Lots of new results concerning recursive datatypes, towards absoluteness of
authorpaulson
Mon, 12 Aug 2002 18:01:44 +0200
changeset 13493 5aa68c051725
parent 13492 6aae8eb39a18
child 13494 1c44289716ae
Lots of new results concerning recursive datatypes, towards absoluteness of "satisfies"
src/ZF/Constructible/Datatype_absolute.thy
src/ZF/Constructible/L_axioms.thy
src/ZF/Constructible/Rec_Separation.thy
--- a/src/ZF/Constructible/Datatype_absolute.thy	Mon Aug 12 17:59:57 2002 +0200
+++ b/src/ZF/Constructible/Datatype_absolute.thy	Mon Aug 12 18:01:44 2002 +0200
@@ -346,18 +346,109 @@
   is_list :: "[i=>o,i,i] => o"
     "is_list(M,A,Z) == \<forall>l[M]. l \<in> Z <-> mem_list(M,A,l)"
 
+subsubsection{*Towards Absoluteness of @{term formula_rec}*}
+
+consts   depth :: "i=>i"
+primrec
+  "depth(Member(x,y)) = 0"
+  "depth(Equal(x,y))  = 0"
+  "depth(Nand(p,q)) = succ(depth(p) \<union> depth(q))"
+  "depth(Forall(p)) = succ(depth(p))"
+
+lemma depth_type [TC]: "p \<in> formula ==> depth(p) \<in> nat"
+by (induct_tac p, simp_all) 
+
+
 constdefs
-  is_formula_n :: "[i=>o,i,i] => o"
-    "is_formula_n(M,n,Z) == 
+  formula_N :: "i => i"
+    "formula_N(n) == (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"
+
+lemma Member_in_formula_N [simp]:
+     "Member(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
+by (simp add: formula_N_def Member_def) 
+
+lemma Equal_in_formula_N [simp]:
+     "Equal(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
+by (simp add: formula_N_def Equal_def) 
+
+lemma Nand_in_formula_N [simp]:
+     "Nand(x,y) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n) & y \<in> formula_N(n)"
+by (simp add: formula_N_def Nand_def) 
+
+lemma Forall_in_formula_N [simp]:
+     "Forall(x) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n)"
+by (simp add: formula_N_def Forall_def) 
+
+text{*These two aren't simprules because they reveal the underlying
+formula representation.*}
+lemma formula_N_0: "formula_N(0) = 0"
+by (simp add: formula_N_def)
+
+lemma formula_N_succ:
+     "formula_N(succ(n)) = 
+      ((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"
+by (simp add: formula_N_def)
+
+lemma formula_N_imp_formula:
+  "[| p \<in> formula_N(n); n \<in> nat |] ==> p \<in> formula"
+by (force simp add: formula_eq_Union formula_N_def)
+
+lemma formula_N_imp_depth_lt [rule_format]:
+     "n \<in> nat ==> \<forall>p \<in> formula_N(n). depth(p) < n"
+apply (induct_tac n)  
+apply (auto simp add: formula_N_0 formula_N_succ 
+                      depth_type formula_N_imp_formula Un_least_lt_iff
+                      Member_def [symmetric] Equal_def [symmetric]
+                      Nand_def [symmetric] Forall_def [symmetric]) 
+done
+
+lemma formula_imp_formula_N [rule_format]:
+     "p \<in> formula ==> \<forall>n\<in>nat. depth(p) < n --> p \<in> formula_N(n)"
+apply (induct_tac p)
+apply (simp_all add: succ_Un_distrib Un_least_lt_iff) 
+apply (force elim: natE)+
+done
+
+lemma formula_N_imp_eq_depth:
+      "[|n \<in> nat; p \<notin> formula_N(n); p \<in> formula_N(succ(n))|] 
+       ==> n = depth(p)"
+apply (rule le_anti_sym) 
+ prefer 2 apply (simp add: formula_N_imp_depth_lt) 
+apply (frule formula_N_imp_formula, simp)
+apply (simp add: not_lt_iff_le [symmetric]) 
+apply (blast intro: formula_imp_formula_N) 
+done
+
+
+
+lemma formula_N_mono [rule_format]:
+  "[| m \<in> nat; n \<in> nat |] ==> m\<le>n --> formula_N(m) \<subseteq> formula_N(n)"
+apply (rule_tac m = m and n = n in diff_induct)
+apply (simp_all add: formula_N_0 formula_N_succ, blast) 
+done
+
+lemma formula_N_distrib:
+  "[| m \<in> nat; n \<in> nat |] ==> formula_N(m \<union> n) = formula_N(m) \<union> formula_N(n)"
+apply (rule_tac i = m and j = n in Ord_linear_le, auto) 
+apply (simp_all add: subset_Un_iff [THEN iffD1] subset_Un_iff2 [THEN iffD1] 
+                     le_imp_subset formula_N_mono)
+done
+
+constdefs
+  is_formula_N :: "[i=>o,i,i] => o"
+    "is_formula_N(M,n,Z) == 
       \<exists>zero[M]. \<exists>sn[M]. \<exists>msn[M]. 
        empty(M,zero) & 
        successor(M,n,sn) & membership(M,sn,msn) &
        is_wfrec(M, iterates_MH(M, is_formula_functor(M),zero), msn, n, Z)"
   
