removed obsolete Datatype_Universe.thy (cf. Datatype.thy);
--- a/src/HOL/Datatype_Universe.thy Sun Oct 01 22:19:21 2006 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,634 +0,0 @@
-(* Title: HOL/Datatype_Universe.thy
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1993 University of Cambridge
-
-Could <*> be generalized to a general summation (Sigma)?
-*)
-
-header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*}
-
-theory Datatype_Universe
-imports NatArith Sum_Type
-begin
-
-
-typedef (Node)
- ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
- --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
- by auto
-
-text{*Datatypes will be represented by sets of type @{text node}*}
-
-types 'a item = "('a, unit) node set"
- ('a, 'b) dtree = "('a, 'b) node set"
-
-consts
- apfst :: "['a=>'c, 'a*'b] => 'c*'b"
- Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
-
- Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
- ndepth :: "('a, 'b) node => nat"
-
- Atom :: "('a + nat) => ('a, 'b) dtree"
- Leaf :: "'a => ('a, 'b) dtree"
- Numb :: "nat => ('a, 'b) dtree"
- Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
- In0 :: "('a, 'b) dtree => ('a, 'b) dtree"
- In1 :: "('a, 'b) dtree => ('a, 'b) dtree"
- Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
-
- ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
-
- uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
- usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
-
- Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
- Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
-
- dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
- => (('a, 'b) dtree * ('a, 'b) dtree)set"
- dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
- => (('a, 'b) dtree * ('a, 'b) dtree)set"
-
-
-defs
-
- Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
-
- (*crude "lists" of nats -- needed for the constructions*)
- apfst_def: "apfst == (%f (x,y). (f(x),y))"
- Push_def: "Push == (%b h. nat_case b h)"
-
- (** operations on S-expressions -- sets of nodes **)
-
- (*S-expression constructors*)
- Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
- Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)"
-
- (*Leaf nodes, with arbitrary or nat labels*)
- Leaf_def: "Leaf == Atom o Inl"
- Numb_def: "Numb == Atom o Inr"
-
- (*Injections of the "disjoint sum"*)
- In0_def: "In0(M) == Scons (Numb 0) M"
- In1_def: "In1(M) == Scons (Numb 1) M"
-
- (*Function spaces*)
- Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
-
- (*the set of nodes with depth less than k*)
- ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
- ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
-
- (*products and sums for the "universe"*)
- uprod_def: "uprod A B == UN x:A. UN y:B. { Scons x y }"
- usum_def: "usum A B == In0`A Un In1`B"
-
- (*the corresponding eliminators*)
- Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y"
-
- Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x))
- | (EX y . M = In1(y) & u = d(y))"
-
-
- (** equality for the "universe" **)
-
- dprod_def: "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
-
- dsum_def: "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
- (UN (y,y'):s. {(In1(y),In1(y'))})"
-
-
-
-(** apfst -- can be used in similar type definitions **)
-
-lemma apfst_conv [simp]: "apfst f (a,b) = (f(a),b)"
-by (simp add: apfst_def)
-
-
-lemma apfst_convE:
- "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R
- |] ==> R"
-by (force simp add: apfst_def)
-
-(** Push -- an injection, analogous to Cons on lists **)
-
-lemma Push_inject1: "Push i f = Push j g ==> i=j"
-apply (simp add: Push_def expand_fun_eq)
-apply (drule_tac x=0 in spec, simp)
-done
-
-lemma Push_inject2: "Push i f = Push j g ==> f=g"
-apply (auto simp add: Push_def expand_fun_eq)
-apply (drule_tac x="Suc x" in spec, simp)
-done
-
-lemma Push_inject:
- "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P"
-by (blast dest: Push_inject1 Push_inject2)
-
-lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
-by (auto simp add: Push_def expand_fun_eq split: nat.split_asm)
-
-lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard]
-
-
-(*** Introduction rules for Node ***)
-
-lemma Node_K0_I: "(%k. Inr 0, a) : Node"
-by (simp add: Node_def)
-
-lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node"
-apply (simp add: Node_def Push_def)
-apply (fast intro!: apfst_conv nat_case_Suc [THEN trans])
-done
-
-
-subsection{*Freeness: Distinctness of Constructors*}
-
-(** Scons vs Atom **)
-
-lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)"
-apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def)
-apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I]
- dest!: Abs_Node_inj
- elim!: apfst_convE sym [THEN Push_neq_K0])
-done
-
-lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard]
-declare Atom_not_Scons [iff]
-
-(*** Injectiveness ***)
-
-(** Atomic nodes **)
-
-lemma inj_Atom: "inj(Atom)"
-apply (simp add: Atom_def)
-apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj)
-done
-lemmas Atom_inject = inj_Atom [THEN injD, standard]
-
-lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)"
-by (blast dest!: Atom_inject)
-
-lemma inj_Leaf: "inj(Leaf)"
-apply (simp add: Leaf_def o_def)
-apply (rule inj_onI)
-apply (erule Atom_inject [THEN Inl_inject])
-done
-
-lemmas Leaf_inject = inj_Leaf [THEN injD, standard]
-declare Leaf_inject [dest!]
