even more tidying of Goal commands
authorpaulson
Thu, 06 Aug 1998 12:24:04 +0200
changeset 5268 59ef39008514
parent 5267 41a01176b9de
child 5269 3155ccd9a506
even more tidying of Goal commands
src/ZF/AC/DC.ML
src/ZF/AC/HH.ML
src/ZF/AC/WO2_AC16.ML
src/ZF/AC/WO6_WO1.ML
src/ZF/Bool.ML
src/ZF/Cardinal.ML
src/ZF/Coind/ECR.ML
src/ZF/Coind/Types.ML
src/ZF/Epsilon.ML
src/ZF/EquivClass.ML
src/ZF/Finite.ML
src/ZF/IMP/Equiv.ML
src/ZF/Order.ML
src/ZF/OrderArith.ML
src/ZF/OrderType.ML
src/ZF/Perm.ML
src/ZF/QPair.ML
src/ZF/QUniv.ML
src/ZF/Resid/Conversion.ML
src/ZF/Resid/Residuals.ML
src/ZF/Resid/Substitution.ML
src/ZF/Sum.ML
src/ZF/Univ.ML
src/ZF/Zorn.ML
src/ZF/ex/BT.ML
src/ZF/ex/Comb.ML
src/ZF/ex/Integ.ML
src/ZF/ex/LList.ML
src/ZF/ex/Limit.ML
src/ZF/ex/ListN.ML
src/ZF/ex/Primrec.ML
--- a/src/ZF/AC/DC.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/AC/DC.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -100,8 +100,7 @@
 by (fast_tac (claset() addSIs [lemma1_1] addSEs [lemma1_2, lemma1_3]) 1);
 val lemma1 = result();
 
-Goal
-"[| XX = (UN n:nat. {f:n->X. ALL k:n. <f``k, f`k> : R});  \
+Goal "[| XX = (UN n:nat. {f:n->X. ALL k:n. <f``k, f`k> : R});  \
 \       ALL n:nat. <f`n, f`succ(n)> :  \
 \       {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))  \
 \                       & restrict(z2, domain(z1)) = z1};  \
@@ -136,8 +135,7 @@
 by (deepen_tac (claset() addDs [domain_of_fun RS sym RS trans]) 0 1);
 val lemma2 = result();
 
-Goal 
-"[| XX = (UN n:nat. {f:n->X. ALL k:n. <f``k, f`k> : R});  \
+Goal "[| XX = (UN n:nat. {f:n->X. ALL k:n. <f``k, f`k> : R});  \
 \       ALL n:nat. <f`n, f`succ(n)> :  \
 \       {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))  \
 \       & restrict(z2, domain(z1)) = z1};  \
@@ -282,8 +280,7 @@
         addss (simpset() addsimps [singleton_0 RS sym])) 1);
 qed "singleton_in_funs";
 
-Goal
-        "[| XX = (UN n:nat.  \
+Goal "[| XX = (UN n:nat.  \
 \               {f:succ(n)->domain(R). ALL k:n. <f`k, f`succ(k)> : R});  \
 \       RR = {<z1,z2>:Fin(XX)*XX. (domain(z2)=succ(UN f:z1. domain(f))  \
 \       & (ALL f:z1. restrict(z2, domain(f)) = f)) |  \
@@ -375,8 +372,7 @@
 by (fast_tac (claset() addSEs [restrict_cons_eq_restrict]) 1);
 qed "all_in_image_restrict_eq";
 
-Goal
-"[| ALL b<nat. <f``b, f`b> :  \
+Goal "[| ALL b<nat. <f``b, f`b> :  \
 \       {<z1,z2>:Fin(XX)*XX. (domain(z2)=succ(UN f:z1. domain(f))  & \
 \                            (ALL f:z1. restrict(z2, domain(f)) = f)) |  \
 \                    (~ (EX g:XX. domain(g)=succ(UN f:z1. domain(f)) & \
@@ -455,8 +451,7 @@
 by (fast_tac (FOL_cs addSEs [conjE, f_n_pairs_in_R, trans, subst_context]) 1);
 val lemma2 = result();
 
-Goal 
-"[| XX = (UN n:nat.  \
+Goal "[| XX = (UN n:nat.  \
 \                {f:succ(n)->domain(R). ALL k:n. <f`k, f`succ(k)> : R});  \
 \       ALL b<nat. <f``b, f`b> :  \
 \              {<z1,z2>:Fin(XX)*XX. (domain(z2)=succ(UN f:z1. domain(f))  \
@@ -551,8 +546,7 @@
 (* WO1 ==> ALL K. Card(K) --> DC(K)                                       *)
 (* ********************************************************************** *)
 
-Goal
-        "[| Ord(a); b:a |] ==> (lam x:a. P(x))``b = (lam x:b. P(x))``b";
+Goal "[| Ord(a); b:a |] ==> (lam x:a. P(x))``b = (lam x:b. P(x))``b";
 by (rtac images_eq 1);
 by (REPEAT (fast_tac (claset() addSEs [RepFunI, OrdmemD]
         addSIs [lam_type]) 2));
--- a/src/ZF/AC/HH.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/AC/HH.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -177,8 +177,7 @@
 by (simp_tac (simpset() addsimps [Let_def, Diff_subset RS PowI]) 1);
 qed "HH_values2";
 
-Goal
-     "HH(f,x,i): Pow(x)-{0} ==> HH(f,x,i)=f`(x - (UN j:i. HH(f,x,j)))";
+Goal "HH(f,x,i): Pow(x)-{0} ==> HH(f,x,i)=f`(x - (UN j:i. HH(f,x,j)))";
 by (resolve_tac [HH_values2 RS disjE] 1 THEN (assume_tac 1));
 by (fast_tac (claset() addSEs [equalityE, mem_irrefl]
         addSDs [singleton_subsetD]) 1);
--- a/src/ZF/AC/WO2_AC16.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/AC/WO2_AC16.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -303,8 +303,7 @@
 qed "Union_recfunAC16_lesspoll";
 
 
-Goal
-  "!!a. [| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
+Goal "[| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
 \       Card(a); ~ Finite(a); A eqpoll a;  \
 \       k : nat; m : nat; y<a;  \
 \       fa : bij(a, {Y: Pow(A). Y eqpoll succ(k)}) |]  \
@@ -433,8 +432,7 @@
 qed "bij_imp_arg_eq";
 
 
-Goal
-  "!!a. [| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
+Goal "[| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
 \       Card(a); ~ Finite(a); A eqpoll a;  \
 \       k : nat; m : nat; y<a;  \
 \       fa : bij(a, {Y: Pow(A). Y eqpoll succ(k)});  \
@@ -470,8 +468,7 @@
 (* ********************************************************************** *)
 
 
-Goal
-  "!!a. [| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
+Goal "[| recfunAC16(f, fa, y, a) <= {X: Pow(A) . X eqpoll succ(k #+ m)};  \
 \       Card(a); ~ Finite(a); A eqpoll a;  \
 \       k : nat; m : nat; y<a;  \
 \       fa : bij(a, {Y: Pow(A). Y eqpoll succ(k)});  \
--- a/src/ZF/AC/WO6_WO1.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/AC/WO6_WO1.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -205,8 +205,7 @@
         THEN REPEAT (assume_tac 1));
 qed "supset_lepoll_imp_eq";
 
-Goal
- "!!a. [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 -->               \
+Goal "[| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 -->               \
 \         domain(uu(f, b, g, d)) eqpoll succ(m);                        \
 \         ALL b<a. f`b lepoll succ(m);  y*y <= y;                       \
 \         (UN b<a. f`b)=y;  b<a;  g<a;  d<a;                            \
--- a/src/ZF/Bool.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Bool.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -3,7 +3,7 @@
     Author:     Martin D Coen, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
-For ZF/bool.thy.  Booleans in Zermelo-Fraenkel Set Theory 
+Booleans in Zermelo-Fraenkel Set Theory 
 *)
 
 open Bool;
@@ -31,7 +31,7 @@
 (** 1=0 ==> R **)
 val one_neq_0 = one_not_0 RS notE;
 
-val major::prems = goalw Bool.thy bool_defs
+val major::prems = Goalw bool_defs
     "[| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P";
 by (rtac (major RS consE) 1);
 by (REPEAT (eresolve_tac (singletonE::prems) 1));
@@ -54,17 +54,16 @@
 fun bool_tac i = fast_tac (claset() addSEs [boolE] addss (simpset())) i;
 
 
-Goal 
-    "[|  b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)";
+Goal "[|  b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)";
 by (bool_tac 1);
 qed "cond_type";
 
-val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c";
+val [rew] = Goal "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c";
 by (rewtac rew);
 by (rtac cond_1 1);
 qed "def_cond_1";
 
-val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d";
+val [rew] = Goal "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d";
 by (rewtac rew);
 by (rtac cond_0 1);
 qed "def_cond_0";
@@ -129,8 +128,7 @@
 by (bool_tac 1);
 qed "and_assoc";
 
