tuned whitespace and indentation, emphasizing the logical structure of this long text;
authorwenzelm
Thu, 02 Sep 2010 16:31:50 +0200
changeset 39046 5b38730f3e12
parent 39040 e3799716b733
child 39047 cdff476ba39e
tuned whitespace and indentation, emphasizing the logical structure of this long text;
src/HOL/Tools/refute.ML
--- a/src/HOL/Tools/refute.ML	Thu Sep 02 14:19:15 2010 +0200
+++ b/src/HOL/Tools/refute.ML	Thu Sep 02 16:31:50 2010 +0200
@@ -72,22 +72,24 @@
   val is_const_of_class: theory -> string * typ -> bool
   val string_of_typ : typ -> string
   val typ_of_dtyp : Datatype.descr -> (Datatype.dtyp * typ) list -> Datatype.dtyp -> typ
-end;  (* signature REFUTE *)
+end;
+
 
 structure Refute : REFUTE =
 struct
 
-  open PropLogic;
+open PropLogic;
 
-  (* We use 'REFUTE' only for internal error conditions that should    *)
-  (* never occur in the first place (i.e. errors caused by bugs in our *)
-  (* code).  Otherwise (e.g. to indicate invalid input data) we use    *)
-  (* 'error'.                                                          *)
-  exception REFUTE of string * string;  (* ("in function", "cause") *)
+(* We use 'REFUTE' only for internal error conditions that should    *)
+(* never occur in the first place (i.e. errors caused by bugs in our *)
+(* code).  Otherwise (e.g. to indicate invalid input data) we use    *)
+(* 'error'.                                                          *)
+exception REFUTE of string * string;  (* ("in function", "cause") *)
 
-  (* should be raised by an interpreter when more variables would be *)
-  (* required than allowed by 'maxvars'                              *)
-  exception MAXVARS_EXCEEDED;
+(* should be raised by an interpreter when more variables would be *)
+(* required than allowed by 'maxvars'                              *)
+exception MAXVARS_EXCEEDED;
+
 
 (* ------------------------------------------------------------------------- *)
 (* TREES                                                                     *)
@@ -98,20 +100,20 @@
 (*       of (lists of ...) elements                                          *)
 (* ------------------------------------------------------------------------- *)
 
-  datatype 'a tree =
-      Leaf of 'a
-    | Node of ('a tree) list;
+datatype 'a tree =
+    Leaf of 'a
+  | Node of ('a tree) list;
 
-  (* ('a -> 'b) -> 'a tree -> 'b tree *)
+(* ('a -> 'b) -> 'a tree -> 'b tree *)
 
-  fun tree_map f tr =
-    case tr of
-      Leaf x  => Leaf (f x)
-    | Node xs => Node (map (tree_map f) xs);
+fun tree_map f tr =
+  case tr of
+    Leaf x  => Leaf (f x)
+  | Node xs => Node (map (tree_map f) xs);
 
-  (* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
+(* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
 
-  fun tree_foldl f =
+fun tree_foldl f =
   let
     fun itl (e, Leaf x)  = f(e,x)
       | itl (e, Node xs) = Library.foldl (tree_foldl f) (e,xs)
@@ -119,16 +121,16 @@
     itl
   end;
 
-  (* 'a tree * 'b tree -> ('a * 'b) tree *)
+(* 'a tree * 'b tree -> ('a * 'b) tree *)
 
-  fun tree_pair (t1, t2) =
-    case t1 of
-      Leaf x =>
+fun tree_pair (t1, t2) =
+  case t1 of
+    Leaf x =>
       (case t2 of
           Leaf y => Leaf (x,y)
         | Node _ => raise REFUTE ("tree_pair",
             "trees are of different height (second tree is higher)"))
-    | Node xs =>
+  | Node xs =>
       (case t2 of
           (* '~~' will raise an exception if the number of branches in   *)
           (* both trees is different at the current node                 *)
@@ -160,68 +162,68 @@
 (*                       "unknown").                                         *)
 (* ------------------------------------------------------------------------- *)
 
-  type params =
-    {
-      sizes    : (string * int) list,
-      minsize  : int,
-      maxsize  : int,
-      maxvars  : int,
-      maxtime  : int,
-      satsolver: string,
-      no_assms : bool,
-      expect   : string
-    };
+type params =
+  {
+    sizes    : (string * int) list,
+    minsize  : int,
+    maxsize  : int,
+    maxvars  : int,
+    maxtime  : int,
+    satsolver: string,
+    no_assms : bool,
+    expect   : string
+  };
 