-
-lemma inj_Numb: "inj(Numb)"
-apply (simp add: Numb_def o_def)
-apply (rule inj_onI)
-apply (erule Atom_inject [THEN Inr_inject])
-done
-
-lemmas Numb_inject = inj_Numb [THEN injD, standard]
-declare Numb_inject [dest!]
-
-
-(** Injectiveness of Push_Node **)
-
-lemma Push_Node_inject:
- "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P
- |] ==> P"
-apply (simp add: Push_Node_def)
-apply (erule Abs_Node_inj [THEN apfst_convE])
-apply (rule Rep_Node [THEN Node_Push_I])+
-apply (erule sym [THEN apfst_convE])
-apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject)
-done
-
-
-(** Injectiveness of Scons **)
-
-lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'"
-apply (simp add: Scons_def One_nat_def)
-apply (blast dest!: Push_Node_inject)
-done
-
-lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'"
-apply (simp add: Scons_def One_nat_def)
-apply (blast dest!: Push_Node_inject)
-done
-
-lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'"
-apply (erule equalityE)
-apply (iprover intro: equalityI Scons_inject_lemma1)
-done
-
-lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'"
-apply (erule equalityE)
-apply (iprover intro: equalityI Scons_inject_lemma2)
-done
-
-lemma Scons_inject:
- "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P"
-by (iprover dest: Scons_inject1 Scons_inject2)
-
-lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')"
-by (blast elim!: Scons_inject)
-
-(*** Distinctness involving Leaf and Numb ***)
-
-(** Scons vs Leaf **)
-
-lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)"
-by (simp add: Leaf_def o_def Scons_not_Atom)
-
-lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard]
-declare Leaf_not_Scons [iff]
-
-(** Scons vs Numb **)
-
-lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)"
-by (simp add: Numb_def o_def Scons_not_Atom)
-
-lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard]
-declare Numb_not_Scons [iff]
-
-
-(** Leaf vs Numb **)
-
-lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)"
-by (simp add: Leaf_def Numb_def)
-
-lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard]
-declare Numb_not_Leaf [iff]
-
-
-(*** ndepth -- the depth of a node ***)
-
-lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0"
-by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality)
-
-lemma ndepth_Push_Node_aux:
- "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"
-apply (induct_tac "k", auto)
-apply (erule Least_le)
-done
-
-lemma ndepth_Push_Node:
- "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"
-apply (insert Rep_Node [of n, unfolded Node_def])
-apply (auto simp add: ndepth_def Push_Node_def
- Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse])
-apply (rule Least_equality)
-apply (auto simp add: Push_def ndepth_Push_Node_aux)
-apply (erule LeastI)
-done
-
-
-(*** ntrunc applied to the various node sets ***)
-
-lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
-by (simp add: ntrunc_def)
-
-lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)"
-by (auto simp add: Atom_def ntrunc_def ndepth_K0)
-
-lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)"
-by (simp add: Leaf_def o_def ntrunc_Atom)
-
-lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)"
-by (simp add: Numb_def o_def ntrunc_Atom)
-
-lemma ntrunc_Scons [simp]:
- "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"