-Goal
- "[| a: bool; b:bool; c:bool |] ==> \
+Goal "[| a: bool; b:bool; c:bool |] ==> \
 \      (a or b) and c  =  (a and c) or (b and c)";
 by (bool_tac 1);
 qed "and_or_distrib";
@@ -151,8 +149,7 @@
 by (bool_tac 1);
 qed "or_assoc";
 
-Goal
- "[| a: bool; b: bool; c: bool |] ==> \
+Goal "[| a: bool; b: bool; c: bool |] ==> \
 \          (a and b) or c  =  (a or c) and (b or c)";
 by (bool_tac 1);
 qed "or_and_distrib";
--- a/src/ZF/Cardinal.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Cardinal.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -99,7 +99,7 @@
 by (REPEAT (assume_tac 1));
 qed "eqpollI";
 
-val [major,minor] = goal Cardinal.thy
+val [major,minor] = Goal
     "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P";
 by (rtac minor 1);
 by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1));
@@ -186,7 +186,7 @@
 
 (** LEAST -- the least number operator [from HOL/Univ.ML] **)
 
-val [premP,premOrd,premNot] = goalw Cardinal.thy [Least_def]
+val [premP,premOrd,premNot] = Goalw [Least_def]
     "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i";
 by (rtac the_equality 1);
 by (blast_tac (claset() addSIs [premP,premOrd,premNot]) 1);
@@ -250,8 +250,7 @@
 (** Basic properties of cardinals **)
 
 (*Not needed for simplification, but helpful below*)
-val prems = goal Cardinal.thy
-    "[| !!y. P(y) <-> Q(y) |] ==> (LEAST x. P(x)) = (LEAST x. Q(x))";
+val prems = Goal "(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))";
 by (simp_tac (simpset() addsimps prems) 1);
 qed "Least_cong";
 
@@ -273,15 +272,13 @@
 (* Ord(A) ==> |A| eqpoll A *)
 bind_thm ("Ord_cardinal_eqpoll", well_ord_Memrel RS well_ord_cardinal_eqpoll);
 
-Goal
-    "[| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X eqpoll Y";
+Goal "[| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X eqpoll Y";
 by (rtac (eqpoll_sym RS eqpoll_trans) 1);
 by (etac well_ord_cardinal_eqpoll 1);
 by (asm_simp_tac (simpset() addsimps [well_ord_cardinal_eqpoll]) 1);
 qed "well_ord_cardinal_eqE";
 
-Goal
-    "[| well_ord(X,r);  well_ord(Y,s) |] ==> |X| = |Y| <-> X eqpoll Y";
+Goal "[| well_ord(X,r);  well_ord(Y,s) |] ==> |X| = |Y| <-> X eqpoll Y";
 by (blast_tac (claset() addIs [cardinal_cong, well_ord_cardinal_eqE]) 1);
 qed "well_ord_cardinal_eqpoll_iff";
 
@@ -297,7 +294,7 @@
 qed "Card_cardinal_eq";
 
 (* Could replace the  ~(j eqpoll i)  by  ~(i lepoll j) *)
-val prems = goalw Cardinal.thy [Card_def,cardinal_def]
+val prems = Goalw [Card_def,cardinal_def]
     "[| Ord(i);  !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)";
 by (stac Least_equality 1);
 by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1));
@@ -403,8 +400,7 @@
 qed "Card_le_iff";
 
 (*Can use AC or finiteness to discharge first premise*)
-Goal
-    "[| well_ord(B,r);  A lepoll B |] ==> |A| le |B|";
+Goal "[| well_ord(B,r);  A lepoll B |] ==> |A| le |B|";
 by (res_inst_tac [("i","|A|"),("j","|B|")] Ord_linear_le 1);
 by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
 by (rtac (eqpollI RS cardinal_cong) 1 THEN assume_tac 1);
@@ -445,8 +441,7 @@
 by (Blast_tac 1);
 qed "cons_lepoll_consD";
 
-Goal
- "[| cons(u,A) eqpoll cons(v,B);  u~:A;  v~:B |] ==> A eqpoll B";
+Goal "[| cons(u,A) eqpoll cons(v,B);  u~:A;  v~:B |] ==> A eqpoll B";
 by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff]) 1);
 by (blast_tac (claset() addIs [cons_lepoll_consD]) 1);
 qed "cons_eqpoll_consD";
@@ -457,9 +452,8 @@
 by (REPEAT (rtac mem_not_refl 1));
 qed "succ_lepoll_succD";
 
-val [prem] = goal Cardinal.thy
-    "m:nat ==> ALL n: nat. m lepoll n --> m le n";
-by (nat_ind_tac "m" [prem] 1);
+Goal "m:nat ==> ALL n: nat. m lepoll n --> m le n";
+by (nat_ind_tac "m" [] 1);
 by (blast_tac (claset() addSIs [nat_0_le]) 1);
 by (rtac ballI 1);
 by (eres_inst_tac [("n","n")] natE 1);
@@ -470,8 +464,7 @@
 
 bind_thm ("nat_lepoll_imp_le", nat_lepoll_imp_le_lemma RS bspec RS mp);
 
-Goal
-    "[| m:nat; n: nat |] ==> m eqpoll n <-> m = n";
+Goal "[| m:nat; n: nat |] ==> m eqpoll n <-> m = n";
 by (rtac iffI 1);
 by (asm_simp_tac (simpset() addsimps [eqpoll_refl]) 2);
 by (blast_tac (claset() addIs [nat_lepoll_imp_le, le_anti_sym] 
@@ -578,19 +571,16 @@
                         setloop etac consE') 1);
 qed "cons_lepoll_cong";
 
-Goal
-    "[| A eqpoll B;  a ~: A;  b ~: B |] ==> cons(a,A) eqpoll cons(b,B)";
+Goal "[| A eqpoll B;  a ~: A;  b ~: B |] ==> cons(a,A) eqpoll cons(b,B)";
 by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff, cons_lepoll_cong]) 1);
 qed "cons_eqpoll_cong";
 
-Goal
-    "[| a ~: A;  b ~: B |] ==> \
+Goal "[| a ~: A;  b ~: B |] ==> \
 \           cons(a,A) lepoll cons(b,B)  <->  A lepoll B";
 by (blast_tac (claset() addIs [cons_lepoll_cong, cons_lepoll_consD]) 1);
 qed "cons_lepoll_cons_iff";
 
-Goal
-    "[| a ~: A;  b ~: B |] ==> \
+Goal "[| a ~: A;  b ~: B |] ==> \
 \           cons(a,A) eqpoll cons(b,B)  <->  A eqpoll B";
 by (blast_tac (claset() addIs [cons_eqpoll_cong, cons_eqpoll_consD]) 1);
 qed "cons_eqpoll_cons_iff";
@@ -764,8 +754,7 @@
 			       nat_wf_on_converse_Memrel]) 1);
 qed "nat_well_ord_converse_Memrel";
 
-Goal
-    "[| well_ord(A,r);     \
+Goal "[| well_ord(A,r);     \
 \            well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) \
 \         |] ==> well_ord(A,converse(r))";
 by (resolve_tac [well_ord_Int_iff RS iffD1] 1);
@@ -776,8 +765,7 @@
                      ordertype_ord_iso RS ord_iso_rvimage_eq]) 1);
 qed "well_ord_converse";
 
-Goal
-    "[| well_ord(A,r);  A eqpoll n;  n:nat |] ==> ordertype(A,r)=n";
+Goal "[| well_ord(A,r);  A eqpoll n;  n:nat |] ==> ordertype(A,r)=n";
 by (rtac (Ord_ordertype RS Ord_nat_eqpoll_iff RS iffD1) 1 THEN 
     REPEAT (assume_tac 1));
 by (rtac eqpoll_trans 1 THEN assume_tac 2);
--- a/src/ZF/Coind/ECR.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Coind/ECR.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -8,8 +8,7 @@
 
 (* Specialised co-induction rule *)
 
-Goal
- "[| x:ExVar; e:Exp; t:Ty; ve:ValEnv; te:TyEnv; \
+Goal "[| x:ExVar; e:Exp; t:Ty; ve:ValEnv; te:TyEnv; \
 \    <te, e_fn(x, e), t>:ElabRel; ve_dom(ve) = te_dom(te); \
 \    {<ve_app(ve,y),te_app(te,y)>.y:ve_dom(ve)}: \
 \    Pow({<v_clos(x,e,ve),t>} Un HasTyRel) |] ==>  \
--- a/src/ZF/Coind/Types.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Coind/Types.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -18,8 +18,7 @@
 by (simp_tac (simpset() addsimps (rank_te_owr1::TyEnv.case_eqns)) 1);
 qed "te_rec_emp";
 
