experimental version of automated induction scheme generator (cf. HOL/ex/Induction_Scheme.thy)
authorkrauss
Fri, 07 Dec 2007 09:42:20 +0100
changeset 25567 5720345ea689
parent 25566 33f740c5e022
child 25568 7bb10db582cf
experimental version of automated induction scheme generator (cf. HOL/ex/Induction_Scheme.thy)
src/HOL/FunDef.thy
src/HOL/Tools/function_package/induction_scheme.ML
src/HOL/ex/Induction_Scheme.thy
--- a/src/HOL/FunDef.thy	Fri Dec 07 08:38:50 2007 +0100
+++ b/src/HOL/FunDef.thy	Fri Dec 07 09:42:20 2007 +0100
@@ -18,6 +18,7 @@
   ("Tools/function_package/pattern_split.ML")
   ("Tools/function_package/fundef_package.ML")
   ("Tools/function_package/auto_term.ML")
+  ("Tools/function_package/induction_scheme.ML")
 begin
 
 text {* Definitions with default value. *}
@@ -104,8 +105,12 @@
 use "Tools/function_package/pattern_split.ML"
 use "Tools/function_package/auto_term.ML"
 use "Tools/function_package/fundef_package.ML"
+use "Tools/function_package/induction_scheme.ML"
 
-setup {* FundefPackage.setup *}
+setup {* 
+  FundefPackage.setup 
+  #> InductionScheme.setup
+*}
 
 lemma let_cong [fundef_cong]:
   "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/function_package/induction_scheme.ML	Fri Dec 07 09:42:20 2007 +0100
@@ -0,0 +1,280 @@
+
+signature INDUCTION_SCHEME =
+sig
+  val mk_ind_tac : Proof.context -> thm list -> tactic  
+  val setup : theory -> theory
+end
+
+
+structure InductionScheme : INDUCTION_SCHEME =
+struct
+
+open FundefLib
+
+type rec_call_info = (string * typ) list * term list * term
+
+datatype scheme_case =
+  SchemeCase of
+  {
+   qs: (string * typ) list,
+   gs: term list,
+   lhs: term,
+   rs: rec_call_info list
+  }
+
+datatype ind_scheme =
+  IndScheme of
+  {
+   T: typ,
+   cases: scheme_case list
+  }
+
+
+fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
+
+fun dest_hhf ctxt t = 
+    let 
+      val (ctxt', vars, imp) = dest_all_all_ctx ctxt t
+    in
+      (ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
+    end
+
+fun mk_case P ctxt premise =
+    let
+      val (ctxt', qs, prems, concl) = dest_hhf ctxt premise
+      val _ $ (_ $ lhs) = concl 
+
+      fun mk_rcinfo pr =
+          let
+            val (ctxt'', Gvs, Gas, _ $ (_ $ rcarg)) = dest_hhf ctxt' pr
+          in
+            (Gvs, Gas, rcarg)
+          end
+
+      val (gs, rcprs) = take_prefix (not o exists_aterm (fn Free v => v = P | _ => false)) prems
+    in
+      SchemeCase {qs=qs, gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
+    end
+
+fun mk_scheme' ctxt cases (Pn, PT) =
+    IndScheme {T=domain_type PT, cases=map (mk_case (Pn,PT) ctxt) cases }
+
+fun mk_completeness ctxt (IndScheme {T, cases}) =
+    let
+      val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) cases []
+      val [Pbool, x] = map Free (Variable.variant_frees ctxt allqnames [("P", HOLogic.boolT), ("x", T)])
+                       
+      fun mk_case (SchemeCase {qs, gs, lhs, ...}) =
+          HOLogic.mk_Trueprop Pbool
+                     |> curry Logic.mk_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, lhs)))
+                     |> fold_rev (curry Logic.mk_implies) gs
+                     |> fold_rev (mk_forall o Free) qs
+    in
+      HOLogic.mk_Trueprop Pbool
+       |> fold_rev (curry Logic.mk_implies o mk_case) cases
+       |> mk_forall_rename ("x", x)
+       |> mk_forall_rename ("P", Pbool)
+    end
+
+fun mk_wf ctxt R (IndScheme {T, ...}) =
+    HOLogic.Trueprop $ (Const (@{const_name "wf"}, mk_relT T --> HOLogic.boolT) $ R)
+
+fun mk_ineqs R (IndScheme {T, cases}) =
+    let
+      fun f (SchemeCase {qs, gs, lhs, rs, ...}) = 
+          let
+            fun g (Gvs, Gas, rcarg) =
+                HOLogic.mk_mem (HOLogic.mk_prod (rcarg, lhs), R)
+                  |> HOLogic.mk_Trueprop
+                  |> fold_rev (curry Logic.mk_implies) Gas
+                  |> fold_rev (curry Logic.mk_implies) gs
+                  |> fold_rev (mk_forall o Free) Gvs
+                  |> fold_rev (mk_forall o Free) qs
+          in
+            map g rs
+          end
+    in
+      map f cases
+    end
+
+
+fun mk_induct_rule thy R complete_thm wf_thm ineqss (IndScheme {T, cases=scases}) =
+    let
+      val x = Free ("x", T)
+      val P = Free ("P", T --> HOLogic.boolT)