-by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node)
-
-
-
-(** Injection nodes **)
-
-lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
-apply (simp add: In0_def)
-apply (simp add: Scons_def)
-done
-
-lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"
-by (simp add: In0_def)
-
-lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
-apply (simp add: In1_def)
-apply (simp add: Scons_def)
-done
-
-lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"
-by (simp add: In1_def)
-
-
-subsection{*Set Constructions*}
-
-
-(*** Cartesian Product ***)
-
-lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B"
-by (simp add: uprod_def)
-
-(*The general elimination rule*)
-lemma uprodE [elim!]:
- "[| c : uprod A B;
- !!x y. [| x:A; y:B; c = Scons x y |] ==> P
- |] ==> P"
-by (auto simp add: uprod_def)
-
-
-(*Elimination of a pair -- introduces no eigenvariables*)
-lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P"
-by (auto simp add: uprod_def)
-
-
-(*** Disjoint Sum ***)
-
-lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B"
-by (simp add: usum_def)
-
-lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B"
-by (simp add: usum_def)
-
-lemma usumE [elim!]:
- "[| u : usum A B;
- !!x. [| x:A; u=In0(x) |] ==> P;
- !!y. [| y:B; u=In1(y) |] ==> P
- |] ==> P"
-by (auto simp add: usum_def)
-
-
-(** Injection **)
-
-lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)"
-by (auto simp add: In0_def In1_def One_nat_def)
-
-lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard]
-declare In1_not_In0 [iff]
-
-lemma In0_inject: "In0(M) = In0(N) ==> M=N"
-by (simp add: In0_def)
-
-lemma In1_inject: "In1(M) = In1(N) ==> M=N"
-by (simp add: In1_def)
-
-lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)"
-by (blast dest!: In0_inject)
-
-lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)"
-by (blast dest!: In1_inject)
-
-lemma inj_In0: "inj In0"
-by (blast intro!: inj_onI)
-
-lemma inj_In1: "inj In1"
-by (blast intro!: inj_onI)
-
-
-(*** Function spaces ***)
-
-lemma Lim_inject: "Lim f = Lim g ==> f = g"
-apply (simp add: Lim_def)
-apply (rule ext)
-apply (blast elim!: Push_Node_inject)
-done
-
-
-(*** proving equality of sets and functions using ntrunc ***)
-
-lemma ntrunc_subsetI: "ntrunc k M <= M"
-by (auto simp add: ntrunc_def)
-
-lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N"
-by (auto simp add: ntrunc_def)
-
-(*A generalized form of the take-lemma*)
-lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
-apply (rule equalityI)
-apply (rule_tac [!] ntrunc_subsetD)
-apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto)
-done
-
-lemma ntrunc_o_equality:
- "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
-apply (rule ntrunc_equality [THEN ext])
-apply (simp add: expand_fun_eq)
-done
-
-
-(*** Monotonicity ***)
-
-lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'"
-by (simp add: uprod_def, blast)
-
-lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'"
-by (simp add: usum_def, blast)
-
-lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'"
-by (simp add: Scons_def, blast)
-
-lemma In0_mono: "M<=N ==> In0(M) <= In0(N)"
-by (simp add: In0_def subset_refl Scons_mono)
-
-lemma In1_mono: "M<=N ==> In1(M) <= In1(N)"
-by (simp add: In1_def subset_refl Scons_mono)
-
-
-(*** Split and Case ***)
-
-lemma Split [simp]: "Split c (Scons M N) = c M N"