-Goal 
-  " te_rec(te_owr(te,x,t),c_te_emp,f_te_owr) = \
+Goal " te_rec(te_owr(te,x,t),c_te_emp,f_te_owr) = \
 \   f_te_owr(te,x,t,te_rec(te,c_te_emp,f_te_owr))";
 by (rtac (te_rec_def RS def_Vrec RS trans) 1);
 by (simp_tac (rank_ss addsimps (rank_te_owr1::TyEnv.case_eqns)) 1);
--- a/src/ZF/Epsilon.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Epsilon.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -104,8 +104,7 @@
 qed "mem_eclose_trans";
 
 (*Variant of the previous lemma in a useable form for the sequel*)
-Goal
-    "[| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
+Goal "[| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
 by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);
 by (REPEAT (assume_tac 1));
 qed "mem_eclose_sing_trans";
--- a/src/ZF/EquivClass.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/EquivClass.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -3,7 +3,7 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
-For EquivClass.thy.  Equivalence relations in Zermelo-Fraenkel Set Theory 
+Equivalence relations in Zermelo-Fraenkel Set Theory 
 *)
 
 val RSLIST = curry (op MRS);
@@ -63,9 +63,8 @@
 by (Blast_tac 1);
 qed "subset_equiv_class";
 
-val prems = goal EquivClass.thy
-    "[| r``{a} = r``{b};  equiv(A,r);  b: A |] ==> <a,b>: r";
-by (REPEAT (resolve_tac (prems @ [equalityD2, subset_equiv_class]) 1));
+Goal "[| r``{a} = r``{b};  equiv(A,r);  b: A |] ==> <a,b>: r";
+by (REPEAT (ares_tac[equalityD2, subset_equiv_class] 1));
 qed "eq_equiv_class";
 
 (*thus r``{a} = r``{b} as well*)
@@ -78,14 +77,12 @@
 by (safe_tac subset_cs);
 qed "equiv_type";
 
-Goal
-    "equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A";
+Goal "equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A";
 by (blast_tac (claset() addIs [eq_equiv_class, equiv_class_eq]
                       addDs [equiv_type]) 1);
 qed "equiv_class_eq_iff";
 
-Goal
-    "[| equiv(A,r);  x: A;  y: A |] ==> r``{x} = r``{y} <-> <x,y>: r";
+Goal "[| equiv(A,r);  x: A;  y: A |] ==> r``{x} = r``{y} <-> <x,y>: r";
 by (blast_tac (claset() addIs [eq_equiv_class, equiv_class_eq]
                       addDs [equiv_type]) 1);
 qed "eq_equiv_class_iff";
@@ -94,12 +91,11 @@
 
 (** Introduction/elimination rules -- needed? **)
 
-val prems = goalw EquivClass.thy [quotient_def] "x:A ==> r``{x}: A/r";
-by (rtac RepFunI 1);
-by (resolve_tac prems 1);
+Goalw [quotient_def] "x:A ==> r``{x}: A/r";
+by (etac RepFunI 1);
 qed "quotientI";
 
-val major::prems = goalw EquivClass.thy [quotient_def]
+val major::prems = Goalw [quotient_def]
     "[| X: A/r;  !!x. [| X = r``{x};  x:A |] ==> P |]   \
 \    ==> P";
 by (rtac (major RS RepFunE) 1);
@@ -138,7 +134,7 @@
 qed "UN_equiv_class";
 
 (*type checking of  UN x:r``{a}. b(x) *)
-val prems = goalw EquivClass.thy [quotient_def]
+val prems = Goalw [quotient_def]
     "[| equiv(A,r);  congruent(r,b);  X: A/r;   \
 \       !!x.  x : A ==> b(x) : B |]     \
 \    ==> (UN x:X. b(x)) : B";
@@ -150,7 +146,7 @@
 (*Sufficient conditions for injectiveness.  Could weaken premises!
   major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
 *)
-val prems = goalw EquivClass.thy [quotient_def]
+val prems = Goalw [quotient_def]
     "[| equiv(A,r);   congruent(r,b);  \
 \       (UN x:X. b(x))=(UN y:Y. b(y));  X: A/r;  Y: A/r;  \
 \       !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |]         \
@@ -195,7 +191,7 @@
 qed "UN_equiv_class2";
 
 (*type checking*)
-val prems = goalw EquivClass.thy [quotient_def]
+val prems = Goalw [quotient_def]
     "[| equiv(A,r);  congruent2(r,b);                   \
 \       X1: A/r;  X2: A/r;                              \
 \       !!x1 x2.  [| x1: A; x2: A |] ==> b(x1,x2) : B   \
@@ -210,7 +206,7 @@
 
 (*Suggested by John Harrison -- the two subproofs may be MUCH simpler
   than the direct proof*)
-val prems = goalw EquivClass.thy [congruent2_def,equiv_def,refl_def]
+val prems = Goalw [congruent2_def,equiv_def,refl_def]
     "[| equiv(A,r);     \
 \       !! y z w. [| w: A;  <y,z> : r |] ==> b(y,w) = b(z,w);      \
 \       !! y z w. [| w: A;  <y,z> : r |] ==> b(w,y) = b(w,z)       \
@@ -222,7 +218,7 @@
      ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1));
 qed "congruent2I";
 
-val [equivA,commute,congt] = goal EquivClass.thy
+val [equivA,commute,congt] = Goal
     "[| equiv(A,r);     \
 \       !! y z. [| y: A;  z: A |] ==> b(y,z) = b(z,y);        \
 \       !! y z w. [| w: A;  <y,z>: r |] ==> b(w,y) = b(w,z)     \
@@ -236,7 +232,7 @@
 qed "congruent2_commuteI";
 
 (*Obsolete?*)
-val [equivA,ZinA,congt,commute] = goalw EquivClass.thy [quotient_def]
+val [equivA,ZinA,congt,commute] = Goalw [quotient_def]
     "[| equiv(A,r);  Z: A/r;  \
 \       !!w. [| w: A |] ==> congruent(r, %z. b(w,z));    \
 \       !!x y. [| x: A;  y: A |] ==> b(y,x) = b(x,y)    \
--- a/src/ZF/Finite.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Finite.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -26,7 +26,7 @@
 (** Induction on finite sets **)
 
 (*Discharging x~:y entails extra work*)
-val major::prems = goal Finite.thy 
+val major::prems = Goal
     "[| b: Fin(A);  \
 \       P(0);        \
 \       !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y)) \
@@ -41,8 +41,7 @@
 Addsimps Fin.intrs;
 
 (*The union of two finite sets is finite.*)
-Goal
-    "!!b c. [| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)";
+Goal "[| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)";
 by (etac Fin_induct 1);
 by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_cons])));
 qed "Fin_UnI";
@@ -69,7 +68,7 @@
 by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
 qed "Fin_subset";
 
-val major::prems = goal Finite.thy 
+val major::prems = Goal
     "[| c: Fin(A);  b: Fin(A);                                  \
 \       P(b);                                                   \
 \       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
@@ -80,7 +79,7 @@
                                 Diff_subset RS Fin_subset]))));
 qed "Fin_0_induct_lemma";
 
-val prems = goal Finite.thy 
+val prems = Goal
     "[| b: Fin(A);                                              \
 \       P(b);                                                   \
 \       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
@@ -91,10 +90,11 @@
 qed "Fin_0_induct";
 
 (*Functions from a finite ordinal*)
-val prems = goal Finite.thy "n: nat ==> n->A <= Fin(nat*A)";
-by (nat_ind_tac "n" prems 1);
+Goal "n: nat ==> n->A <= Fin(nat*A)";
+by (nat_ind_tac "n" [] 1);
 by (simp_tac (simpset() addsimps [Pi_empty1, subset_iff, cons_iff]) 1);
-by (asm_simp_tac (simpset() addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
+by (asm_simp_tac 
+    (simpset() addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
 by (fast_tac (claset() addSIs [Fin.consI]) 1);
 qed "nat_fun_subset_Fin";
 
--- a/src/ZF/IMP/Equiv.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/IMP/Equiv.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -4,8 +4,7 @@
     Copyright   1994 TUM
 *)
 
-val prems = goal Equiv.thy
-   "!!a. [| a: aexp; sigma: loc -> nat |] ==> \
+Goal "[| a: aexp; sigma: loc -> nat |] ==> \
 \        <a,sigma> -a-> n <-> A(a,sigma) = n";
 by (res_inst_tac [("x","n")] spec 1);                       (* quantify n *)
 by (etac aexp.induct 1);
@@ -30,8 +29,7 @@
    ];
 
 
-val prems = goal Equiv.thy
-   "!!b. [| b: bexp; sigma: loc -> nat |] ==> \
+Goal "[| b: bexp; sigma: loc -> nat |] ==> \
 \        <b,sigma> -b-> w <-> B(b,sigma) = w";
 by (res_inst_tac [("x","w")] spec 1);
 by (etac bexp.induct 1);
@@ -93,8 +91,7 @@
 
 (**** Proof of Equivalence ****)
 
