_abs_split 1 u of
+ ([p], u') => apfst (cons (p, t)) (dest_let u')
+ | _ => ([], l))
+ | dest_let t = ([], t);
+ fun mk_code (l, r) gr =
+ let
+ val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr;
+ val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1;
+ in ((pl, pr), gr2) end
+ in case dest_let (t1 $ t2 $ t3) of
+ ([], _) => NONE
+ | (ps, u) =>
+ let
+ val (qs, gr1) = fold_map mk_code ps gr;
+ val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
+ val (pargs, gr3) = fold_map
+ (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
+ in
+ SOME (Codegen.mk_app brack
+ (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
+ (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
+ [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
+ Pretty.brk 1, pr]]) qs))),
+ Pretty.brk 1, Codegen.str "in ", pu,
+ Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
+ end
+ end
+ | _ => NONE);
+
+fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of
+ (t1 as Const (@{const_name split}, _), t2 :: ts) =>
+ let
+ val ([p], u) = strip_abs_split 1 (t1 $ t2);
+ val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr;
+ val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
+ val (pargs, gr3) = fold_map
+ (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
+ in
+ SOME (Codegen.mk_app brack
+ (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
+ Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
+ end
+ | _ => NONE);
+
+in
+
+ Codegen.add_codegen "let_codegen" let_codegen
+ #> Codegen.add_codegen "split_codegen" split_codegen
+
+end
+*}
+
+
+subsubsection {* Fundamental operations and properties *}
lemma surj_pair [simp]: "EX x y. p = (x, y)"
- apply (unfold Pair_def)
- apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
- apply (erule exE, erule exE, rule exI, rule exI)
- apply (rule Rep_Prod_inverse [symmetric, THEN trans])
- apply (erule arg_cong)
- done
-
-lemma PairE [cases type: *]:
- obtains x y where "p = (x, y)"
- using surj_pair [of p] by blast
-
-lemma ProdI: "Pair_Rep a b \<in> Prod"
- unfolding Prod_def by rule+
-
-lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' \<Longrightarrow> a = a' \<and> b = b'"
- unfolding Pair_Rep_def by (drule fun_cong, drule fun_cong) blast
+ by (cases p) simp
-lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
- apply (rule inj_on_inverseI)
- apply (erule Abs_Prod_inverse)
- done
+global consts
+ fst :: "'a \<times> 'b \<Rightarrow> 'a"
+ snd :: "'a \<times> 'b \<Rightarrow> 'b"
-lemma Pair_inject:
- assumes "(a, b) = (a', b')"
- and "a = a' ==> b = b' ==> R"
- shows R
- apply (insert prems [unfolded Pair_def])
- apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
- apply (assumption | rule ProdI)+
- done
-
-rep_datatype (prod) Pair
-proof -
- fix P p
- assume "\<And>x y. P (x, y)"
- then show "P p" by (cases p) simp
-qed (auto elim: Pair_inject)
-
-lemmas Pair_eq = prod.inject
+local defs
+ fst_def: "fst p == case p of (a, b) \<Rightarrow> a"
+ snd_def: "snd p == case p of (a, b) \<Rightarrow> b"
lemma fst_conv [simp, code]: "fst (a, b) = a"
- unfolding fst_def by blast
+ unfolding fst_def by simp
lemma snd_conv [simp, code]: "snd (a, b) = b"
- unfolding snd_def by blast
+ unfolding snd_def by simp
+code_const fst and snd
+ (Haskell "fst" and "snd")
-subsubsection {* Basic rules and proof tools *}
+lemma prod_case_unfold: "prod_case = (%c p. c (fst p) (snd p))"
+ by (simp add: expand_fun_eq split: prod.split)
lemma fst_eqD: "fst (x, y) = a ==> x = a"
by simp
@@ -321,6 +424,44 @@
lemmas surjective_pairing = pair_collapse [symmetric]
+lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
+ by (cases s, cases t) simp
+
+lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
+ by (simp add: Pair_fst_snd_eq)
+
+lemma split_conv [simp, code]: "split f (a, b) = f a b"
+ by (simp add: split_prod_case)
+
+lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
+ by (rule split_conv [THEN iffD2])
+
+lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
+ by (rule split_conv [THEN iffD1])
+
+lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
+ by (simp add: split_prod_case expand_fun_eq split: prod.split)
+
+lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
+ -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
+ by (simp add: split_prod_case expand_fun_eq split: prod.split)
+
+lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
+ by (cases x) simp
+
+lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
+ by (cases p) simp
+
+lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
+ by (simp add: split_prod_case prod_case_unfold)
+
+lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
+ -- {* Prevents simplification of @{term c}: much faster *}
+ by (erule arg_cong)
+
+lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
+ by (simp add: split_eta)
+
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
proof
fix a b
@@ -374,71 +515,10 @@
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
by fast
-lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
- by (cases s, cases t) simp
-
-lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
- by (simp add: Pair_fst_snd_eq)
-
-
-subsubsection {* @{text split} and @{text curry} *}
-
-lemma split_conv [simp, code]: "split f (a, b) = f a b"
- by (simp add: split_def)
-
-lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
- by (simp add: curry_def)
-
-lemmas split = split_conv -- {* for backwards compatibility *}
-
-lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
- by (rule split_conv [THEN iffD2])
-
-lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
- by (rule split_conv [THEN iffD1])
-
-lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
- by (simp add: curry_def)
-
-lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
- by (simp add: curry_def)
-
-lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
- by (simp add: curry_def)
-
-lemma curry_split [simp]: "curry (split f) = f"
- by (simp add: curry_def split_def)
-
-lemma split_curry [simp]: "split (curry f) = f"
- by (simp add: curry_def split_def)
-
-lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
- by (simp add: split_def id_def)
-
-lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
- -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
- by (rule ext) auto
-
-lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
- by (cases x) simp
-
-lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
- unfolding split_def ..