-by (simp add: Split_def)
-
-lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)"
-by (simp add: Case_def)
-
-lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)"
-by (simp add: Case_def)
-
-
-
-(**** UN x. B(x) rules ****)
-
-lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"
-by (simp add: ntrunc_def, blast)
-
-lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)"
-by (simp add: Scons_def, blast)
-
-lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))"
-by (simp add: Scons_def, blast)
-
-lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))"
-by (simp add: In0_def Scons_UN1_y)
-
-lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))"
-by (simp add: In1_def Scons_UN1_y)
-
-
-(*** Equality for Cartesian Product ***)
-
-lemma dprodI [intro!]:
- "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"
-by (auto simp add: dprod_def)
-
-(*The general elimination rule*)
-lemma dprodE [elim!]:
- "[| c : dprod r s;
- !!x y x' y'. [| (x,x') : r; (y,y') : s;
- c = (Scons x y, Scons x' y') |] ==> P
- |] ==> P"
-by (auto simp add: dprod_def)
-
-
-(*** Equality for Disjoint Sum ***)
-
-lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"
-by (auto simp add: dsum_def)
-
-lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"
-by (auto simp add: dsum_def)
-
-lemma dsumE [elim!]:
- "[| w : dsum r s;
- !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P;
- !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P
- |] ==> P"
-by (auto simp add: dsum_def)
-
-
-(*** Monotonicity ***)
-
-lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'"
-by blast
-
-lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'"
-by blast
-
-
-(*** Bounding theorems ***)
-
-lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"
-by blast
-
-lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard]
-
-(*Dependent version*)
-lemma dprod_subset_Sigma2:
- "(dprod (Sigma A B) (Sigma C D)) <=
- Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"
-by auto
-
-lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"
-by blast
-
-lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard]
-
-
-(*** Domain ***)
-
-lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
-by auto
-
-lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
-by auto
-
-
-subsection {* Finishing the datatype package setup *}
-
-text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *}
-hide (open) const Push Node Atom Leaf Numb Lim Split Case
-hide (open) type node item
-
-ML
-{*
-val apfst_conv = thm "apfst_conv";
-val apfst_convE = thm "apfst_convE";
-val Push_inject1 = thm "Push_inject1";
-val Push_inject2 = thm "Push_inject2";
-val Push_inject = thm "Push_inject";
-val Push_neq_K0 = thm "Push_neq_K0";
-val Abs_Node_inj = thm "Abs_Node_inj";
-val Node_K0_I = thm "Node_K0_I";
-val Node_Push_I = thm "Node_Push_I";
-val Scons_not_Atom = thm "Scons_not_Atom";
-val Atom_not_Scons = thm "Atom_not_Scons";
-val inj_Atom = thm "inj_Atom";
-val Atom_inject = thm "Atom_inject";
-val Atom_Atom_eq = thm "Atom_Atom_eq";
-val inj_Leaf = thm "inj_Leaf";
-val Leaf_inject = thm "Leaf_inject";
-val inj_Numb = thm "inj_Numb";
-val Numb_inject = thm "Numb_inject";
-val Push_Node_inject = thm "Push_Node_inject";
-val Scons_inject1 = thm "Scons_inject1";
-val Scons_inject2 = thm "Scons_inject2";
-val Scons_inject = thm "Scons_inject";