 (* ------------------------------------------------------------------------- *)
 (* interpretation: a term's interpretation is given by a variable of type    *)
 (*                 'interpretation'                                          *)
 (* ------------------------------------------------------------------------- *)
 
-  type interpretation =
-    prop_formula list tree;
+type interpretation =
+  prop_formula list tree;
 
 (* ------------------------------------------------------------------------- *)
 (* model: a model specifies the size of types and the interpretation of      *)
 (*        terms                                                              *)
 (* ------------------------------------------------------------------------- *)
 
-  type model =
-    (typ * int) list * (term * interpretation) list;
+type model =
+  (typ * int) list * (term * interpretation) list;
 
 (* ------------------------------------------------------------------------- *)
 (* arguments: additional arguments required during interpretation of terms   *)
 (* ------------------------------------------------------------------------- *)
 
-  type arguments =
-    {
-      (* just passed unchanged from 'params': *)
-      maxvars   : int,
-      (* whether to use 'make_equality' or 'make_def_equality': *)
-      def_eq    : bool,
-      (* the following may change during the translation: *)
-      next_idx  : int,
-      bounds    : interpretation list,
-      wellformed: prop_formula
-    };
+type arguments =
+  {
+    (* just passed unchanged from 'params': *)
+    maxvars   : int,
+    (* whether to use 'make_equality' or 'make_def_equality': *)
+    def_eq    : bool,
+    (* the following may change during the translation: *)
+    next_idx  : int,
+    bounds    : interpretation list,
+    wellformed: prop_formula
+  };
 
 
-  structure RefuteData = Theory_Data
-  (
-    type T =
-      {interpreters: (string * (theory -> model -> arguments -> term ->
-        (interpretation * model * arguments) option)) list,
-       printers: (string * (theory -> model -> typ -> interpretation ->
-        (int -> bool) -> term option)) list,
-       parameters: string Symtab.table};
-    val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
-    val extend = I;
-    fun merge
-      ({interpreters = in1, printers = pr1, parameters = pa1},
-       {interpreters = in2, printers = pr2, parameters = pa2}) : T =
-      {interpreters = AList.merge (op =) (K true) (in1, in2),
-       printers = AList.merge (op =) (K true) (pr1, pr2),
-       parameters = Symtab.merge (op=) (pa1, pa2)};
-  );
+structure RefuteData = Theory_Data
+(
+  type T =
+    {interpreters: (string * (theory -> model -> arguments -> term ->
+      (interpretation * model * arguments) option)) list,
+     printers: (string * (theory -> model -> typ -> interpretation ->
+      (int -> bool) -> term option)) list,
+     parameters: string Symtab.table};
+  val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
+  val extend = I;
+  fun merge
+    ({interpreters = in1, printers = pr1, parameters = pa1},
+     {interpreters = in2, printers = pr2, parameters = pa2}) : T =
+    {interpreters = AList.merge (op =) (K true) (in1, in2),
+     printers = AList.merge (op =) (K true) (pr1, pr2),
+     parameters = Symtab.merge (op=) (pa1, pa2)};
+);
 
 
 (* ------------------------------------------------------------------------- *)
@@ -230,30 +232,30 @@
 (*            track of the interpretation of subterms                        *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) *)
 
-  fun interpret thy model args t =
-    case get_first (fn (_, f) => f thy model args t)
+fun interpret thy model args t =
+  case get_first (fn (_, f) => f thy model args t)
       (#interpreters (RefuteData.get thy)) of
-      NONE   => raise REFUTE ("interpret",
-        "no interpreter for term " ^ quote (Syntax.string_of_term_global thy t))
-    | SOME x => x;
+    NONE => raise REFUTE ("interpret",
+      "no interpreter for term " ^ quote (Syntax.string_of_term_global thy t))
+  | SOME x => x;
 
 (* ------------------------------------------------------------------------- *)
 (* print: converts the interpretation 'intr', which must denote a term of    *)
 (*        type 'T', into a term using a suitable printer                     *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
-    Term.term *)
+(* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
+  Term.term *)
 