-Goal
-    "ALL c:com. C(c) = {io:(loc->nat)*(loc->nat). <c,fst(io)> -c-> snd(io)}";
+Goal "ALL c:com. C(c) = {io:(loc->nat)*(loc->nat). <c,fst(io)> -c-> snd(io)}";
 by (fast_tac (claset() addIs [C_subset RS subsetD]
 		       addEs [com2 RS bspec]
 		       addDs [com1]
--- a/src/ZF/Order.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Order.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -19,7 +19,7 @@
 by (Blast_tac 1);
 qed "part_ord_Imp_asym";
 
-val major::premx::premy::prems = goalw Order.thy [linear_def]
+val major::premx::premy::prems = Goalw [linear_def]
     "[| linear(A,r);  x:A;  y:A;  \
 \       <x,y>:r ==> P;  x=y ==> P;  <y,x>:r ==> P |] ==> P";
 by (cut_facts_tac [major,premx,premy] 1);
@@ -66,7 +66,7 @@
 
 bind_thm ("predI", conjI RS (pred_iff RS iffD2));
 
-val [major,minor] = goalw Order.thy [pred_def]
+val [major,minor] = Goalw [pred_def]
     "[| y: pred(A,x,r);  [| y:A; <y,x>:r |] ==> P |] ==> P";
 by (rtac (major RS CollectE) 1);
 by (REPEAT (ares_tac [minor] 1));
@@ -216,7 +216,7 @@
 
 (** Order-isomorphisms -- or similarities, as Suppes calls them **)
 
-val prems = goalw Order.thy [ord_iso_def]
+val prems = Goalw [ord_iso_def]
     "[| f: bij(A, B);   \
 \       !!x y. [| x:A; y:A |] ==> <x, y> : r <-> <f`x, f`y> : s \
 \    |] ==> f: ord_iso(A,r,B,s)";
@@ -298,8 +298,7 @@
 by (asm_full_simp_tac (simpset() addsimps [comp_eq_id_iff RS iffD1]) 1);
 qed "mono_ord_isoI";
 
-Goal
-    "[| well_ord(A,r);  well_ord(B,s);                             \
+Goal "[| well_ord(A,r);  well_ord(B,s);                             \
 \            f: mono_map(A,r,B,s);  converse(f): mono_map(B,s,A,r)      \
 \         |] ==> f: ord_iso(A,r,B,s)";
 by (REPEAT (ares_tac [mono_ord_isoI] 1));
@@ -362,8 +361,7 @@
 
 (*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
                      of a well-ordering*)
-Goal
-    "[| well_ord(A,r);  f : ord_iso(A, r, pred(A,x,r), r);  x:A |] ==> P";
+Goal "[| well_ord(A,r);  f : ord_iso(A, r, pred(A,x,r), r);  x:A |] ==> P";
 by (metacut_tac well_ord_iso_subset_lemma 1);
 by (REPEAT_FIRST (ares_tac [pred_subset]));
 (*Now we know  f`x < x *)
@@ -374,8 +372,7 @@
 qed "well_ord_iso_predE";
 
 (*Simple consequence of Lemma 6.1*)
-Goal
- "[| well_ord(A,r);  f : ord_iso(pred(A,a,r), r, pred(A,c,r), r);  \
+Goal "[| well_ord(A,r);  f : ord_iso(pred(A,a,r), r, pred(A,c,r), r);  \
 \         a:A;  c:A |] ==> a=c";
 by (forward_tac [well_ord_is_trans_on] 1);
 by (forward_tac [well_ord_is_linear] 1);
@@ -404,8 +401,7 @@
 
 (*But in use, A and B may themselves be initial segments.  Then use
   trans_pred_pred_eq to simplify the pred(pred...) terms.  See just below.*)
-Goal
- "[| f : ord_iso(A,r,B,s);   a:A |] ==>    \
+Goal "[| f : ord_iso(A,r,B,s);   a:A |] ==>    \
 \      restrict(f, pred(A,a,r)) : ord_iso(pred(A,a,r), r, pred(B, f`a, s), s)";
 by (asm_simp_tac (simpset() addsimps [ord_iso_image_pred RS sym]) 1);
 by (rewtac ord_iso_def);
@@ -416,8 +412,7 @@
 qed "ord_iso_restrict_pred";
 
 (*Tricky; a lot of forward proof!*)
-Goal
- "[| well_ord(A,r);  well_ord(B,s);  <a,c>: r;     \
+Goal "[| well_ord(A,r);  well_ord(B,s);  <a,c>: r;     \
 \         f : ord_iso(pred(A,a,r), r, pred(B,b,s), s);  \
 \         g : ord_iso(pred(A,c,r), r, pred(B,d,s), s);  \
 \         a:A;  c:A;  b:B;  d:B |] ==> <b,d>: s";
@@ -439,8 +434,7 @@
                             addIs  [ord_iso_is_bij, bij_is_fun, apply_funtype];
 
 (*See Halmos, page 72*)
-Goal
-    "[| well_ord(A,r);  \
+Goal "[| well_ord(A,r);  \
 \            f: ord_iso(A,r, B,s);  g: ord_iso(A,r, B,s);  y: A |] \
 \         ==> ~ <g`y, f`y> : s";
 by (forward_tac [well_ord_iso_subset_lemma] 1);
@@ -453,8 +447,7 @@
 qed "well_ord_iso_unique_lemma";
 
 (*Kunen's Lemma 6.2: Order-isomorphisms between well-orderings are unique*)
-Goal
-    "[| well_ord(A,r);  \
+Goal "[| well_ord(A,r);  \
 \            f: ord_iso(A,r, B,s);  g: ord_iso(A,r, B,s) |] ==> f = g";
 by (rtac fun_extension 1);
 by (REPEAT (etac (ord_iso_is_bij RS bij_is_fun) 1));
@@ -492,8 +485,7 @@
 			      ord_iso_sym, ord_iso_trans]) 1);
 qed "function_ord_iso_map";
 
-Goal
-    "well_ord(B,s) ==> ord_iso_map(A,r,B,s)        \
+Goal "well_ord(B,s) ==> ord_iso_map(A,r,B,s)        \
 \          : domain(ord_iso_map(A,r,B,s)) -> range(ord_iso_map(A,r,B,s))";
 by (asm_simp_tac 
     (simpset() addsimps [Pi_iff, function_ord_iso_map,
@@ -551,8 +543,7 @@
 qed "domain_ord_iso_map_subset";
 
 (*For the 4-way case analysis in the main result*)
-Goal
-  "[| well_ord(A,r);  well_ord(B,s) |] ==> \
+Goal "[| well_ord(A,r);  well_ord(B,s) |] ==> \
 \       domain(ord_iso_map(A,r,B,s)) = A |      \
 \       (EX x:A. domain(ord_iso_map(A,r,B,s)) = pred(A,x,r))";
 by (forward_tac [well_ord_is_wf] 1);
@@ -572,8 +563,7 @@
 qed "domain_ord_iso_map_cases";
 
 (*As above, by duality*)
-Goal
-  "[| well_ord(A,r);  well_ord(B,s) |] ==> \
+Goal "[| well_ord(A,r);  well_ord(B,s) |] ==> \
 \       range(ord_iso_map(A,r,B,s)) = B |       \
 \       (EX y:B. range(ord_iso_map(A,r,B,s))= pred(B,y,s))";
 by (resolve_tac [converse_ord_iso_map RS subst] 1);
@@ -582,8 +572,7 @@
 qed "range_ord_iso_map_cases";
 
 (*Kunen's Theorem 6.3: Fundamental Theorem for Well-Ordered Sets*)
-Goal
-  "[| well_ord(A,r);  well_ord(B,s) |] ==>         \
+Goal "[| well_ord(A,r);  well_ord(B,s) |] ==>         \
 \       ord_iso_map(A,r,B,s) : ord_iso(A, r, B, s) |    \
 \       (EX x:A. ord_iso_map(A,r,B,s) : ord_iso(pred(A,x,r), r, B, s)) | \
 \       (EX y:B. ord_iso_map(A,r,B,s) : ord_iso(A, r, pred(B,y,s), s))";
--- a/src/ZF/OrderArith.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/OrderArith.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -35,7 +35,7 @@
 
 (** Elimination Rule **)
 
-val major::prems = goalw OrderArith.thy [radd_def]
+val major::prems = Goalw [radd_def]
     "[| <p',p> : radd(A,r,B,s);                 \
 \       !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;       \
 \       !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q; \
@@ -74,8 +74,7 @@
 
 (** Well-foundedness **)
 
-Goal
-    "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))";
+Goal "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))";
 by (rtac wf_onI2 1);
 by (subgoal_tac "ALL x:A. Inl(x): Ba" 1);
 (*Proving the lemma, which is needed twice!*)
@@ -90,15 +89,13 @@
 by (best_tac (claset() addSEs [raddE, bspec RS mp]) 1);
 qed "wf_on_radd";
 
-Goal
-     "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))";
+Goal "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))";
 by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1);
 by (rtac (field_radd RSN (2, wf_on_subset_A)) 1);
 by (REPEAT (ares_tac [wf_on_radd] 1));
 qed "wf_radd";
 