-val Scons_Scons_eq = thm "Scons_Scons_eq";
-val Scons_not_Leaf = thm "Scons_not_Leaf";
-val Leaf_not_Scons = thm "Leaf_not_Scons";
-val Scons_not_Numb = thm "Scons_not_Numb";
-val Numb_not_Scons = thm "Numb_not_Scons";
-val Leaf_not_Numb = thm "Leaf_not_Numb";
-val Numb_not_Leaf = thm "Numb_not_Leaf";
-val ndepth_K0 = thm "ndepth_K0";
-val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux";
-val ndepth_Push_Node = thm "ndepth_Push_Node";
-val ntrunc_0 = thm "ntrunc_0";
-val ntrunc_Atom = thm "ntrunc_Atom";
-val ntrunc_Leaf = thm "ntrunc_Leaf";
-val ntrunc_Numb = thm "ntrunc_Numb";
-val ntrunc_Scons = thm "ntrunc_Scons";
-val ntrunc_one_In0 = thm "ntrunc_one_In0";
-val ntrunc_In0 = thm "ntrunc_In0";
-val ntrunc_one_In1 = thm "ntrunc_one_In1";
-val ntrunc_In1 = thm "ntrunc_In1";
-val uprodI = thm "uprodI";
-val uprodE = thm "uprodE";
-val uprodE2 = thm "uprodE2";
-val usum_In0I = thm "usum_In0I";
-val usum_In1I = thm "usum_In1I";
-val usumE = thm "usumE";
-val In0_not_In1 = thm "In0_not_In1";
-val In1_not_In0 = thm "In1_not_In0";
-val In0_inject = thm "In0_inject";
-val In1_inject = thm "In1_inject";
-val In0_eq = thm "In0_eq";
-val In1_eq = thm "In1_eq";
-val inj_In0 = thm "inj_In0";
-val inj_In1 = thm "inj_In1";
-val Lim_inject = thm "Lim_inject";
-val ntrunc_subsetI = thm "ntrunc_subsetI";
-val ntrunc_subsetD = thm "ntrunc_subsetD";
-val ntrunc_equality = thm "ntrunc_equality";
-val ntrunc_o_equality = thm "ntrunc_o_equality";
-val uprod_mono = thm "uprod_mono";
-val usum_mono = thm "usum_mono";
-val Scons_mono = thm "Scons_mono";
-val In0_mono = thm "In0_mono";
-val In1_mono = thm "In1_mono";
-val Split = thm "Split";
-val Case_In0 = thm "Case_In0";
-val Case_In1 = thm "Case_In1";
-val ntrunc_UN1 = thm "ntrunc_UN1";
-val Scons_UN1_x = thm "Scons_UN1_x";
-val Scons_UN1_y = thm "Scons_UN1_y";
-val In0_UN1 = thm "In0_UN1";
-val In1_UN1 = thm "In1_UN1";
-val dprodI = thm "dprodI";
-val dprodE = thm "dprodE";
-val dsum_In0I = thm "dsum_In0I";
-val dsum_In1I = thm "dsum_In1I";
-val dsumE = thm "dsumE";
-val dprod_mono = thm "dprod_mono";
-val dsum_mono = thm "dsum_mono";
-val dprod_Sigma = thm "dprod_Sigma";
-val dprod_subset_Sigma = thm "dprod_subset_Sigma";
-val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2";
-val dsum_Sigma = thm "dsum_Sigma";
-val dsum_subset_Sigma = thm "dsum_subset_Sigma";
-val Domain_dprod = thm "Domain_dprod";
-val Domain_dsum = thm "Domain_dsum";
-*}
-
-end
--- a/src/HOL/Induct/SList.thy Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/Induct/SList.thy Sun Oct 01 22:19:23 2006 +0200
@@ -56,8 +56,8 @@
by (blast intro: list.NIL_I)
abbreviation
- "Case == Datatype_Universe.Case"
- "Split == Datatype_Universe.Split"
+ "Case == Datatype.Case"
+ "Split == Datatype.Split"
definition
List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b"
--- a/src/HOL/Induct/Sexp.thy Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/Induct/Sexp.thy Sun Oct 01 22:19:23 2006 +0200
@@ -10,10 +10,10 @@
theory Sexp imports Main begin
types
- 'a item = "'a Datatype_Universe.item"
+ 'a item = "'a Datatype.item"
abbreviation
- "Leaf == Datatype_Universe.Leaf"
- "Numb == Datatype_Universe.Numb"
+ "Leaf == Datatype.Leaf"
+ "Numb == Datatype.Numb"
consts
sexp :: "'a item set"
--- a/src/HOL/IsaMakefile Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/IsaMakefile Sun Oct 01 22:19:23 2006 +0200