-  fun print thy model T intr assignment =
-    case get_first (fn (_, f) => f thy model T intr assignment)
+fun print thy model T intr assignment =
+  case get_first (fn (_, f) => f thy model T intr assignment)
       (#printers (RefuteData.get thy)) of
-      NONE   => raise REFUTE ("print",
-        "no printer for type " ^ quote (Syntax.string_of_typ_global thy T))
-    | SOME x => x;
+    NONE => raise REFUTE ("print",
+      "no printer for type " ^ quote (Syntax.string_of_typ_global thy T))
+  | SOME x => x;
 
 (* ------------------------------------------------------------------------- *)
 (* print_model: turns the model into a string, using a fixed interpretation  *)
@@ -261,9 +263,9 @@
 (*              printers                                                     *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> (int -> bool) -> string *)
+(* theory -> model -> (int -> bool) -> string *)
 
-  fun print_model thy model assignment =
+fun print_model thy model assignment =
   let
     val (typs, terms) = model
     val typs_msg =
@@ -298,29 +300,29 @@
 (* PARAMETER MANAGEMENT                                                      *)
 (* ------------------------------------------------------------------------- *)
 
-  (* string -> (theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option) -> theory -> theory *)
+(* string -> (theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option) -> theory -> theory *)
 
-  fun add_interpreter name f thy =
+fun add_interpreter name f thy =
   let
     val {interpreters, printers, parameters} = RefuteData.get thy
   in
     case AList.lookup (op =) interpreters name of
-      NONE   => RefuteData.put {interpreters = (name, f) :: interpreters,
-      printers = printers, parameters = parameters} thy
+      NONE => RefuteData.put {interpreters = (name, f) :: interpreters,
+        printers = printers, parameters = parameters} thy
     | SOME _ => error ("Interpreter " ^ name ^ " already declared")
   end;
 
-  (* string -> (theory -> model -> Term.typ -> interpretation ->
-    (int -> bool) -> Term.term option) -> theory -> theory *)
+(* string -> (theory -> model -> Term.typ -> interpretation ->
+  (int -> bool) -> Term.term option) -> theory -> theory *)
 
-  fun add_printer name f thy =
+fun add_printer name f thy =
   let
     val {interpreters, printers, parameters} = RefuteData.get thy
   in
     case AList.lookup (op =) printers name of
-      NONE   => RefuteData.put {interpreters = interpreters,
-      printers = (name, f) :: printers, parameters = parameters} thy
+      NONE => RefuteData.put {interpreters = interpreters,
+        printers = (name, f) :: printers, parameters = parameters} thy
     | SOME _ => error ("Printer " ^ name ^ " already declared")
   end;
 
@@ -329,30 +331,30 @@
 (*                    parameter table                                        *)
 (* ------------------------------------------------------------------------- *)
 
-  (* (string * string) -> theory -> theory *)
+(* (string * string) -> theory -> theory *)
 
-  fun set_default_param (name, value) = RefuteData.map 
-    (fn {interpreters, printers, parameters} =>
-      {interpreters = interpreters, printers = printers,
-        parameters = Symtab.update (name, value) parameters});
+fun set_default_param (name, value) = RefuteData.map 
+  (fn {interpreters, printers, parameters} =>
+    {interpreters = interpreters, printers = printers,
+      parameters = Symtab.update (name, value) parameters});
 
 (* ------------------------------------------------------------------------- *)
 (* get_default_param: retrieves the value associated with 'name' from        *)
 (*                    RefuteData's parameter table                           *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string -> string option *)
+(* theory -> string -> string option *)
 
-  val get_default_param = Symtab.lookup o #parameters o RefuteData.get;
+val get_default_param = Symtab.lookup o #parameters o RefuteData.get;
 
 (* ------------------------------------------------------------------------- *)
 (* get_default_params: returns a list of all '(name, value)' pairs that are  *)
 (*                     stored in RefuteData's parameter table                *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> (string * string) list *)
+(* theory -> (string * string) list *)
 
-  val get_default_params = Symtab.dest o #parameters o RefuteData.get;
+val get_default_params = Symtab.dest o #parameters o RefuteData.get;
 
 (* ------------------------------------------------------------------------- *)
 (* actual_params: takes a (possibly empty) list 'params' of parameters that  *)
@@ -360,9 +362,9 @@
 (*      returns a record that can be passed to 'find_model'.                 *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> (string * string) list -> params *)
+(* theory -> (string * string) list -> params *)
 