-Goal 
-    "[| well_ord(A,r);  well_ord(B,s) |] ==> \
+Goal "[| well_ord(A,r);  well_ord(B,s) |] ==> \
 \           well_ord(A+B, radd(A,r,B,s))";
 by (rtac well_ordI 1);
 by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_radd]) 1);
@@ -108,8 +105,7 @@
 
 (** An ord_iso congruence law **)
 
-Goal
- "[| f: bij(A,C);  g: bij(B,D) |] ==> \
+Goal "[| f: bij(A,C);  g: bij(B,D) |] ==> \
 \        (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)";
 by (res_inst_tac 
         [("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(g)`y))")] 
@@ -134,8 +130,7 @@
 
 (*Could we prove an ord_iso result?  Perhaps 
      ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
-Goal
-    "A Int B = 0 ==>     \
+Goal "A Int B = 0 ==>     \
 \           (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)";
 by (res_inst_tac [("d", "%z. if(z:A, Inl(z), Inr(z))")] 
     lam_bijective 1);
@@ -148,16 +143,14 @@
 
 (** Associativity **)
 
-Goal
- "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
+Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
 \ : bij((A+B)+C, A+(B+C))";
 by (res_inst_tac [("d", "case(%x. Inl(Inl(x)), case(%x. Inl(Inr(x)), Inr))")] 
     lam_bijective 1);
 by (ALLGOALS (asm_simp_tac (simpset() setloop etac sumE)));
 qed "sum_assoc_bij";
 
-Goal
- "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
+Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
 \ : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),    \
 \           A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))";
 by (resolve_tac [sum_assoc_bij RS ord_isoI] 1);
@@ -179,7 +172,7 @@
 
 Addsimps [rmult_iff];
 
-val major::prems = goal OrderArith.thy
+val major::prems = Goal
     "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);              \
 \       [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;        \
 \       [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q \
@@ -211,8 +204,7 @@
 
 (** Well-foundedness **)
 
-Goal
-    "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))";
+Goal "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))";
 by (rtac wf_onI2 1);
 by (etac SigmaE 1);
 by (etac ssubst 1);
@@ -225,15 +217,13 @@
 qed "wf_on_rmult";
 
 
-Goal
-    "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))";
+Goal "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))";
 by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1);
 by (rtac (field_rmult RSN (2, wf_on_subset_A)) 1);
 by (REPEAT (ares_tac [wf_on_rmult] 1));
 qed "wf_rmult";
 
-Goal 
-    "[| well_ord(A,r);  well_ord(B,s) |] ==> \
+Goal "[| well_ord(A,r);  well_ord(B,s) |] ==> \
 \           well_ord(A*B, rmult(A,r,B,s))";
 by (rtac well_ordI 1);
 by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_rmult]) 1);
@@ -244,8 +234,7 @@
 
 (** An ord_iso congruence law **)
 
-Goal
- "[| f: bij(A,C);  g: bij(B,D) |] ==> \
+Goal "[| f: bij(A,C);  g: bij(B,D) |] ==> \
 \        (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)";
 by (res_inst_tac [("d", "%<x,y>. <converse(f)`x, converse(g)`y>")] 
     lam_bijective 1);
@@ -271,8 +260,7 @@
 qed "singleton_prod_bij";
 
 (*Used??*)
-Goal
- "well_ord({x},xr) ==>  \
+Goal "well_ord({x},xr) ==>  \
 \         (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))";
 by (resolve_tac [singleton_prod_bij RS ord_isoI] 1);
 by (Asm_simp_tac 1);
@@ -281,8 +269,7 @@
 
 (*Here we build a complicated function term, then simplify it using
   case_cong, id_conv, comp_lam, case_case.*)
-Goal
- "a~:C ==> \
+Goal "a~:C ==> \
 \      (lam x:C*B + D. case(%x. x, %y.<a,y>, x)) \
 \      : bij(C*B + D, C*B Un {a}*D)";
 by (rtac subst_elem 1);
@@ -296,8 +283,7 @@
 by (asm_simp_tac (simpset() addsimps [case_case]) 1);
 qed "prod_sum_singleton_bij";
 
-Goal
- "[| a:A;  well_ord(A,r) |] ==> \
+Goal "[| a:A;  well_ord(A,r) |] ==> \
 \   (lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x)) \
 \   : ord_iso(pred(A,a,r)*B + pred(B,b,s),              \
 \                 radd(A*B, rmult(A,r,B,s), B, s),      \
@@ -313,8 +299,7 @@
 
 (** Distributive law **)
 
-Goal
- "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
+Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
 \ : bij((A+B)*C, (A*C)+(B*C))";
 by (res_inst_tac
     [("d", "case(%<x,y>.<Inl(x),y>, %<x,y>.<Inr(x),y>)")] lam_bijective 1);
@@ -322,8 +307,7 @@
 by (ALLGOALS Asm_simp_tac);
 qed "sum_prod_distrib_bij";
 
-Goal
- "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
+Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
 \ : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t), \
 \           (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))";
 by (resolve_tac [sum_prod_distrib_bij RS ord_isoI] 1);
@@ -333,14 +317,12 @@
 
 (** Associativity **)
 
-Goal
- "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))";
+Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))";
 by (res_inst_tac [("d", "%<x, <y,z>>. <<x,y>, z>")] lam_bijective 1);
 by (ALLGOALS (asm_simp_tac (simpset() setloop etac SigmaE)));
 qed "prod_assoc_bij";
 
-Goal
- "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                   \
+Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                   \
 \ : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),  \
 \           A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))";
 by (resolve_tac [prod_assoc_bij RS ord_isoI] 1);
@@ -409,8 +391,7 @@
 
 (** Well-foundedness **)
 
-Goal
-    "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))";
+Goal "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))";
 by (rtac wf_onI2 1);
 by (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba" 1);
 by (Blast_tac 1);
@@ -421,8 +402,7 @@
 qed "wf_on_rvimage";
 
 (*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
-Goal 
-    "[| f: inj(A,B);  well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))";
+Goal "[| f: inj(A,B);  well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))";
 by (rtac well_ordI 1);
 by (rewrite_goals_tac [well_ord_def, tot_ord_def]);
 by (blast_tac (claset() addSIs [wf_on_rvimage, inj_is_fun]) 1);
--- a/src/ZF/OrderType.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/OrderType.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -19,7 +19,7 @@
 by (rtac (wf_Memrel RS wf_imp_wf_on) 1);
 by (resolve_tac [prem RS ltE] 1);
 by (asm_simp_tac (simpset() addsimps [linear_def, Memrel_iff,
-                                  [ltI, prem] MRS lt_trans2 RS ltD]) 1);
+				      [ltI, prem] MRS lt_trans2 RS ltD]) 1);
 by (REPEAT (resolve_tac [ballI, Ord_linear] 1));
 by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));
 qed "le_well_ord_Memrel";
@@ -40,8 +40,7 @@
 by (Blast_tac 1);
 qed "pred_Memrel";
 
-Goal
-    "[| j<i;  f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R";
+Goal "[| j<i;  f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R";
 by (forward_tac [lt_pred_Memrel] 1);
 by (etac ltE 1);
 by (rtac (well_ord_Memrel RS well_ord_iso_predE) 1 THEN
@@ -53,8 +52,7 @@
 qed "Ord_iso_implies_eq_lemma";
 
 (*Kunen's Theorem 7.3 (ii), page 16.  Isomorphic ordinals are equal*)
-Goal
-    "[| Ord(i);  Ord(j);  f:  ord_iso(i,Memrel(i),j,Memrel(j))     \
+Goal "[| Ord(i);  Ord(j);  f:  ord_iso(i,Memrel(i),j,Memrel(j))     \
 \         |] ==> i=j";
 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
 by (REPEAT (eresolve_tac [asm_rl, ord_iso_sym, Ord_iso_implies_eq_lemma] 1));
@@ -84,8 +82,7 @@
 qed "ordermap_eq_image";
 
 (*Useful for rewriting PROVIDED pred is not unfolded until later!*)
-Goal 
-    "[| wf[A](r);  x:A |] ==> \
+Goal "[| wf[A](r);  x:A |] ==> \
 \         ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}";
 by (asm_simp_tac (simpset() addsimps [ordermap_eq_image, pred_subset, 
                                   ordermap_type RS image_fun]) 1);
@@ -127,8 +124,7 @@
 
 (*** ordermap preserves the orderings in both directions ***)
 
-Goal
-    "[| <w,x>: r;  wf[A](r);  w: A; x: A |] ==>    \
+Goal "[| <w,x>: r;  wf[A](r);  w: A; x: A |] ==>    \
 \         ordermap(A,r)`w : ordermap(A,r)`x";
 by (eres_inst_tac [("x1", "x")] (ordermap_unfold RS ssubst) 1);
 by (assume_tac 1);
@@ -171,8 +167,7 @@
 by (blast_tac (claset() addSDs [converse_ordermap_mono]) 1);
 qed "ordertype_ord_iso";
 