@@ -85,7 +85,7 @@
$(SRC)/TFL/thry.ML $(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML \
Tools/res_atpset.ML \
Binomial.thy Datatype.ML Datatype.thy \
- Datatype_Universe.thy Divides.thy \
+ Divides.thy \
Equiv_Relations.thy Extraction.thy Finite_Set.ML Finite_Set.thy \
FixedPoint.thy Fun.thy HOL.ML HOL.thy Hilbert_Choice.thy Inductive.thy \
Integ/IntArith.thy Integ/IntDef.thy Integ/IntDiv.thy \
--- a/src/HOL/Library/Coinductive_List.thy Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/Library/Coinductive_List.thy Sun Oct 01 22:19:23 2006 +0200
@@ -12,8 +12,8 @@
subsection {* List constructors over the datatype universe *}
definition
- "NIL = Datatype_Universe.In0 (Datatype_Universe.Numb 0)"
- "CONS M N = Datatype_Universe.In1 (Datatype_Universe.Scons M N)"
+ "NIL = Datatype.In0 (Datatype.Numb 0)"
+ "CONS M N = Datatype.In1 (Datatype.Scons M N)"
lemma CONS_not_NIL [iff]: "CONS M N \<noteq> NIL"
and NIL_not_CONS [iff]: "NIL \<noteq> CONS M N"
@@ -28,7 +28,7 @@
by (simp add: CONS_def In1_UN1 Scons_UN1_y)
definition
- "List_case c h = Datatype_Universe.Case (\<lambda>_. c) (Datatype_Universe.Split h)"
+ "List_case c h = Datatype.Case (\<lambda>_. c) (Datatype.Split h)"
lemma List_case_NIL [simp]: "List_case c h NIL = c"
and List_case_CONS [simp]: "List_case c h (CONS M N) = h M N"
@@ -38,7 +38,7 @@
subsection {* Corecursive lists *}
consts
- LList :: "'a Datatype_Universe.item set \<Rightarrow> 'a Datatype_Universe.item set"
+ LList :: "'a Datatype.item set \<Rightarrow> 'a Datatype.item set"
coinductive "LList A"
intros
@@ -50,8 +50,8 @@
unfolding LList.defs by (blast intro!: gfp_mono)
consts
- LList_corec_aux :: "nat \<Rightarrow> ('a \<Rightarrow> ('b Datatype_Universe.item \<times> 'a) option) \<Rightarrow>
- 'a \<Rightarrow> 'b Datatype_Universe.item"
+ LList_corec_aux :: "nat \<Rightarrow> ('a \<Rightarrow> ('b Datatype.item \<times> 'a) option) \<Rightarrow>
+ 'a \<Rightarrow> 'b Datatype.item"
primrec
"LList_corec_aux 0 f x = {}"
"LList_corec_aux (Suc k) f x =
@@ -117,7 +117,7 @@
subsection {* Abstract type definition *}
typedef 'a llist =
- "LList (range Datatype_Universe.Leaf) :: 'a Datatype_Universe.item set"
+ "LList (range Datatype.Leaf) :: 'a Datatype.item set"
proof
show "NIL \<in> ?llist" ..
qed
@@ -125,20 +125,20 @@
lemma NIL_type: "NIL \<in> llist"
unfolding llist_def by (rule LList.NIL)
-lemma CONS_type: "a \<in> range Datatype_Universe.Leaf \<Longrightarrow>
+lemma CONS_type: "a \<in> range Datatype.Leaf \<Longrightarrow>
M \<in> llist \<Longrightarrow> CONS a M \<in> llist"
unfolding llist_def by (rule LList.CONS)
-lemma llistI: "x \<in> LList (range Datatype_Universe.Leaf) \<Longrightarrow> x \<in> llist"
+lemma llistI: "x \<in> LList (range Datatype.Leaf) \<Longrightarrow> x \<in> llist"
by (simp add: llist_def)
-lemma llistD: "x \<in> llist \<Longrightarrow> x \<in> LList (range Datatype_Universe.Leaf)"
+lemma llistD: "x \<in> llist \<Longrightarrow> x \<in> LList (range Datatype.Leaf)"
by (simp add: llist_def)
lemma Rep_llist_UNIV: "Rep_llist x \<in> LList UNIV"
proof -
have "Rep_llist x \<in> llist" by (rule Rep_llist)
- then have "Rep_llist x \<in> LList (range Datatype_Universe.Leaf)"
+ then have "Rep_llist x \<in> LList (range Datatype.Leaf)"
by (simp add: llist_def)
also have "\<dots> \<subseteq> LList UNIV" by (rule LList_mono) simp
finally show ?thesis .