-
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
-- {* Can't be added to simpset: loops! *}
by (simp add: split_eta)
-lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
- by (simp add: split_def)
-
-lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
- -- {* Prevents simplification of @{term c}: much faster *}
- by (erule arg_cong)
-
-lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
- by (simp add: split_eta)
-
text {*
Simplification procedure for @{thm [source] cond_split_eta}. Using
@{thm [source] split_eta} as a rewrite rule is not general enough,
@@ -511,7 +591,6 @@
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
by (subst split_split, simp)
-
text {*
\medskip @{term split} used as a logical connective or set former.
@@ -529,10 +608,10 @@
done
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
- by (induct p) (auto simp add: split_def)
+ by (induct p) (auto simp add: split_prod_case)
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
- by (induct p) (auto simp add: split_def)
+ by (induct p) (auto simp add: split_prod_case)
lemma splitE2:
"[| Q (split P z); !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
@@ -555,10 +634,10 @@
by (simp only: split_tupled_all, simp)
lemma mem_splitE:
- assumes major: "z: split c p"
- and cases: "!!x y. [| p = (x,y); z: c x y |] ==> Q"
+ assumes major: "z \<in> split c p"
+ and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
shows Q
- by (rule major [unfolded split_def] cases surjective_pairing)+
+ by (rule major [unfolded split_prod_case prod_case_unfold] cases surjective_pairing)+
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
@@ -626,20 +705,6 @@
Setup of internal @{text split_rule}.
*}
-definition
- internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
-where
- "internal_split == split"
-
-lemma internal_split_conv: "internal_split c (a, b) = c a b"
- by (simp only: internal_split_def split_conv)
-
-use "Tools/split_rule.ML"
-setup Split_Rule.setup
-
-hide_const internal_split
-
-
lemmas prod_caseI = prod.cases [THEN iffD2, standard]
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
@@ -654,9 +719,6 @@
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
by (induct p) auto
-lemma prod_case_unfold: "prod_case = (%c p. c (fst p) (snd p))"
- by (simp add: expand_fun_eq)
-
declare prod_caseI2' [intro!] prod_caseI2 [intro!] prod_caseI [intro!]
declare prod_caseE' [elim!] prod_caseE [elim!]
@@ -668,9 +730,6 @@
"prod_case f p = f (fst p) (snd p)"
unfolding prod_case_split split_beta ..
-
-subsection {* Further cases/induct rules for tuples *}
-
lemma prod_cases3 [cases type]:
obtains (fields) a b c where "y = (a, b, c)"
by (cases y, case_tac b) blast
@@ -711,18 +770,55 @@
"(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
by (cases x) blast
+lemma split_def:
+ "split = (\<lambda>c p. c (fst p) (snd p))"
+ unfolding split_prod_case prod_case_unfold ..
+
+definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
+ "internal_split == split"
+
+lemma internal_split_conv: "internal_split c (a, b) = c a b"
+ by (simp only: internal_split_def split_conv)
+
+use "Tools/split_rule.ML"
+setup Split_Rule.setup
+
+hide_const internal_split
+
subsubsection {* Derived operations *}
+global consts
+ curry :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c"
+
+local defs
+ curry_def: "curry == (%c x y. c (Pair x y))"
+
+lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
+ by (simp add: curry_def)
+
+lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
+ by (simp add: curry_def)
+
+lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
+ by (simp add: curry_def)
+
+lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
+ by (simp add: curry_def)
+
+lemma curry_split [simp]: "curry (split f) = f"
+ by (simp add: curry_def split_def)
+
+lemma split_curry [simp]: "split (curry f) = f"
+ by (simp add: curry_def split_def)
+
text {*
The composition-uncurry combinator.
*}
notation fcomp (infixl "o>" 60)
-definition
- scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "o\<rightarrow>" 60)
-where
+definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "o\<rightarrow>" 60) where
"f o\<rightarrow> g = (\<lambda>x. split g (f x))"
lemma scomp_apply: "(f o\<rightarrow> g) x = split g (f x)"
@@ -749,7 +845,6 @@
no_notation fcomp (infixl "o>" 60)
no_notation scomp (infixl "o\<rightarrow>" 60)
-
text {*
@{term prod_fun} --- action of the product functor upon
functions.
