well-order extension (by Christian Sternagel)
authorpopescua
Fri, 24 May 2013 18:11:57 +0200
changeset 52182 57b4fdc59d3b
parent 52181 59e5dd7b8f9a
child 52183 667961fa6a60
well-order extension (by Christian Sternagel)
src/HOL/Cardinals/Order_Relation_More_Base.thy
src/HOL/Cardinals/Wellfounded_More_Base.thy
src/HOL/Library/Order_Relation.thy
src/HOL/Library/Well_Order_Extension.thy
--- a/src/HOL/Cardinals/Order_Relation_More_Base.thy	Fri May 24 17:37:06 2013 +0200
+++ b/src/HOL/Cardinals/Order_Relation_More_Base.thy	Fri May 24 18:11:57 2013 +0200
@@ -52,24 +52,6 @@
 using well_order_on_Field by simp
 
 
-lemma Total_Id_Field:
-assumes TOT: "Total r" and NID: "\<not> (r <= Id)"
-shows "Field r = Field(r - Id)"
-using mono_Field[of "r - Id" r] Diff_subset[of r Id]
-proof(auto)
-  have "r \<noteq> {}" using NID by fast
-  then obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" using NID by fast
-  hence 1: "b \<noteq> c \<and> {b,c} \<le> Field r" by (auto simp: Field_def)
-  (*  *)
-  fix a assume *: "a \<in> Field r"
-  obtain d where 2: "d \<in> Field r" and 3: "d \<noteq> a"
-  using * 1 by auto
-  hence "(a,d) \<in> r \<or> (d,a) \<in> r" using * TOT
-  by (simp add: total_on_def)
-  thus "a \<in> Field(r - Id)" using 3 unfolding Field_def by blast
-qed
-
-
 lemma Total_subset_Id:
 assumes TOT: "Total r" and SUB: "r \<le> Id"
 shows "r = {} \<or> (\<exists>a. r = {(a,a)})"
--- a/src/HOL/Cardinals/Wellfounded_More_Base.thy	Fri May 24 17:37:06 2013 +0200
+++ b/src/HOL/Cardinals/Wellfounded_More_Base.thy	Fri May 24 18:11:57 2013 +0200
@@ -158,7 +158,7 @@
   ultimately show ?thesis by blast
 next
   assume Case2: "\<not> r \<le> Id"
-  hence 1: "Field r = Field(r - Id)" using rel.Total_Id_Field LI
+  hence 1: "Field r = Field(r - Id)" using Total_Id_Field LI
   unfolding order_on_defs by blast
   show ?thesis
   proof
--- a/src/HOL/Library/Order_Relation.thy	Fri May 24 17:37:06 2013 +0200
+++ b/src/HOL/Library/Order_Relation.thy	Fri May 24 18:11:57 2013 +0200
@@ -87,6 +87,23 @@
   "\<lbrakk>Partial_order r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
 by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff)
 
+lemma Total_Id_Field:
+assumes TOT: "Total r" and NID: "\<not> (r <= Id)"
+shows "Field r = Field(r - Id)"
+using mono_Field[of "r - Id" r] Diff_subset[of r Id]
+proof(auto)
+  have "r \<noteq> {}" using NID by fast
+  then obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" using NID by fast
+  hence 1: "b \<noteq> c \<and> {b,c} \<le> Field r" by (auto simp: Field_def)
+  (*  *)
+  fix a assume *: "a \<in> Field r"
+  obtain d where 2: "d \<in> Field r" and 3: "d \<noteq> a"
+  using * 1 by auto
+  hence "(a,d) \<in> r \<or> (d,a) \<in> r" using * TOT
+  by (simp add: total_on_def)
+  thus "a \<in> Field(r - Id)" using 3 unfolding Field_def by blast
+qed
+
 
 subsection{* Orders on a type *}
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Well_Order_Extension.thy	Fri May 24 18:11:57 2013 +0200
@@ -0,0 +1,211 @@
+(*  Title:      HOL/Library/Well_Order_Extension.thy
+    Author:     Christian Sternagel, JAIST
+*)
+
+header {*Extending Well-founded Relations to Well-Orders.*}
+
+theory Well_Order_Extension
+imports Zorn Order_Union
+begin
+
+text {*A \emph{downset} (also lower set, decreasing set, initial segment, or
+downward closed set) is closed w.r.t.\ smaller elements.*}
+definition downset_on where
+  "downset_on A r = (\<forall>x y. (x, y) \<in> r \<and> y \<in> A \<longrightarrow> x \<in> A)"
+
+(*
+text {*Connection to order filters of the @{theory Cardinals} theory.*}
+lemma (in wo_rel) ofilter_downset_on_conv:
+  "ofilter A \<longleftrightarrow> downset_on A r \<and> A \<subseteq> Field r"
+  by (auto simp: downset_on_def ofilter_def under_def)
+*)
+
+lemma downset_onI:
+  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A) \<Longrightarrow> downset_on A r"
+  by (auto simp: downset_on_def)
+
+lemma downset_onD:
+  "downset_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A"
+  by (auto simp: downset_on_def)
+
+text {*Extensions of relations w.r.t.\ a given set.*}
+definition extension_on where
+  "extension_on A r s = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> s \<longrightarrow> (x, y) \<in> r)"
+
+lemma extension_onI:
+  "(\<And>x y. \<lbrakk>x \<in> A; y \<in> A; (x, y) \<in> s\<rbrakk> \<Longrightarrow> (x, y) \<in> r) \<Longrightarrow> extension_on A r s"
+  by (auto simp: extension_on_def)
+
+lemma extension_onD:
+  "extension_on A r s \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> s \<Longrightarrow> (x, y) \<in> r"
+  by (auto simp: extension_on_def)
+
+lemma downset_on_Union:
+  assumes "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p"
+  shows "downset_on (Field (\<Union>R)) p"
+  using assms by (auto intro: downset_onI dest: downset_onD)
+
+lemma chain_subset_extension_on_Union:
+  assumes "chain\<^sub>\<subseteq> R" and "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
+  shows "extension_on (Field (\<Union>R)) (\<Union>R) p"
+  using assms
+  by (simp add: chain_subset_def extension_on_def)
+     (metis Field_def mono_Field set_mp)
+
+lemma downset_on_empty [simp]: "downset_on {} p"
+  by (auto simp: downset_on_def)
+
+lemma extension_on_empty [simp]: "extension_on {} p q"
+  by (auto simp: extension_on_def)
+
+text {*Every well-founded relation can be extended to a well-order.*}
+theorem well_order_extension:
+  assumes "wf p"
+  shows "\<exists>w. p \<subseteq> w \<and> Well_order w"
+proof -
+  let ?K = "{r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p}"
+  def I \<equiv> "init_seg_of \<inter> ?K \<times> ?K"
+  have I_init: "I \<subseteq> init_seg_of" by (simp add: I_def)
+  then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
+    by (auto simp: init_seg_of_def chain_subset_def Chains_def)
+  have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow>
+      Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p"
+    by (simp add: Chains_def I_def) blast
+  have FI: "Field I = ?K" by (auto simp: I_def init_seg_of_def Field_def)
+  then have 0: "Partial_order I"
+    by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
+      trans_def I_def elim: trans_init_seg_of)
+  { fix R assume "R \<in> Chains I"
+    then have Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
+    have subch: "chain\<^sub>\<subseteq> R" using `R \<in> Chains I` I_init
+      by (auto simp: init_seg_of_def chain_subset_def Chains_def)
+    have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" and
+      "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" and
+      "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p" and
+      "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
+      using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
+    have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by (auto simp: refl_on_def)
+    moreover have "trans (\<Union>R)"
+      by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
+    moreover have "antisym (\<Union>R)"
+      by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
+    moreover have "Total (\<Union>R)"
+      by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
+    moreover have "wf ((\<Union>R) - Id)"
+    proof -
+      have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
+      with `\<forall>r\<in>R. wf (r - Id)` wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
+      show ?thesis by (simp (no_asm_simp)) blast
+    qed
+    ultimately have "Well_order (\<Union>R)" by (simp add: order_on_defs)
+    moreover have "\<forall>r\<in>R. r initial_segment_of \<Union>R" using Ris
+      by (simp add: Chains_init_seg_of_Union)
+    moreover have "downset_on (Field (\<Union>R)) p"
+      by (rule downset_on_Union [OF `\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p`])
+    moreover have "extension_on (Field (\<Union>R)) (\<Union>R) p"
+      by (rule chain_subset_extension_on_Union [OF subch `\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p`])
+    ultimately have "\<Union>R \<in> ?K \<and> (\<forall>r\<in>R. (r,\<Union>R) \<in> I)"
+      using mono_Chains [OF I_init] and `R \<in> Chains I`
+      by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
+  }
+  then have 1: "\<forall>R\<in>Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
+  txt {*Zorn's Lemma yields a maximal well-order m.*}
+  from Zorns_po_lemma [OF 0 1] obtain m :: "('a \<times> 'a) set"
+    where "Well_order m" and "downset_on (Field m) p" and "extension_on (Field m) m p" and
+    max: "\<forall>r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p \<and>
+      (m, r) \<in> I \<longrightarrow> r = m"
+    by (auto simp: FI)
+  have "Field p \<subseteq> Field m"
+  proof (rule ccontr)
+    let ?Q = "Field p - Field m"
+    assume "\<not> (Field p \<subseteq> Field m)"
+    with assms [unfolded wf_eq_minimal, THEN spec, of ?Q]
+      obtain x where "x \<in> Field p" and "x \<notin> Field m" and