@@ -146,7 +146,7 @@
definition
"LNil = Abs_llist NIL"
- "LCons x xs = Abs_llist (CONS (Datatype_Universe.Leaf x) (Rep_llist xs))"
+ "LCons x xs = Abs_llist (CONS (Datatype.Leaf x) (Rep_llist xs))"
lemma LCons_not_LNil [iff]: "LCons x xs \<noteq> LNil"
apply (simp add: LNil_def LCons_def)
@@ -167,7 +167,7 @@
by (simp add: LNil_def add: Abs_llist_inverse NIL_type)
lemma Rep_llist_LCons: "Rep_llist (LCons x l) =
- CONS (Datatype_Universe.Leaf x) (Rep_llist l)"
+ CONS (Datatype.Leaf x) (Rep_llist l)"
by (simp add: LCons_def Abs_llist_inverse CONS_type Rep_llist)
lemma llist_cases [cases type: llist]:
@@ -176,7 +176,7 @@
| (LCons) x l' where "l = LCons x l'"
proof (cases l)
case (Abs_llist L)
- from `L \<in> llist` have "L \<in> LList (range Datatype_Universe.Leaf)" by (rule llistD)
+ from `L \<in> llist` have "L \<in> LList (range Datatype.Leaf)" by (rule llistD)
then show ?thesis
proof cases
case NIL
@@ -195,7 +195,7 @@
definition
"llist_case c d l =
- List_case c (\<lambda>x y. d (inv Datatype_Universe.Leaf x) (Abs_llist y)) (Rep_llist l)"
+ List_case c (\<lambda>x y. d (inv Datatype.Leaf x) (Abs_llist y)) (Rep_llist l)"
syntax (* FIXME? *)
LNil :: logic
@@ -217,17 +217,17 @@
Abs_llist (LList_corec a
(\<lambda>z.
case f z of None \<Rightarrow> None
- | Some (v, w) \<Rightarrow> Some (Datatype_Universe.Leaf v, w)))"
+ | Some (v, w) \<Rightarrow> Some (Datatype.Leaf v, w)))"
lemma LList_corec_type2:
"LList_corec a
(\<lambda>z. case f z of None \<Rightarrow> None
- | Some (v, w) \<Rightarrow> Some (Datatype_Universe.Leaf v, w)) \<in> llist"
+ | Some (v, w) \<Rightarrow> Some (Datatype.Leaf v, w)) \<in> llist"
(is "?corec a \<in> _")
proof (unfold llist_def)
let "LList_corec a ?g" = "?corec a"
have "?corec a \<in> {?corec x | x. True}" by blast
- then show "?corec a \<in> LList (range Datatype_Universe.Leaf)"
+ then show "?corec a \<in> LList (range Datatype.Leaf)"
proof coinduct
case (LList L)
then obtain x where L: "L = ?corec x" by blast
@@ -241,7 +241,7 @@
next
case (Some p)
then have "?corec x =
- CONS (Datatype_Universe.Leaf (fst p)) (?corec (snd p))"
+ CONS (Datatype.Leaf (fst p)) (?corec (snd p))"
by (simp add: split_def LList_corec)
with L have ?CONS by auto
then show ?thesis ..