+
+constdefs
+  
   mem_formula :: "[i=>o,i] => o"
     "mem_formula(M,p) == 
       \<exists>n[M]. \<exists>formn[M]. 
-       finite_ordinal(M,n) & is_formula_n(M,n,formn) & p \<in> formn"
+       finite_ordinal(M,n) & is_formula_N(M,n,formn) & p \<in> formn"
 
   is_formula :: "[i=>o,i] => o"
     "is_formula(M,Z) == \<forall>p[M]. p \<in> Z <-> mem_formula(M,p)"
@@ -451,20 +542,26 @@
 
 lemmas (in M_datatypes) formula_into_M = transM [OF _ formula_closed]
 
-lemma (in M_datatypes) is_formula_n_abs [simp]:
+lemma (in M_datatypes) formula_N_abs [simp]:
      "[|n\<in>nat; M(Z)|] 
-      ==> is_formula_n(M,n,Z) <-> 
-          Z = (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X))^n (0)"
+      ==> is_formula_N(M,n,Z) <-> Z = formula_N(n)"
 apply (insert formula_replacement1)
-apply (simp add: is_formula_n_def relativize1_def nat_into_M
+apply (simp add: is_formula_N_def formula_N_def relativize1_def nat_into_M
                  iterates_abs [of "is_formula_functor(M)" _ 
-                        "\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)"])
+                                  "\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)"])
+done
+
+lemma (in M_datatypes) formula_N_closed [intro,simp]:
+     "n\<in>nat ==> M(formula_N(n))"
+apply (insert formula_replacement1)
+apply (simp add: is_formula_N_def formula_N_def relativize1_def nat_into_M
+                 iterates_closed [of "is_formula_functor(M)"])
 done
 
 lemma (in M_datatypes) mem_formula_abs [simp]:
      "mem_formula(M,l) <-> l \<in> formula"
 apply (insert formula_replacement1)
-apply (simp add: mem_formula_def relativize1_def formula_eq_Union
+apply (simp add: mem_formula_def relativize1_def formula_eq_Union formula_N_def
                  iterates_closed [of "is_formula_functor(M)"]) 
 done
 