+      min: "\<forall>y. (y, x) \<in> p \<longrightarrow> y \<notin> ?Q" by blast
+    txt {*Add @{term x} as topmost element to @{term m}.*}
+    let ?s = "{(y, x) | y. y \<in> Field m}"
+    let ?m = "insert (x, x) m \<union> ?s"
+    have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def)
+    have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
+      using `Well_order m` by (simp_all add: order_on_defs)
+    txt {*We show that the extension is a well-order.*}
+    have "Refl ?m" using `Refl m` Fm by (auto simp: refl_on_def)
+    moreover have "trans ?m" using `trans m` `x \<notin> Field m`
+      unfolding trans_def Field_def Domain_unfold Domain_converse [symmetric] by blast
+    moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
+      unfolding antisym_def Field_def Domain_unfold Domain_converse [symmetric] by blast
+    moreover have "Total ?m" using `Total m` Fm by (auto simp: Relation.total_on_def)
+    moreover have "wf (?m - Id)"
+    proof -
+      have "wf ?s" using `x \<notin> Field m`
+        by (simp add: wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
+      thus ?thesis using `wf (m - Id)` `x \<notin> Field m`
+        wf_subset [OF `wf ?s` Diff_subset]
+        by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)
+    qed
+    ultimately have "Well_order ?m" by (simp add: order_on_defs)
+    moreover have "extension_on (Field ?m) ?m p"
+      using `extension_on (Field m) m p` `downset_on (Field m) p`
+      by (subst Fm) (auto simp: extension_on_def dest: downset_onD)
+    moreover have "downset_on (Field ?m) p"
+      using `downset_on (Field m) p` and min
+      by (subst Fm, simp add: downset_on_def Field_def) (metis Domain_iff)
+    moreover have "(m, ?m) \<in> I"
+      using `Well_order m` and `Well_order ?m` and
+      `downset_on (Field m) p` and `downset_on (Field ?m) p` and
+      `extension_on (Field m) m p` and `extension_on (Field ?m) ?m p` and
+      `Refl m` and `x \<notin> Field m`
+      by (auto simp: I_def init_seg_of_def refl_on_def)
+    ultimately
+    --{*This contradicts maximality of m:*}
+    show False using max and `x \<notin> Field m` unfolding Field_def by blast
+  qed
+  have "p \<subseteq> m"
+    using `Field p \<subseteq> Field m` and `extension_on (Field m) m p`
+    by (force simp: Field_def extension_on_def)
+  with `Well_order m` show ?thesis by blast
+qed
+
+text {*Every well-founded relation can be extended to a total well-order.*}
+corollary total_well_order_extension:
+  assumes "wf p"
+  shows "\<exists>w. p \<subseteq> w \<and> Well_order w \<and> Field w = UNIV"
+proof -
+  from well_order_extension [OF assms] obtain w
+    where "p \<subseteq> w" and wo: "Well_order w" by blast
+  let ?A = "UNIV - Field w"
+  from well_order_on [of ?A] obtain w' where wo': "well_order_on ?A w'" ..
+  have [simp]: "Field w' = ?A" using rel.well_order_on_Well_order [OF wo'] by simp
+  have *: "Field w \<inter> Field w' = {}" by simp
+  let ?w = "w \<union>o w'"
+  have "p \<subseteq> ?w" using `p \<subseteq> w` by (auto simp: Osum_def)
+  moreover have "Well_order ?w" using Osum_Well_order [OF * wo] and wo' by simp
+  moreover have "Field ?w = UNIV" by (simp add: Field_Osum)
+  ultimately show ?thesis by blast
+qed
+
+corollary well_order_on_extension:
+  assumes "wf p" and "Field p \<subseteq> A"
+  shows "\<exists>w. p \<subseteq> w \<and> well_order_on A w"
+proof -
+  from total_well_order_extension [OF `wf p`] obtain r
+    where "p \<subseteq> r" and wo: "Well_order r" and univ: "Field r = UNIV" by blast
+  let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
+  from `p \<subseteq> r` have "p \<subseteq> ?r" using `Field p \<subseteq> A` by (auto simp: Field_def)
+  have 1: "Field ?r = A" using wo univ
+    by (fastforce simp: Field_def order_on_defs refl_on_def)
+  have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)"
+    using `Well_order r` by (simp_all add: order_on_defs)
+  have "refl_on A ?r" using `Refl r` by (auto simp: refl_on_def univ)
+  moreover have "trans ?r" using `trans r`
+    unfolding trans_def by blast
+  moreover have "antisym ?r" using `antisym r`
+    unfolding antisym_def by blast
+  moreover have "total_on A ?r" using `Total r` by (simp add: total_on_def univ)
+  moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf(r - Id)`]) blast
+  ultimately have "well_order_on A ?r" by (simp add: order_on_defs)
+  with `p \<subseteq> ?r` show ?thesis by blast
+qed
+
+end
+