@@ -263,12 +263,12 @@
let "?rep_corec a" =
"LList_corec a
(\<lambda>z. case f z of None \<Rightarrow> None
- | Some (v, w) \<Rightarrow> Some (Datatype_Universe.Leaf v, w))"
+ | Some (v, w) \<Rightarrow> Some (Datatype.Leaf v, w))"
have "?corec a = Abs_llist (?rep_corec a)"
by (simp only: llist_corec_def)
also from Some have "?rep_corec a =
- CONS (Datatype_Universe.Leaf (fst p)) (?rep_corec (snd p))"
+ CONS (Datatype.Leaf (fst p)) (?rep_corec (snd p))"
by (simp add: split_def LList_corec)
also have "?rep_corec (snd p) = Rep_llist (?corec (snd p))"
by (simp only: llist_corec_def Abs_llist_inverse LList_corec_type2)
@@ -281,8 +281,8 @@
subsection {* Equality as greatest fixed-point; the bisimulation principle. *}
consts
- EqLList :: "('a Datatype_Universe.item \<times> 'a Datatype_Universe.item) set \<Rightarrow>
- ('a Datatype_Universe.item \<times> 'a Datatype_Universe.item) set"
+ EqLList :: "('a Datatype.item \<times> 'a Datatype.item) set \<Rightarrow>
+ ('a Datatype.item \<times> 'a Datatype.item) set"
coinductive "EqLList r"
intros
@@ -291,7 +291,7 @@
(CONS a M, CONS b N) \<in> EqLList r"
lemma EqLList_unfold:
- "EqLList r = dsum (diag {Datatype_Universe.Numb 0}) (dprod r (EqLList r))"
+ "EqLList r = dsum (diag {Datatype.Numb 0}) (dprod r (EqLList r))"
by (fast intro!: EqLList.intros [unfolded NIL_def CONS_def]
elim: EqLList.cases [unfolded NIL_def CONS_def])
@@ -612,7 +612,7 @@
have "(?lhs M, ?rhs M) \<in> {(?lhs N, ?rhs N) | N. N \<in> LList A}"
using M by blast
then show ?thesis
- proof (coinduct taking: "range (\<lambda>N :: 'a Datatype_Universe.item. N)"
+ proof (coinduct taking: "range (\<lambda>N :: 'a Datatype.item. N)"
rule: LList_equalityI)
case (EqLList q)
then obtain N where q: "q = (?lhs N, ?rhs N)" and N: "N \<in> LList A" by blast
@@ -635,7 +635,7 @@
proof -
have "(?lmap M, M) \<in> {(?lmap N, N) | N. N \<in> LList A}" using M by blast
then show ?thesis
- proof (coinduct taking: "range (\<lambda>N :: 'a Datatype_Universe.item. N)"
+ proof (coinduct taking: "range (\<lambda>N :: 'a Datatype.item. N)"
rule: LList_equalityI)
case (EqLList q)
then obtain N where q: "q = (?lmap N, N)" and N: "N \<in> LList A" by blast
--- a/src/HOL/Tools/datatype_package.ML Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/Tools/datatype_package.ML Sun Oct 01 22:19:23 2006 +0200
@@ -927,7 +927,7 @@
fun gen_add_datatype prep_typ err flat_names new_type_names dts thy =
let
- val _ = Theory.requires thy "Datatype_Universe" "datatype definitions";
+ val _ = Theory.requires thy "Datatype" "datatype definitions";
(* this theory is used just for parsing *)
--- a/src/HOL/Tools/datatype_rep_proofs.ML Sun Oct 01 22:19:21 2006 +0200
+++ b/src/HOL/Tools/datatype_rep_proofs.ML Sun Oct 01 22:19:23 2006 +0200
@@ -43,13 +43,13 @@
new_type_names descr sorts types_syntax constr_syntax case_names_induct thy =
let
val Datatype_thy = ThyInfo.the_theory "Datatype" thy;
- val node_name = "Datatype_Universe.node";
- val In0_name = "Datatype_Universe.In0";
- val In1_name = "Datatype_Universe.In1";
- val Scons_name = "Datatype_Universe.Scons";
- val Leaf_name = "Datatype_Universe.Leaf";
- val Numb_name = "Datatype_Universe.Numb";
- val Lim_name = "Datatype_Universe.Lim";
+ val node_name = "Datatype.node";
+ val In0_name = "Datatype.In0";
+ val In1_name = "Datatype.In1";
+ val Scons_name = "Datatype.Scons";
+ val Leaf_name = "Datatype.Leaf";
+ val Numb_name = "Datatype.Numb";
+ val Lim_name = "Datatype.Lim";
val Suml_name = "Datatype.Suml";
val Sumr_name = "Datatype.Sumr";