-  fun actual_params thy override =
+fun actual_params thy override =
   let
     (* (string * string) list * string -> bool *)
     fun read_bool (parms, name) =
@@ -370,32 +372,33 @@
         SOME "true" => true
       | SOME "false" => false
       | SOME s => error ("parameter " ^ quote name ^
-        " (value is " ^ quote s ^ ") must be \"true\" or \"false\"")
+          " (value is " ^ quote s ^ ") must be \"true\" or \"false\"")
       | NONE   => error ("parameter " ^ quote name ^
           " must be assigned a value")
     (* (string * string) list * string -> int *)
     fun read_int (parms, name) =
       case AList.lookup (op =) parms name of
-        SOME s => (case Int.fromString s of
-          SOME i => i
-        | NONE   => error ("parameter " ^ quote name ^
-          " (value is " ^ quote s ^ ") must be an integer value"))
-      | NONE   => error ("parameter " ^ quote name ^
+        SOME s =>
+          (case Int.fromString s of
+            SOME i => i
+          | NONE   => error ("parameter " ^ quote name ^
+            " (value is " ^ quote s ^ ") must be an integer value"))
+      | NONE => error ("parameter " ^ quote name ^
           " must be assigned a value")
     (* (string * string) list * string -> string *)
     fun read_string (parms, name) =
       case AList.lookup (op =) parms name of
         SOME s => s
-      | NONE   => error ("parameter " ^ quote name ^
+      | NONE => error ("parameter " ^ quote name ^
         " must be assigned a value")
     (* 'override' first, defaults last: *)
     (* (string * string) list *)
     val allparams = override @ (get_default_params thy)
     (* int *)
-    val minsize   = read_int (allparams, "minsize")
-    val maxsize   = read_int (allparams, "maxsize")
-    val maxvars   = read_int (allparams, "maxvars")
-    val maxtime   = read_int (allparams, "maxtime")
+    val minsize = read_int (allparams, "minsize")
+    val maxsize = read_int (allparams, "maxsize")
+    val maxvars = read_int (allparams, "maxvars")
+    val maxtime = read_int (allparams, "maxtime")
     (* string *)
     val satsolver = read_string (allparams, "satsolver")
     val no_assms = read_bool (allparams, "no_assms")
@@ -405,7 +408,7 @@
     (* TODO: it is currently not possible to specify a size for a type    *)
     (*       whose name is one of the other parameters (e.g. 'maxvars')   *)
     (* (string * int) list *)
-    val sizes     = map_filter
+    val sizes = map_filter
       (fn (name, value) => Option.map (pair name) (Int.fromString value))
       (filter (fn (name, _) => name<>"minsize" andalso name<>"maxsize"
         andalso name<>"maxvars" andalso name<>"maxtime"
@@ -420,25 +423,25 @@
 (* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL       *)
 (* ------------------------------------------------------------------------- *)
 
-  fun typ_of_dtyp descr typ_assoc (Datatype_Aux.DtTFree a) =
-    (* replace a 'DtTFree' variable by the associated type *)
-    the (AList.lookup (op =) typ_assoc (Datatype_Aux.DtTFree a))
-    | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtType (s, ds)) =
-    Type (s, map (typ_of_dtyp descr typ_assoc) ds)
-    | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtRec i) =
-    let
-      val (s, ds, _) = the (AList.lookup (op =) descr i)
-    in
+fun typ_of_dtyp descr typ_assoc (Datatype_Aux.DtTFree a) =
+      (* replace a 'DtTFree' variable by the associated type *)
+      the (AList.lookup (op =) typ_assoc (Datatype_Aux.DtTFree a))
+  | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtType (s, ds)) =
       Type (s, map (typ_of_dtyp descr typ_assoc) ds)
-    end;
+  | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtRec i) =
+      let
+        val (s, ds, _) = the (AList.lookup (op =) descr i)
+      in
+        Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+      end;
 
 (* ------------------------------------------------------------------------- *)
 (* close_form: universal closure over schematic variables in 't'             *)
 (* ------------------------------------------------------------------------- *)
 
-  (* Term.term -> Term.term *)
+(* Term.term -> Term.term *)
 