@@ -739,11 +836,13 @@
     "[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o"
   --{*no constraint on non-formulas*}
   "is_formula_case(M, is_a, is_b, is_c, is_d, p, z) == 
-      (\<forall>x[M]. \<forall>y[M]. x\<in>nat --> y\<in>nat --> is_Member(M,x,y,p) --> is_a(x,y,z)) &
-      (\<forall>x[M]. \<forall>y[M]. x\<in>nat --> y\<in>nat --> is_Equal(M,x,y,p) --> is_b(x,y,z)) &
-      (\<forall>x[M]. \<forall>y[M]. x\<in>formula --> y\<in>formula --> 
+      (\<forall>x[M]. \<forall>y[M]. finite_ordinal(M,x) --> finite_ordinal(M,y) --> 
+                      is_Member(M,x,y,p) --> is_a(x,y,z)) &
+      (\<forall>x[M]. \<forall>y[M]. finite_ordinal(M,x) --> finite_ordinal(M,y) --> 
+                      is_Equal(M,x,y,p) --> is_b(x,y,z)) &
+      (\<forall>x[M]. \<forall>y[M]. mem_formula(M,x) --> mem_formula(M,y) --> 
                      is_Nand(M,x,y,p) --> is_c(x,y,z)) &
-      (\<forall>x[M]. x\<in>formula --> is_Forall(M,x,p) --> is_d(x,z))"
+      (\<forall>x[M]. mem_formula(M,x) --> is_Forall(M,x,p) --> is_d(x,z))"
 
 lemma (in M_datatypes) formula_case_abs [simp]: 
      "[| Relativize2(M,nat,nat,is_a,a); Relativize2(M,nat,nat,is_b,b); 
@@ -872,94 +971,6 @@
 done
 
 
-subsubsection{*Towards Absoluteness of @{term formula_rec}*}
-
-consts   depth :: "i=>i"
-primrec
-  "depth(Member(x,y)) = 0"
-  "depth(Equal(x,y))  = 0"
-  "depth(Nand(p,q)) = succ(depth(p) \<union> depth(q))"
-  "depth(Forall(p)) = succ(depth(p))"
-
-lemma depth_type [TC]: "p \<in> formula ==> depth(p) \<in> nat"
-by (induct_tac p, simp_all) 
-
-
-constdefs
-  formula_N :: "i => i"
-    "formula_N(n) == (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"
-
-lemma Member_in_formula_N [simp]:
-     "Member(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
-by (simp add: formula_N_def Member_def) 
-
-lemma Equal_in_formula_N [simp]:
-     "Equal(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
-by (simp add: formula_N_def Equal_def) 
-
-lemma Nand_in_formula_N [simp]:
-     "Nand(x,y) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n) & y \<in> formula_N(n)"
-by (simp add: formula_N_def Nand_def) 
-
-lemma Forall_in_formula_N [simp]:
-     "Forall(x) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n)"
-by (simp add: formula_N_def Forall_def) 
-
-text{*These two aren't simprules because they reveal the underlying
-formula representation.*}
-lemma formula_N_0: "formula_N(0) = 0"
-by (simp add: formula_N_def)
-
-lemma formula_N_succ:
-     "formula_N(succ(n)) = 
-      ((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"
-by (simp add: formula_N_def)
-
-lemma formula_N_imp_formula:
-  "[| p \<in> formula_N(n); n \<in> nat |] ==> p \<in> formula"
-by (force simp add: formula_eq_Union formula_N_def)
-
-lemma formula_N_imp_depth_lt [rule_format]:
-     "n \<in> nat ==> \<forall>p \<in> formula_N(n). depth(p) < n"
-apply (induct_tac n)  
-apply (auto simp add: formula_N_0 formula_N_succ 
-                      depth_type formula_N_imp_formula Un_least_lt_iff
-                      Member_def [symmetric] Equal_def [symmetric]
-                      Nand_def [symmetric] Forall_def [symmetric]) 
-done
-
-lemma formula_imp_formula_N [rule_format]:
-     "p \<in> formula ==> \<forall>n\<in>nat. depth(p) < n --> p \<in> formula_N(n)"
-apply (induct_tac p)
-apply (simp_all add: succ_Un_distrib Un_least_lt_iff) 
-apply (force elim: natE)+
-done
-
-lemma formula_N_imp_eq_depth:
-      "[|n \<in> nat; p \<notin> formula_N(n); p \<in> formula_N(succ(n))|] 
-       ==> n = depth(p)"
-apply (rule le_anti_sym) 
- prefer 2 apply (simp add: formula_N_imp_depth_lt) 
-apply (frule formula_N_imp_formula, simp)
-apply (simp add: not_lt_iff_le [symmetric]) 
-apply (blast intro: formula_imp_formula_N) 
-done
-
-
-
-lemma formula_N_mono [rule_format]:
-  "[| m \<in> nat; n \<in> nat |] ==> m\<le>n --> formula_N(m) \<subseteq> formula_N(n)"
-apply (rule_tac m = m and n = n in diff_induct)
-apply (simp_all add: formula_N_0 formula_N_succ, blast) 
-done
-
-lemma formula_N_distrib:
-  "[| m \<in> nat; n \<in> nat |] ==> formula_N(m \<union> n) = formula_N(m) \<union> formula_N(n)"
-apply (rule_tac i = m and j = n in Ord_linear_le, auto) 
-apply (simp_all add: subset_Un_iff [THEN iffD1] subset_Un_iff2 [THEN iffD1] 
-                     le_imp_subset formula_N_mono)
-done
-
 text{*Express @{term formula_rec} without using @{term rank} or @{term Vset},
 neither of which is absolute.*}
 lemma (in M_triv_axioms) formula_rec_eq:
@@ -986,31 +997,6 @@
 done
 