+
+      val cert = cterm_of thy 
+                
+      (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
+      val ihyp = all T $ Abs ("z", T, 
+               implies $ 
+                  HOLogic.mk_Trueprop (
+                  Const ("op :", HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT) 
+                    $ (HOLogic.pair_const T T $ Bound 0 $ x) 
+                    $ R)
+             $ HOLogic.mk_Trueprop (P $ Bound 0))
+           |> cert
+
+      val aihyp = assume ihyp
+
+      fun prove_case (SchemeCase {qs, gs, lhs, rs, ...}) ineqs =
+          let
+            val case_hyp = assume (cert (HOLogic.Trueprop $ (HOLogic.mk_eq (x, lhs))))
+                           
+            val cqs = map (cert o Free) qs
+            val ags = map (assume o cert) gs
+                      
+            val replace_x_ss = HOL_basic_ss addsimps [case_hyp]
+            val sih = full_simplify replace_x_ss aihyp
+                      
+            fun mk_Prec (Gvs, Gas, rcarg) ineq =
+                let
+                  val cGas = map (assume o cert) Gas
+                  val cGvs = map (cert o Free) Gvs
+                  val loc_ineq = ineq 
+                                   |> fold forall_elim (cqs @ cGvs)
+                                   |> fold Thm.elim_implies (ags @ cGas)
+                in
+                  sih |> forall_elim (cert rcarg)
+                      |> Thm.elim_implies loc_ineq
+                      |> fold_rev (implies_intr o cprop_of) cGas
+                      |> fold_rev forall_intr cGvs
+                end
+                
+            val P_recs = map2 mk_Prec rs ineqs   (*  [P rec1, P rec2, ... ]  *)
+                         
+            val step = HOLogic.mk_Trueprop (P $ lhs)
+                                           |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
+                                           |> fold_rev (curry Logic.mk_implies) gs
+                                           |> fold_rev (mk_forall o Free) qs
+                                           |> cert
+                       
+            val res = assume step
+                       |> fold forall_elim cqs
+                       |> fold Thm.elim_implies ags
+                       |> fold Thm.elim_implies P_recs
+                       |> Conv.fconv_rule 
+                       (Conv.arg_conv (Conv.arg_conv (K (Thm.symmetric (case_hyp RS eq_reflection))))) 
+                       (* "P x" *)
+                       |> implies_intr (cprop_of case_hyp)
+                       |> fold_rev (implies_intr o cprop_of) ags
+                       |> fold_rev forall_intr cqs
+          in
+            (res, step)
+          end
+          
+      val (cases, steps) = split_list (map2 prove_case scases ineqss)
+                           
+      val istep = complete_thm 
+                |> forall_elim (cert (P $ x))
+                |> forall_elim (cert x)
+                |> fold (Thm.elim_implies) cases
+                |> implies_intr ihyp
+                |> forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
+         
+      val induct_rule =
+          @{thm "wf_induct_rule"}
+            |> (curry op COMP) wf_thm 
+            |> (curry op COMP) istep
+            |> fold_rev implies_intr steps
+            |> forall_intr (cert P)
+    in
+      induct_rule
+    end
+
+fun mk_ind_tac ctxt facts = (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL 
+(SUBGOAL (fn (t, i) =>
+  let
+    val (ctxt', _, cases, concl) = dest_hhf ctxt t
+                                   
+    fun get_types t = 
+        let
+          val (P, vs) = strip_comb (HOLogic.dest_Trueprop t)
+          val Ts = map fastype_of vs
+          val tupT = foldr1 HOLogic.mk_prodT Ts
+        in 
+          ((P, Ts), tupT)
+        end
+        
+    val concls = Logic.dest_conjunction_list (Logic.strip_imp_concl concl)
+    val (PTss, tupTs) = split_list (map get_types concls)
+                        
+    val n = length tupTs
+    val ST = BalancedTree.make (uncurry SumTree.mk_sumT) tupTs
+    val PsumT = ST --> HOLogic.boolT
+    val Psum = ("Psum", PsumT)
+               
+    fun mk_rews (i, (P, Ts)) = 
+        let
+          val vs = map_index (fn (j,T) => Free ("x" ^ string_of_int j, T)) Ts 
