Definition of normal forms (taken from theory WeakNorm).
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Lambda/NormalForm.thy Thu Sep 06 11:47:36 2007 +0200
@@ -0,0 +1,248 @@
+(* Title: HOL/Lambda/NormalForm.thy
+ ID: $Id$
+ Author: Stefan Berghofer, TU Muenchen, 2003
+*)
+
+header {* Inductive characterization of lambda terms in normal form *}
+
+theory NormalForm
+imports ListBeta
+begin
+
+subsection {* Terms in normal form *}
+
+definition
+ listall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
+ "listall P xs \<equiv> (\<forall>i. i < length xs \<longrightarrow> P (xs ! i))"
+
+declare listall_def [extraction_expand]
+
+theorem listall_nil: "listall P []"
+ by (simp add: listall_def)
+
+theorem listall_nil_eq [simp]: "listall P [] = True"
+ by (iprover intro: listall_nil)
+
+theorem listall_cons: "P x \<Longrightarrow> listall P xs \<Longrightarrow> listall P (x # xs)"
+ apply (simp add: listall_def)
+ apply (rule allI impI)+
+ apply (case_tac i)
+ apply simp+
+ done
+
+theorem listall_cons_eq [simp]: "listall P (x # xs) = (P x \<and> listall P xs)"
+ apply (rule iffI)
+ prefer 2
+ apply (erule conjE)
+ apply (erule listall_cons)
+ apply assumption
+ apply (unfold listall_def)
+ apply (rule conjI)
+ apply (erule_tac x=0 in allE)
+ apply simp
+ apply simp
+ apply (rule allI)
+ apply (erule_tac x="Suc i" in allE)
+ apply simp
+ done
+
+lemma listall_conj1: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall P xs"
+ by (induct xs) simp_all
+
+lemma listall_conj2: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall Q xs"
+ by (induct xs) simp_all
+
+lemma listall_app: "listall P (xs @ ys) = (listall P xs \<and> listall P ys)"
+ apply (induct xs)
+ apply (rule iffI, simp, simp)
+ apply (rule iffI, simp, simp)
+ done
+
+lemma listall_snoc [simp]: "listall P (xs @ [x]) = (listall P xs \<and> P x)"
+ apply (rule iffI)
+ apply (simp add: listall_app)+
+ done
+
+lemma listall_cong [cong, extraction_expand]:
+ "xs = ys \<Longrightarrow> listall P xs = listall P ys"
+ -- {* Currently needed for strange technical reasons *}
+ by (unfold listall_def) simp
+
+text {*
+@{term "listsp"} is equivalent to @{term "listall"}, but cannot be
+used for program extraction.
+*}
+
+lemma listall_listsp_eq: "listall P xs = listsp P xs"
+ by (induct xs) (auto intro: listsp.intros)
+
+inductive NF :: "dB \<Rightarrow> bool"
+where
+ App: "listall NF ts \<Longrightarrow> NF (Var x \<degree>\<degree> ts)"
+| Abs: "NF t \<Longrightarrow> NF (Abs t)"
+monos listall_def
+
+lemma nat_eq_dec: "\<And>n::nat. m = n \<or> m \<noteq> n"
+ apply (induct m)
+ apply (case_tac n)
+ apply (case_tac [3] n)
+ apply (simp only: nat.simps, iprover?)+
+ done
+
+lemma nat_le_dec: "\<And>n::nat. m < n \<or> \<not> (m < n)"
+ apply (induct m)
+ apply (case_tac n)
+ apply (case_tac [3] n)
+ apply (simp del: simp_thms, iprover?)+
+ done
+
+lemma App_NF_D: assumes NF: "NF (Var n \<degree>\<degree> ts)"
+ shows "listall NF ts" using NF
+ by cases simp_all
+
+
+subsection {* Properties of @{text NF} *}
+
+lemma Var_NF: "NF (Var n)"
+ apply (subgoal_tac "NF (Var n \<degree>\<degree> [])")
+ apply simp
+ apply (rule NF.App)
+ apply simp
+ done
+
+lemma Abs_NF:
+ assumes NF: "NF (Abs t \<degree>\<degree> ts)"
+ shows "ts = []" using NF
+proof cases
+ case (App us i)
+ thus ?thesis by (simp add: Var_apps_neq_Abs_apps [THEN not_sym])
+next
+ case (Abs u)
+ thus ?thesis by simp
+qed
+
+lemma subst_terms_NF: "listall NF ts \<Longrightarrow>
+ listall (\<lambda>t. \<forall>i j. NF (t[Var i/j])) ts \<Longrightarrow>
+ listall NF (map (\<lambda>t. t[Var i/j]) ts)"