-Goal
-    "[| f: ord_iso(A,r,B,s);  well_ord(B,s) |] ==> \
+Goal "[| f: ord_iso(A,r,B,s);  well_ord(B,s) |] ==> \
 \    ordertype(A,r) = ordertype(B,s)";
 by (forward_tac [well_ord_ord_iso] 1 THEN assume_tac 1);
 by (rtac Ord_iso_implies_eq 1
@@ -181,8 +176,7 @@
                       addSEs [ordertype_ord_iso]) 0 1);
 qed "ordertype_eq";
 
-Goal
-    "[| ordertype(A,r) = ordertype(B,s); \
+Goal "[| ordertype(A,r) = ordertype(B,s); \
 \              well_ord(A,r);  well_ord(B,s) \
 \           |] ==> EX f. f: ord_iso(A,r,B,s)";
 by (rtac exI 1);
@@ -225,8 +219,7 @@
 (*** A fundamental unfolding law for ordertype. ***)
 
 (*Ordermap returns the same result if applied to an initial segment*)
-Goal
-    "[| well_ord(A,r);  y:A;  z: pred(A,y,r) |] ==>        \
+Goal "[| well_ord(A,r);  y:A;  z: pred(A,y,r) |] ==>        \
 \         ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z";
 by (forward_tac [[well_ord_is_wf, pred_subset] MRS wf_on_subset_A] 1);
 by (wf_on_ind_tac "z" [] 1);
@@ -248,8 +241,7 @@
 
 (** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **)
 
-Goal
-    "[| well_ord(A,r);  x:A |] ==>             \
+Goal "[| well_ord(A,r);  x:A |] ==>             \
 \         ordertype(pred(A,x,r),r) <= ordertype(A,r)";
 by (asm_simp_tac (simpset() addsimps [ordertype_unfold, 
                   pred_subset RSN (2, well_ord_subset)]) 1);
@@ -257,8 +249,7 @@
                       addEs [predE]) 1);
 qed "ordertype_pred_subset";
 
-Goal
-    "[| well_ord(A,r);  x:A |] ==>  \
+Goal "[| well_ord(A,r);  x:A |] ==>  \
 \         ordertype(pred(A,x,r),r) < ordertype(A,r)";
 by (resolve_tac [ordertype_pred_subset RS subset_imp_le RS leE] 1);
 by (REPEAT (ares_tac [Ord_ordertype, well_ord_subset, pred_subset] 1));
@@ -269,8 +260,7 @@
 
 (*May rewrite with this -- provided no rules are supplied for proving that
         well_ord(pred(A,x,r), r) *)
-Goal
-    "well_ord(A,r) ==>  \
+Goal "well_ord(A,r) ==>  \
 \           ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}";
 by (rtac equalityI 1);
 by (safe_tac (claset() addSIs [ordertype_pred_lt RS ltD]));
@@ -316,8 +306,7 @@
 by (ALLGOALS Asm_simp_tac);
 qed "bij_sum_0";
 
-Goal
- "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)";
+Goal "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)";
 by (resolve_tac [bij_sum_0 RS ord_isoI RS ordertype_eq] 1);
 by (assume_tac 2);
 by (fast_tac (claset() addss (simpset() addsimps [radd_Inl_iff, Memrel_iff])) 1);
@@ -329,8 +318,7 @@
 by (ALLGOALS Asm_simp_tac);
 qed "bij_0_sum";
 
-Goal
- "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)";
+Goal "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)";
 by (resolve_tac [bij_0_sum RS ord_isoI RS ordertype_eq] 1);
 by (assume_tac 2);
 by (fast_tac (claset() addss (simpset() addsimps [radd_Inr_iff, Memrel_iff])) 1);
@@ -350,8 +338,7 @@
      (simpset() addsimps [radd_Inl_iff, radd_Inr_Inl_iff])));
 qed "pred_Inl_bij";
 
-Goal
- "[| a:A;  well_ord(A,r) |] ==>  \
+Goal "[| a:A;  well_ord(A,r) |] ==>  \
 \        ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = \
 \        ordertype(pred(A,a,r), r)";
 by (resolve_tac [pred_Inl_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1);
@@ -368,8 +355,7 @@
 by (ALLGOALS (Asm_full_simp_tac));
 qed "pred_Inr_bij";
 
-Goal
- "[| b:B;  well_ord(A,r);  well_ord(B,s) |] ==>  \
+Goal "[| b:B;  well_ord(A,r);  well_ord(B,s) |] ==>  \
 \        ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = \
 \        ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))";
 by (resolve_tac [pred_Inr_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1);
@@ -421,15 +407,13 @@
 
 (** A couple of strange but necessary results! **)
 
-Goal
-    "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))";
+Goal "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))";
 by (resolve_tac [id_bij RS ord_isoI] 1);
 by (asm_simp_tac (simpset() addsimps [id_conv, Memrel_iff]) 1);
 by (Blast_tac 1);
 qed "id_ord_iso_Memrel";
 
-Goal
-    "[| well_ord(A,r);  k<j |] ==>                 \
+Goal "[| well_ord(A,r);  k<j |] ==>                 \
 \            ordertype(A+k, radd(A, r, k, Memrel(j))) = \
 \            ordertype(A+k, radd(A, r, k, Memrel(k)))";
 by (etac ltE 1);
@@ -450,21 +434,18 @@
                      ordertype_sum_Memrel]) 1);
 qed "oadd_lt_mono2";
 
-Goal
-    "[| i++j < i++k;  Ord(i);  Ord(j); Ord(k) |] ==> j<k";
+Goal "[| i++j < i++k;  Ord(i);  Ord(j); Ord(k) |] ==> j<k";
 by (rtac Ord_linear_lt 1);
 by (REPEAT_SOME assume_tac);
 by (ALLGOALS
     (blast_tac (claset() addDs [oadd_lt_mono2] addEs [lt_irrefl, lt_asym])));
 qed "oadd_lt_cancel2";
 
-Goal
-    "[| Ord(i); Ord(j); Ord(k) |] ==> i++j < i++k <-> j<k";
+Goal "[| Ord(i); Ord(j); Ord(k) |] ==> i++j < i++k <-> j<k";
 by (blast_tac (claset() addSIs [oadd_lt_mono2] addSDs [oadd_lt_cancel2]) 1);
 qed "oadd_lt_iff2";
 
-Goal
-    "[| i++j = i++k;  Ord(i);  Ord(j); Ord(k) |] ==> j=k";
+Goal "[| i++j = i++k;  Ord(i);  Ord(j); Ord(k) |] ==> j=k";
 by (rtac Ord_linear_lt 1);
 by (REPEAT_SOME assume_tac);
 by (ALLGOALS
@@ -502,8 +483,7 @@
 by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1));
 qed "oadd_assoc";
 
-Goal
-    "[| Ord(i);  Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})";
+Goal "[| Ord(i);  Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})";
 by (rtac (subsetI RS equalityI) 1);
 by (eresolve_tac [ltI RS lt_oadd_disj RS disjE] 1);
 by (REPEAT (ares_tac [Ord_oadd] 1));
@@ -518,8 +498,7 @@
 by (Blast_tac 1);
 qed "oadd_1";
 
-Goal
-    "[| Ord(i);  Ord(j) |] ==> i++succ(j) = succ(i++j)";
+Goal "[| Ord(i);  Ord(j) |] ==> i++succ(j) = succ(i++j)";
                 (*ZF_ss prevents looping*)
 by (asm_simp_tac (ZF_ss addsimps [Ord_oadd, oadd_1 RS sym]) 1);
 by (asm_simp_tac (simpset() addsimps [oadd_1, oadd_assoc, Ord_1]) 1);
@@ -528,16 +507,15 @@
 
 (** Ordinal addition with limit ordinals **)
 
-val prems = goal OrderType.thy
-    "[| Ord(i);  !!x. x:A ==> Ord(j(x));  a:A |] ==> \
-\    i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))";
+val prems = 
+Goal "[| Ord(i);  !!x. x:A ==> Ord(j(x));  a:A |] ==> \
+\     i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))";
 by (blast_tac (claset() addIs (prems @ [ltI, Ord_UN, Ord_oadd, 
                                     lt_oadd1 RS ltD, oadd_lt_mono2 RS ltD])
                      addSEs [ltE, ltI RS lt_oadd_disj RS disjE]) 1);
 qed "oadd_UN";
 
-Goal 
-    "[| Ord(i);  Limit(j) |] ==> i++j = (UN k:j. i++k)";
+Goal "[| Ord(i);  Limit(j) |] ==> i++j = (UN k:j. i++k)";
 by (forward_tac [Limit_has_0 RS ltD] 1);
 by (asm_simp_tac (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord,
                                   oadd_UN RS sym, Union_eq_UN RS sym, 
@@ -579,8 +557,7 @@
 by (asm_simp_tac (simpset() addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1);
 qed "oadd_le_mono";
 