+          val t = Free Psum $ SumTree.mk_inj ST n (i + 1) (foldr1 HOLogic.mk_prod vs)
+                       |> fold_rev lambda vs
+        in
+          (P, t)
+        end
+        
+    val rews = map_index mk_rews PTss
+    val thy = ProofContext.theory_of ctxt'
+    val cases' = map (Pattern.rewrite_term thy rews []) cases
+                 
+    val scheme = mk_scheme' ctxt' cases' Psum
+
+(*    val _ = sys_error (PolyML.makestring scheme)*)
+                 
+    val cert = cterm_of thy
+
+    val R = Free ("R", mk_relT ST)
+    val ineqss = mk_ineqs R scheme
+                   |> map (map (assume o cert))
+    val complete = mk_completeness ctxt scheme |> cert |> assume
+    val wf_thm = mk_wf ctxt R scheme |> cert |> assume
+
+    val indthm = mk_induct_rule thy R complete wf_thm ineqss scheme
+
+    fun mk_P (P, Ts) = 
+        let
+          val avars = map_index (fn (i,T) => Var (("a", i), T)) Ts
+          val atup = foldr1 HOLogic.mk_prod avars
+        in
+          tupled_lambda atup (list_comb (P, avars))
+        end
+          
+    val case_exp = cert (SumTree.mk_sumcases HOLogic.boolT (map mk_P PTss))
+ 
+    val acases = map (assume o cert) cases
+  (*
+    val _ = sys_error (ProofContext.string_of_thm ctxt indthm)
+    val _ = sys_error (cat_lines (map (ProofContext.string_of_thm ctxt) acases))
+   *)
+    val indthm' = indthm |> forall_elim case_exp
+                         |> full_simplify SumTree.sumcase_split_ss
+                         |> fold Thm.elim_implies acases
+
+    fun project (i,t) = 
+        let
+          val (P, vs) = strip_comb (HOLogic.dest_Trueprop t)
+          val inst = cert (SumTree.mk_inj ST n (i + 1) (foldr1 HOLogic.mk_prod vs))
+        in
+          indthm' |> Drule.instantiate' [] [SOME inst]
+                  |> simplify SumTree.sumcase_split_ss
+        end                  
+
+    val res = Conjunction.intr_balanced (map_index project concls)
+                |> fold_rev (implies_intr o cprop_of) acases
+                |> forall_elim_vars 0
+        in
+          (fn st =>
+        Drule.compose_single (res, i, st)
+          |> fold_rev (implies_intr o cprop_of) (complete :: wf_thm :: flat ineqss)
+          |> forall_intr (cert R)
+          |> forall_elim_vars 0
+          |> Seq.single
+          )
+  end))
+
+
+val setup = Method.add_methods
+  [("induct_scheme", Method.ctxt_args (Method.RAW_METHOD o mk_ind_tac),
+    "proves an induction principle")]
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Induction_Scheme.thy	Fri Dec 07 09:42:20 2007 +0100
@@ -0,0 +1,49 @@
+(*  Title:      HOL/ex/Induction_Scheme.thy
+    ID:         $Id$
+    Author:     Alexander Krauss, TU Muenchen
+*)
+
+header {* Examples of automatically derived induction rules *}
+
+theory Induction_Scheme
+imports Main
+begin
+
+subsection {* Some simple induction principles on nat *}
+
+lemma nat_standard_induct: (* cf. Nat.thy *)
+  "\<lbrakk>P 0; \<And>n. P n \<Longrightarrow> P (Suc n)\<rbrakk> \<Longrightarrow> P x"
+by induct_scheme (pat_completeness, lexicographic_order)
+
+lemma nat_induct2: (* cf. Nat.thy *)
+  "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc (Suc k)) \<rbrakk>
+  \<Longrightarrow> P n"
+by induct_scheme (pat_completeness, lexicographic_order)
+
+lemma minus_one_induct:
+  "\<lbrakk>\<And>n::nat. (n \<noteq> 0 \<Longrightarrow> P (n - 1)) \<Longrightarrow> P n\<rbrakk> \<Longrightarrow> P x"
+by induct_scheme (pat_completeness, lexicographic_order)
+
+theorem diff_induct: (* cf. Nat.thy *)
+  "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
+    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
+by induct_scheme (pat_completeness, lexicographic_order)
+
+lemma list_induct2': (* cf. List.thy *)
+  "\<lbrakk> P [] [];
+  \<And>x xs. P (x#xs) [];
+  \<And>y ys. P [] (y#ys);
+   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
+ \<Longrightarrow> P xs ys"
+by induct_scheme (pat_completeness, lexicographic_order)
+
+theorem even_odd_induct:
+  assumes "R 0"
+  assumes "Q 0"
+  assumes "\<And>n. Q n \<Longrightarrow> R (Suc n)"
+  assumes "\<And>n. R n \<Longrightarrow> Q (Suc n)"
+  shows "R n" "Q n"
+  using assms
+by induct_scheme (pat_completeness, lexicographic_order)
+
+end
\ No newline at end of file