@@ -777,21 +872,17 @@
and cases: "!!x y. [| c=(f(x),g(y)); (x,y):r |] ==> P"
shows P
apply (rule major [THEN imageE])
- apply (rule_tac p = x in PairE)
+ apply (case_tac x)
apply (rule cases)
apply (blast intro: prod_fun)
apply blast
done
-definition
- apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b"
-where
- [code del]: "apfst f = prod_fun f id"
+definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
+ "apfst f = prod_fun f id"
-definition
- apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c"
-where
- [code del]: "apsnd f = prod_fun id f"
+definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
+ "apsnd f = prod_fun id f"
lemma apfst_conv [simp, code]:
"apfst f (x, y) = (f x, y)"
@@ -1005,7 +1096,7 @@
by blast
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
- by (auto, rule_tac p = "f x" in PairE, auto)
+ by (auto, case_tac "f x", auto)
lemma swap_inj_on:
"inj_on (\<lambda>(i, j). (j, i)) A"
@@ -1023,131 +1114,27 @@
using * eq[symmetric] by auto
qed simp_all
-subsubsection {* Code generator setup *}
-lemma [code]:
- "eq_class.eq (x1\<Colon>'a\<Colon>eq, y1\<Colon>'b\<Colon>eq) (x2, y2) \<longleftrightarrow> x1 = x2 \<and> y1 = y2" by (simp add: eq)
-
-lemma split_case_cert:
- assumes "CASE \<equiv> split f"
- shows "CASE (a, b) \<equiv> f a b"
- using assms by simp
-
-setup {*
- Code.add_case @{thm split_case_cert}
-*}
-
-code_type *
- (SML infix 2 "*")
- (OCaml infix 2 "*")
- (Haskell "!((_),/ (_))")
- (Scala "((_),/ (_))")
-
-code_instance * :: eq
- (Haskell -)
-
-code_const "eq_class.eq \<Colon> 'a\<Colon>eq \<times> 'b\<Colon>eq \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
- (Haskell infixl 4 "==")
-
-code_const Pair
- (SML "!((_),/ (_))")
- (OCaml "!((_),/ (_))")
- (Haskell "!((_),/ (_))")
- (Scala "!((_),/ (_))")
-
-code_const fst and snd
- (Haskell "fst" and "snd")
-
-types_code
- "*" ("(_ */ _)")
-attach (term_of) {*
-fun term_of_id_42 aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
-*}
-attach (test) {*
-fun gen_id_42 aG aT bG bT i =
- let
- val (x, t) = aG i;
- val (y, u) = bG i
- in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
-*}
-
-consts_code
- "Pair" ("(_,/ _)")
-
-setup {*
-let
-
-fun strip_abs_split 0 t = ([], t)
- | strip_abs_split i (Abs (s, T, t)) =
- let
- val s' = Codegen.new_name t s;
- val v = Free (s', T)
- in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
- | strip_abs_split i (u as Const (@{const_name split}, _) $ t) =
- (case strip_abs_split (i+1) t of
- (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
- | _ => ([], u))
- | strip_abs_split i t =
- strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
-
-fun let_codegen thy defs dep thyname brack t gr =
- (case strip_comb t of
- (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
- let
- fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
- (case strip_abs_split 1 u of
- ([p], u') => apfst (cons (p, t)) (dest_let u')
- | _ => ([], l))
- | dest_let t = ([], t);
- fun mk_code (l, r) gr =
- let
- val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr;
- val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1;
- in ((pl, pr), gr2) end
- in case dest_let (t1 $ t2 $ t3) of
- ([], _) => NONE
- | (ps, u) =>
- let
- val (qs, gr1) = fold_map mk_code ps gr;
- val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
- val (pargs, gr3) = fold_map
- (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
- in
- SOME (Codegen.mk_app brack
- (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
- (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
- [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
- Pretty.brk 1, pr]]) qs))),
- Pretty.brk 1, Codegen.str "in ", pu,
- Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
- end
- end
- | _ => NONE);
-
-fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of
- (t1 as Const (@{const_name split}, _), t2 :: ts) =>
- let
- val ([p], u) = strip_abs_split 1 (t1 $ t2);
- val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr;
- val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
- val (pargs, gr3) = fold_map
- (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
- in
- SOME (Codegen.mk_app brack
- (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
- Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
- end
- | _ => NONE);
-
-in
-
- Codegen.add_codegen "let_codegen" let_codegen
- #> Codegen.add_codegen "split_codegen" split_codegen
-
-end
-*}
+subsection {* Inductively defined sets *}
use "Tools/inductive_set.ML"
setup Inductive_Set.setup
+
+subsection {* Legacy theorem bindings and duplicates *}
+
+lemma PairE:
+ obtains x y where "p = (x, y)"
+ by (fact prod.exhaust)
+
+lemma Pair_inject:
+ assumes "(a, b) = (a', b')"
+ and "a = a' ==> b = b' ==> R"
+ shows R
+ using assms by simp
+
+lemmas Pair_eq = prod.inject
+
+lemmas split = split_conv -- {* for backwards compatibility *}
+
end