 
-constdefs
-  is_formula_N :: "[i=>o,i,i] => o"
-    "is_formula_N(M,n,Z) == 
-      \<exists>zero[M]. \<exists>sn[M]. \<exists>msn[M]. 
-       empty(M,zero) & 
-       successor(M,n,sn) & membership(M,sn,msn) &
-       is_wfrec(M, iterates_MH(M, is_formula_functor(M),zero), msn, n, Z)"
-  
-
-lemma (in M_datatypes) formula_N_abs [simp]:
-     "[|n\<in>nat; M(Z)|] 
-      ==> is_formula_N(M,n,Z) <-> Z = formula_N(n)"
-apply (insert formula_replacement1)
-apply (simp add: is_formula_N_def formula_N_def relativize1_def nat_into_M
-                 iterates_abs [of "is_formula_functor(M)" _ 
-                                  "\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)"])
-done
-
-lemma (in M_datatypes) formula_N_closed [intro,simp]:
-     "n\<in>nat ==> M(formula_N(n))"
-apply (insert formula_replacement1)
-apply (simp add: is_formula_N_def formula_N_def relativize1_def nat_into_M
-                 iterates_closed [of "is_formula_functor(M)"])
-done
-
 subsection{*Absoluteness for the Formula Operator @{term depth}*}
 constdefs
 
@@ -1035,4 +1021,5 @@
      "p \<in> formula ==> M(depth(p))"
 by (simp add: nat_into_M) 
 
+
 end
--- a/src/ZF/Constructible/L_axioms.thy	Mon Aug 12 17:59:57 2002 +0200
+++ b/src/ZF/Constructible/L_axioms.thy	Mon Aug 12 18:01:44 2002 +0200
@@ -1464,6 +1464,41 @@
              empty_reflection successor_reflection)
 done
 