-Goal
-    "[| Ord(i); Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k";
+Goal "[| Ord(i); Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k";
 by (asm_simp_tac (simpset() addsimps [oadd_lt_iff2, oadd_succ RS sym, 
                                   Ord_succ]) 1);
 qed "oadd_le_iff2";
@@ -590,8 +567,7 @@
     Probably simpler to define the difference recursively!
 **)
 
-Goal
-    "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))";
+Goal "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))";
 by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1);
 by (blast_tac (claset() addSIs [if_type]) 1);
 by (fast_tac (claset() addSIs [case_type]) 1);
@@ -599,8 +575,7 @@
 by (ALLGOALS Asm_simp_tac);
 qed "bij_sum_Diff";
 
-Goal
-    "i le j ==>  \
+Goal "i le j ==>  \
 \           ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) =       \
 \           ordertype(j, Memrel(j))";
 by (safe_tac (claset() addSDs [le_subset_iff RS iffD1]));
@@ -615,8 +590,8 @@
 qed "ordertype_sum_Diff";
 
 Goalw [oadd_def, odiff_def]
-    "i le j ==>  \
-\           i ++ (j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))";
+    "i le j  \
+\    ==> i ++ (j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))";
 by (safe_tac (claset() addSDs [le_subset_iff RS iffD1]));
 by (resolve_tac [sum_ord_iso_cong RS ordertype_eq] 1);
 by (etac id_ord_iso_Memrel 1);
@@ -638,8 +613,7 @@
 
 (*By oadd_inject, the difference between i and j is unique.  Note that we get
   i++j = k  ==>  j = k--i.  *)
-Goal
-    "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j";
+Goal "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j";
 by (rtac oadd_inject 1);
 by (REPEAT (ares_tac [Ord_ordertype, Ord_oadd, Ord_odiff] 2));
 by (asm_simp_tac (simpset() addsimps [oadd_odiff_inverse, oadd_le_self]) 1);
@@ -650,7 +624,7 @@
 by (rtac (k_le_i RS lt_Ord RSN (2,oadd_lt_cancel2)) 1);
 by (simp_tac
     (simpset() addsimps [i_lt_j, k_le_i, [k_le_i, leI] MRS le_trans,
-                     oadd_odiff_inverse]) 1);
+			 oadd_odiff_inverse]) 1);
 by (REPEAT (resolve_tac (Ord_odiff :: 
                          ([i_lt_j, k_le_i] RL [lt_Ord, lt_Ord2])) 1));
 qed "odiff_lt_mono2";
@@ -675,8 +649,7 @@
 by (ALLGOALS (Blast_tac));
 qed "pred_Pair_eq";
 
-Goal
- "[| a:A;  b:B;  well_ord(A,r);  well_ord(B,s) |] ==>           \
+Goal "[| a:A;  b:B;  well_ord(A,r);  well_ord(B,s) |] ==>           \
 \        ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) = \
 \        ordertype(pred(A,a,r)*B + pred(B,b,s),                        \
 \                 radd(A*B, rmult(A,r,B,s), B, s))";
@@ -733,8 +706,7 @@
                         symmetric omult_def]) 1);
 qed "omult_oadd_lt";
 
-Goal
- "[| Ord(i);  Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})";
+Goal "[| Ord(i);  Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})";
 by (rtac (subsetI RS equalityI) 1);
 by (resolve_tac [lt_omult RS exE] 1);
 by (etac ltI 3);
@@ -818,15 +790,14 @@
 
 (** Ordinal multiplication with limit ordinals **)
 
-val prems = goal OrderType.thy
-    "[| Ord(i);  !!x. x:A ==> Ord(j(x)) |] ==> \
-\    i ** (UN x:A. j(x)) = (UN x:A. i**j(x))";
+val prems = 
+Goal "[| Ord(i);  !!x. x:A ==> Ord(j(x)) |] ==> \
+\     i ** (UN x:A. j(x)) = (UN x:A. i**j(x))";
 by (asm_simp_tac (simpset() addsimps (prems@[Ord_UN, omult_unfold])) 1);
 by (Blast_tac 1);
 qed "omult_UN";
 
-Goal 
-    "[| Ord(i);  Limit(j) |] ==> i**j = (UN k:j. i**k)";
+Goal "[| Ord(i);  Limit(j) |] ==> i**j = (UN k:j. i**k)";
 by (asm_simp_tac 
     (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord, omult_UN RS sym, 
                      Union_eq_UN RS sym, Limit_Union_eq]) 1);
--- a/src/ZF/Perm.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Perm.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -167,13 +167,11 @@
 (** Equations for converse(f) **)
 
 (*The premises are equivalent to saying that f is injective...*) 
-Goal
-    "[| f: A->B;  converse(f): C->A;  a: A |] ==> converse(f)`(f`a) = a";
+Goal "[| f: A->B;  converse(f): C->A;  a: A |] ==> converse(f)`(f`a) = a";
 by (blast_tac (claset() addIs [apply_Pair, apply_equality, converseI]) 1);
 qed "left_inverse_lemma";
 
-Goal
-    "[| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a";
+Goal "[| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a";
 by (blast_tac (claset() addIs [left_inverse_lemma, inj_converse_fun,
 			      inj_is_fun]) 1);
 qed "left_inverse";
@@ -390,8 +388,7 @@
 by (blast_tac (claset() addSIs [comp_fun_apply RS sym, apply_funtype]) 1);
 qed "comp_mem_surjD1";
 
-Goal
-    "[| (f O g)`a = c;  g: A->B;  f: B->C;  a:A |] ==> f`(g`a) = c";
+Goal "[| (f O g)`a = c;  g: A->B;  f: B->C;  a:A |] ==> f`(g`a) = c";
 by (REPEAT (ares_tac [comp_fun_apply RS sym RS trans] 1));
 qed "comp_fun_applyD";
 
@@ -459,8 +456,7 @@
 (** Unions of functions -- cf similar theorems on func.ML **)
 
 (*Theorem by KG, proof by LCP*)
-Goal
-    "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |] ==> \
+Goal "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |] ==> \
 \           (lam a: A Un C. if(a:A, f`a, g`a)) : inj(A Un C, B Un D)";
 by (res_inst_tac [("d","%z. if(z:B, converse(f)`z, converse(g)`z)")]
         lam_injective 1);
@@ -479,8 +475,7 @@
 
 (*A simple, high-level proof; the version for injections follows from it,
   using  f:inj(A,B) <-> f:bij(A,range(f))  *)
-Goal
-    "[| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |] ==> \
+Goal "[| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |] ==> \
 \           (f Un g) : bij(A Un C, B Un D)";
 by (rtac invertible_imp_bijective 1);
 by (stac converse_Un 1);
--- a/src/ZF/QPair.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/QPair.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -273,8 +273,7 @@
 
 (** <+> is itself injective... who cares?? **)
 
-Goal
-    "u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))";
+Goal "u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))";
 by (Blast_tac 1);
 qed "qsum_iff";
 
--- a/src/ZF/QUniv.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/QUniv.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -221,9 +221,7 @@
 bind_thm ("QPair_Int_Vset_subset_trans", 
           [Transset_0 RS QPair_Int_Vfrom_subset, QPair_mono] MRS subset_trans);
 
-Goal 
- "[| Ord(i) \
-\      |] ==> <a;b> Int Vset(i)  <=  (UN j:i. <a Int Vset(j); b Int Vset(j)>)";
+Goal "Ord(i) ==> <a;b> Int Vset(i) <= (UN j:i. <a Int Vset(j); b Int Vset(j)>)";
 by (etac Ord_cases 1 THEN REPEAT_FIRST hyp_subst_tac);
 (*0 case*)
 by (stac Vfrom_0 1);
@@ -232,6 +230,7 @@
 by (rtac (Transset_0 RS QPair_Int_Vfrom_succ_subset RS subset_trans) 1);
 by (rtac (succI1 RS UN_upper) 1);
 (*Limit(i) case*)
-by (asm_simp_tac (simpset() addsimps [Limit_Vfrom_eq, Int_UN_distrib, subset_refl,
-                                  UN_mono, QPair_Int_Vset_subset_trans]) 1);
+by (asm_simp_tac
+    (simpset() addsimps [Limit_Vfrom_eq, Int_UN_distrib, subset_refl,
+			 UN_mono, QPair_Int_Vset_subset_trans]) 1);
 qed "QPair_Int_Vset_subset_UN";
--- a/src/ZF/Resid/Conversion.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Resid/Conversion.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -9,8 +9,7 @@
 
 AddIs (Sconv.intrs @ Sconv1.intrs);
 
-Goal  
-    "!!u. m<--->n ==> n<--->m";
+Goal "m<--->n ==> n<--->m";
 by (etac Sconv.induct 1);
 by (etac Sconv1.induct 1);
 by (ALLGOALS Blast_tac);
@@ -20,8 +19,7 @@
 (*      Church_Rosser Theorem                                                *)
 (* ------------------------------------------------------------------------- *)
 