+ by (induct ts) simp_all
+
+lemma subst_Var_NF: "NF t \<Longrightarrow> NF (t[Var i/j])"
+ apply (induct arbitrary: i j set: NF)
+ apply simp
+ apply (frule listall_conj1)
+ apply (drule listall_conj2)
+ apply (drule_tac i=i and j=j in subst_terms_NF)
+ apply assumption
+ apply (rule_tac m=x and n=j in nat_eq_dec [THEN disjE, standard])
+ apply simp
+ apply (erule NF.App)
+ apply (rule_tac m=j and n=x in nat_le_dec [THEN disjE, standard])
+ apply simp
+ apply (iprover intro: NF.App)
+ apply simp
+ apply (iprover intro: NF.App)
+ apply simp
+ apply (iprover intro: NF.Abs)
+ done
+
+lemma app_Var_NF: "NF t \<Longrightarrow> \<exists>t'. t \<degree> Var i \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
+ apply (induct set: NF)
+ apply (simplesubst app_last) --{*Using @{text subst} makes extraction fail*}
+ apply (rule exI)
+ apply (rule conjI)
+ apply (rule rtranclp.rtrancl_refl)
+ apply (rule NF.App)
+ apply (drule listall_conj1)
+ apply (simp add: listall_app)
+ apply (rule Var_NF)
+ apply (rule exI)
+ apply (rule conjI)
+ apply (rule rtranclp.rtrancl_into_rtrancl)
+ apply (rule rtranclp.rtrancl_refl)
+ apply (rule beta)
+ apply (erule subst_Var_NF)
+ done
+
+lemma lift_terms_NF: "listall NF ts \<Longrightarrow>
+ listall (\<lambda>t. \<forall>i. NF (lift t i)) ts \<Longrightarrow>
+ listall NF (map (\<lambda>t. lift t i) ts)"
+ by (induct ts) simp_all
+
+lemma lift_NF: "NF t \<Longrightarrow> NF (lift t i)"
+ apply (induct arbitrary: i set: NF)
+ apply (frule listall_conj1)
+ apply (drule listall_conj2)
+ apply (drule_tac i=i in lift_terms_NF)
+ apply assumption
+ apply (rule_tac m=x and n=i in nat_le_dec [THEN disjE, standard])
+ apply simp
+ apply (rule NF.App)
+ apply assumption
+ apply simp
+ apply (rule NF.App)
+ apply assumption
+ apply simp
+ apply (rule NF.Abs)
+ apply simp
+ done
+
+text {*
+@{term NF} characterizes exactly the terms that are in normal form.
+*}
+
+lemma NF_eq: "NF t = (\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t')"
+proof
+ assume "NF t"
+ then have "\<And>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'"
+ proof induct
+ case (App ts t)
+ show ?case
+ proof
+ assume "Var t \<degree>\<degree> ts \<rightarrow>\<^sub>\<beta> t'"
+ then obtain rs where "ts => rs"
+ by (iprover dest: head_Var_reduction)
+ with App show False
+ by (induct rs arbitrary: ts) auto
+ qed
+ next
+ case (Abs t)
+ show ?case
+ proof
+ assume "Abs t \<rightarrow>\<^sub>\<beta> t'"
+ then show False using Abs by cases simp_all
+ qed
+ qed
+ then show "\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'" ..
+next
+ assume H: "\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'"
+ then show "NF t"
+ proof (induct t rule: Apps_dB_induct)
+ case (1 n ts)
+ then have "\<forall>ts'. \<not> ts => ts'"
+ by (iprover intro: apps_preserves_betas)
+ with 1(1) have "listall NF ts"
+ by (induct ts) auto
+ then show ?case by (rule NF.App)
+ next
+ case (2 u ts)
+ show ?case
+ proof (cases ts)
+ case Nil
+ from 2 have "\<forall>u'. \<not> u \<rightarrow>\<^sub>\<beta> u'"
+ by (auto intro: apps_preserves_beta)
+ then have "NF u" by (rule 2)
+ then have "NF (Abs u)" by (rule NF.Abs)
+ with Nil show ?thesis by simp
+ next
+ case (Cons r rs)
+ have "Abs u \<degree> r \<rightarrow>\<^sub>\<beta> u[r/0]" ..
+ then have "Abs u \<degree> r \<degree>\<degree> rs \<rightarrow>\<^sub>\<beta> u[r/0] \<degree>\<degree> rs"
+ by (rule apps_preserves_beta)
+ with Cons have "Abs u \<degree>\<degree> ts \<rightarrow>\<^sub>\<beta> u[r/0] \<degree>\<degree> rs"
+ by simp
+ with 2 show ?thesis by iprover
+ qed
+ qed
+qed
+
+end