+subsubsection{*Finite Ordinals: The Predicate ``Is A Natural Number''*}
+
+(*     "finite_ordinal(M,a) == 
+	ordinal(M,a) & ~ limit_ordinal(M,a) & 
+        (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))" *)
+constdefs finite_ordinal_fm :: "i=>i"
+    "finite_ordinal_fm(x) ==
+       And(ordinal_fm(x),
+          And(Neg(limit_ordinal_fm(x)),
+           Forall(Implies(Member(0,succ(x)),
+                          Neg(limit_ordinal_fm(0))))))"
+
+lemma finite_ordinal_type [TC]:
+     "x \<in> nat ==> finite_ordinal_fm(x) \<in> formula"
+by (simp add: finite_ordinal_fm_def)
+
+lemma sats_finite_ordinal_fm [simp]:
+   "[| x \<in> nat; env \<in> list(A)|]
+    ==> sats(A, finite_ordinal_fm(x), env) <-> finite_ordinal(**A, nth(x,env))"
+by (simp add: finite_ordinal_fm_def sats_ordinal_fm' finite_ordinal_def)
+
+lemma finite_ordinal_iff_sats:
+      "[| nth(i,env) = x; nth(j,env) = y;
+          i \<in> nat; env \<in> list(A)|]
+       ==> finite_ordinal(**A, x) <-> sats(A, finite_ordinal_fm(i), env)"
+by simp
+
+theorem finite_ordinal_reflection:
+     "REFLECTS[\<lambda>x. finite_ordinal(L,f(x)),
+               \<lambda>i x. finite_ordinal(**Lset(i),f(x))]"
+apply (simp only: finite_ordinal_def setclass_simps)
+apply (intro FOL_reflections ordinal_reflection limit_ordinal_reflection)
+done
+
+
 subsubsection{*Omega: The Set of Natural Numbers*}
 
 (* omega(M,a) == limit_ordinal(M,a) & (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x)) *)
--- a/src/ZF/Constructible/Rec_Separation.thy	Mon Aug 12 17:59:57 2002 +0200
+++ b/src/ZF/Constructible/Rec_Separation.thy	Mon Aug 12 18:01:44 2002 +0200
@@ -16,6 +16,7 @@
 lemma eq_succ_imp_lt: "[|i = succ(j); Ord(i)|] ==> j<i"
 by simp
 
+
 subsection{*The Locale @{text "M_trancl"}*}
 
 subsubsection{*Separation for Reflexive/Transitive Closure*}
@@ -1264,14 +1265,31 @@
        2       1       0
        successor(M,n,sn) & membership(M,sn,msn) &
        is_wfrec(M, iterates_MH(M, is_tl(M), l), msn, n, X) &
-       is_hd(M,X,Z)"
+       is_hd(M,X,Z)" *)
 constdefs nth_fm :: "[i,i,i]=>i"
     "nth_fm(n,l,Z) == 
        Exists(Exists(Exists(
-         And(successor_fm(n#+3,1),
-          And(membership_fm(1,0),
-           And(
- *)
+         And(succ_fm(n#+3,1),
+          And(Memrel_fm(1,0),
+           And(is_wfrec_fm(iterates_MH_fm(tl_fm(1,0),l#+8,2,1,0), 0, n#+3, 2), hd_fm(2,Z#+3)))))))"
+
+lemma nth_fm_type [TC]:
+ "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> nth_fm(x,y,z) \<in> formula"
+by (simp add: nth_fm_def)
+
+lemma sats_nth_fm [simp]:
+   "[| x < length(env); y \<in> nat; z \<in> nat; env \<in> list(A)|]
+    ==> sats(A, nth_fm(x,y,z), env) <->
+        is_nth(**A, nth(x,env), nth(y,env), nth(z,env))"
+apply (frule lt_length_in_nat, assumption)  
+apply (simp add: nth_fm_def is_nth_def sats_is_wfrec_fm sats_iterates_MH_fm) 
+done
+
+lemma nth_iff_sats:
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+          i < length(env); j \<in> nat; k \<in> nat; env \<in> list(A)|]
+       ==> is_nth(**A, x, y, z) <-> sats(A, nth_fm(i,j,k), env)"
+by (simp add: sats_nth_fm)
 
 theorem nth_reflection:
      "REFLECTS[\<lambda>x. is_nth(L, f(x), g(x), h(x)),