-Goal  
-    "!!u. m<--->n ==> EX p.(m --->p) & (n ---> p)";
+Goal "m<--->n ==> EX p.(m --->p) & (n ---> p)";
 by (etac Sconv.induct 1);
 by (etac Sconv1.induct 1);
 by (blast_tac (claset() addIs [red1D1,redD2]) 1);
--- a/src/ZF/Resid/Residuals.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Resid/Residuals.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -93,8 +93,7 @@
 by (fast_tac resfunc_cs 1);
 qed "res_redex";
 
-Goal
-    "[|s~t; regular(t)|]==> regular(t) --> s |> t:redexes";
+Goal "[|s~t; regular(t)|]==> regular(t) --> s |> t:redexes";
 by (etac Scomp.induct 1);
 by (ALLGOALS (asm_full_simp_tac 
              (simpset() addsimps [res_Var,res_Fun,res_App,res_redex] 
--- a/src/ZF/Resid/Substitution.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Resid/Substitution.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -112,8 +112,7 @@
                 addsimps [lift_rec_Var,subst_Var]);
 
 
-Goal  
-    "u:redexes ==> ALL k:nat. lift_rec(u,k):redexes";
+Goal "u:redexes ==> ALL k:nat. lift_rec(u,k):redexes";
 by (eresolve_tac [redexes.induct] 1);
 by (ALLGOALS(asm_full_simp_tac 
     ((addsplit (simpset())) addsimps [lift_rec_Fun,lift_rec_App])));
@@ -209,8 +208,7 @@
 by (asm_full_simp_tac (simpset()) 1);
 qed "subst_rec_lift_rec";
 
-Goal  
-    "v:redexes ==>  \
+Goal "v:redexes ==>  \
 \       ALL m:nat. ALL n:nat. ALL u:redexes. ALL w:redexes. m le  n --> \
 \    subst_rec(subst_rec(w,u,n),subst_rec(lift_rec(w,m),v,succ(n)),m)=\
 \    subst_rec(w,subst_rec(u,v,m),n)";
--- a/src/ZF/Sum.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Sum.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -151,8 +151,7 @@
 by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
 qed "case_type";
 
-Goal
-  "u: A+B ==>   \
+Goal "u: A+B ==>   \
 \       R(case(c,d,u)) <-> \
 \       ((ALL x:A. u = Inl(x) --> R(c(x))) & \
 \       (ALL y:B. u = Inr(y) --> R(d(y))))";
--- a/src/ZF/Univ.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Univ.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -386,8 +386,7 @@
 by (Blast_tac 1);
 qed "Pow_in_Vfrom";
 
-Goal
-  "[| a: Vfrom(A,i);  Limit(i);  Transset(A) |] ==> Pow(a) : Vfrom(A,i)";
+Goal "[| a: Vfrom(A,i);  Limit(i);  Transset(A) |] ==> Pow(a) : Vfrom(A,i)";
 (*Blast_tac: PROOF FAILED*)
 by (fast_tac (claset() addEs [Limit_VfromE]
 		       addIs [Limit_has_succ, Pow_in_Vfrom, Limit_VfromI]) 1);
--- a/src/ZF/Zorn.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/Zorn.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -207,8 +207,7 @@
 qed "Hausdorff_next_exists";
 
 (*Lemma 4*)
-Goal
- "[| c: TFin(S,next);                              \
+Goal " [| c: TFin(S,next);                              \
 \         ch: (PROD X: Pow(chain(S))-{0}. X);           \
 \         next: increasing(S);                          \
 \         ALL X: Pow(S). next`X =       \
--- a/src/ZF/ex/BT.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/BT.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -50,8 +50,7 @@
 by (Simp_tac 1);
 qed "bt_rec_Lf";
 
-Goal
-    "bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))";
+Goal "bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))";
 by (rtac (bt_rec_def RS def_Vrec RS trans) 1);
 by (simp_tac (rank_ss addsimps (bt.case_eqns @ [rank_Br1, rank_Br2])) 1);
 qed "bt_rec_Br";
--- a/src/ZF/ex/Comb.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/Comb.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -165,8 +165,7 @@
 by (Blast_tac 1);
 qed "S1_parcontractD";
 
-Goal
- "!!p q r. S#p#q =1=> r ==> (EX p' q'. r = S#p'#q' & p =1=> p' & q =1=> q')";
+Goal "S#p#q =1=> r ==> (EX p' q'. r = S#p'#q' & p =1=> p' & q =1=> q')";
 by (blast_tac (claset() addSDs [S1_parcontractD]) 1);
 qed "S2_parcontractD";
 
--- a/src/ZF/ex/Integ.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/Integ.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -286,8 +286,7 @@
 
 (** Congruence property for multiplication **)
 
-Goal 
-    "congruent2(intrel, %p1 p2.                 \
+Goal "congruent2(intrel, %p1 p2.                 \
 \               split(%x1 y1. split(%x2 y2.     \
 \                   intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))";
 by (rtac (equiv_intrel RS congruent2_commuteI) 1);
--- a/src/ZF/ex/LList.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/LList.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -43,8 +43,7 @@
 AddSDs [qunivD];
 AddSEs [Ord_in_Ord];
 
-Goal
-   "Ord(i) ==> ALL l: llist(quniv(A)). l Int Vset(i) <= univ(eclose(A))";
+Goal "Ord(i) ==> ALL l: llist(quniv(A)). l Int Vset(i) <= univ(eclose(A))";
 by (etac trans_induct 1);
 by (rtac ballI 1);
 by (etac llist.elim 1);
@@ -71,8 +70,7 @@
 AddSEs [Ord_in_Ord, Pair_inject];
 
 (*Lemma for proving finality.  Unfold the lazy list; use induction hypothesis*)
-Goal
-   "Ord(i) ==> ALL l l'. <l,l'> : lleq(A) --> l Int Vset(i) <= l'";
+Goal "Ord(i) ==> ALL l l'. <l,l'> : lleq(A) --> l Int Vset(i) <= l'";
 by (etac trans_induct 1);
 by (REPEAT (resolve_tac [allI, impI] 1));
 by (etac lleq.elim 1);
@@ -155,8 +153,7 @@
 
 (*Reasoning borrowed from lleq.ML; a similar proof works for all
   "productive" functions -- cf Coquand's "Infinite Objects in Type Theory".*)
-Goal
-   "Ord(i) ==> ALL l: llist(bool). flip(l) Int Vset(i) <= \
+Goal "Ord(i) ==> ALL l: llist(bool). flip(l) Int Vset(i) <= \
 \                   univ(eclose(bool))";
 by (etac trans_induct 1);
 by (rtac ballI 1);
--- a/src/ZF/ex/Limit.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/Limit.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -331,8 +331,7 @@
 by (Asm_simp_tac 1);
 qed "subchain_isub";
 
-Goal
-  "[|dominate(D,X,Y); subchain(Y,X); islub(D,X,x); islub(D,Y,y); cpo(D);  \
+Goal "[|dominate(D,X,Y); subchain(Y,X); islub(D,X,x); islub(D,Y,y); cpo(D);  \
 \    X:nat->set(D); Y:nat->set(D)|] ==> x = y";
 by (blast_tac (claset() addIs [cpo_antisym, dominate_islub, islub_least,
 			       subchain_isub, islub_isub, islub_in]) 1);
@@ -2156,8 +2155,7 @@
 by (auto_tac (claset() addIs [exI,rho_projpair], simpset()));
 qed "emb_rho_emb";
 
-Goal 
-  "[| emb_chain(DD,ee); n:nat |] ==>   \
+Goal "[| emb_chain(DD,ee); n:nat |] ==>   \
 \  rho_proj(DD,ee,n) : cont(Dinf(DD,ee),DD`n)";
 by (auto_tac (claset() addIs [rho_projpair,projpair_p_cont], simpset()));
 qed "rho_proj_cont";
--- a/src/ZF/ex/ListN.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/ListN.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -35,8 +35,7 @@
 by (REPEAT (ares_tac ([univ_mono,Sigma_mono,list_mono] @ basic_monos) 1));
 qed "listn_mono";
 
-Goal
-  "[| <n,l> : listn(A);  <n',l'> : listn(A) |] ==> <n#+n', l@l'> : listn(A)";
+Goal "[| <n,l> : listn(A); <n',l'> : listn(A) |] ==> <n#+n', l@l'> : listn(A)";
 by (etac listn.induct 1);
 by (ALLGOALS (asm_simp_tac (simpset() addsimps listn.intrs)));
 qed "listn_append";
--- a/src/ZF/ex/Primrec.ML	Thu Aug 06 10:50:44 1998 +0200
+++ b/src/ZF/ex/Primrec.ML	Thu Aug 06 12:24:04 1998 +0200
@@ -257,8 +257,7 @@
 
 (** COMP case **)
 
-Goal
- "fs : list({f: primrec .                                 \
+Goal "fs : list({f: primrec .                                 \
 \                  EX kf:nat. ALL l:list(nat).                  \
 \                             f`l < ack(kf, list_add(l))})      \
 \      ==> EX k:nat. ALL l: list(nat).                          \