-  fun close_form t =
+fun close_form t =
   let
     (* (Term.indexname * Term.typ) list *)
     val vars = sort_wrt (fst o fst) (map dest_Var (OldTerm.term_vars t))
@@ -455,9 +458,9 @@
 (*                    denotes membership to an axiomatic type class          *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string * Term.typ -> bool *)
+(* theory -> string * Term.typ -> bool *)
 
-  fun is_const_of_class thy (s, T) =
+fun is_const_of_class thy (s, T) =
   let
     val class_const_names = map Logic.const_of_class (Sign.all_classes thy)
   in
@@ -471,28 +474,26 @@
 (*                     of an inductive datatype in 'thy'                     *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string * Term.typ -> bool *)
+(* theory -> string * Term.typ -> bool *)
 
-  fun is_IDT_constructor thy (s, T) =
-    (case body_type T of
-      Type (s', _) =>
+fun is_IDT_constructor thy (s, T) =
+  (case body_type T of
+    Type (s', _) =>
       (case Datatype.get_constrs thy s' of
         SOME constrs =>
-        List.exists (fn (cname, cty) =>
-          cname = s andalso Sign.typ_instance thy (T, cty)) constrs
-      | NONE =>
-        false)
-    | _  =>
-      false);
+          List.exists (fn (cname, cty) =>
+            cname = s andalso Sign.typ_instance thy (T, cty)) constrs
+      | NONE => false)
+  | _  => false);
 
 (* ------------------------------------------------------------------------- *)
 (* is_IDT_recursor: returns 'true' iff 'Const (s, T)' is the recursion       *)
 (*                  operator of an inductive datatype in 'thy'               *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string * Term.typ -> bool *)
+(* theory -> string * Term.typ -> bool *)
 
-  fun is_IDT_recursor thy (s, T) =
+fun is_IDT_recursor thy (s, T) =
   let
     val rec_names = Symtab.fold (append o #rec_names o snd)
       (Datatype.get_all thy) []
@@ -506,12 +507,12 @@
 (* norm_rhs: maps  f ?t1 ... ?tn == rhs  to  %t1...tn. rhs                   *)
 (* ------------------------------------------------------------------------- *)
 
-  fun norm_rhs eqn =
+fun norm_rhs eqn =
   let
     fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
-      | lambda v t                      = raise TERM ("lambda", [v, t])
+      | lambda v t = raise TERM ("lambda", [v, t])
     val (lhs, rhs) = Logic.dest_equals eqn
-    val (_, args)  = Term.strip_comb lhs
+    val (_, args) = Term.strip_comb lhs
   in
     fold lambda (rev args) rhs
   end
@@ -520,31 +521,31 @@
 (* get_def: looks up the definition of a constant                            *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string * Term.typ -> (string * Term.term) option *)
+(* theory -> string * Term.typ -> (string * Term.term) option *)
 
-  fun get_def thy (s, T) =
+fun get_def thy (s, T) =
   let
     (* (string * Term.term) list -> (string * Term.term) option *)
     fun get_def_ax [] = NONE
       | get_def_ax ((axname, ax) :: axioms) =
-      (let
-        val (lhs, _) = Logic.dest_equals ax  (* equations only *)
-        val c        = Term.head_of lhs
-        val (s', T') = Term.dest_Const c
-      in
-        if s=s' then
-          let
-            val typeSubs = Sign.typ_match thy (T', T) Vartab.empty
-            val ax'      = monomorphic_term typeSubs ax
-            val rhs      = norm_rhs ax'
+          (let
+            val (lhs, _) = Logic.dest_equals ax  (* equations only *)
+            val c        = Term.head_of lhs
+            val (s', T') = Term.dest_Const c
           in
-            SOME (axname, rhs)
-          end
-        else
-          get_def_ax axioms
-      end handle ERROR _         => get_def_ax axioms
-               | TERM _          => get_def_ax axioms
-               | Type.TYPE_MATCH => get_def_ax axioms)
+            if s=s' then
+              let
+                val typeSubs = Sign.typ_match thy (T', T) Vartab.empty
+                val ax'      = monomorphic_term typeSubs ax
+                val rhs      = norm_rhs ax'
+              in
+                SOME (axname, rhs)
+              end
+            else
+              get_def_ax axioms
+          end handle ERROR _         => get_def_ax axioms
+                   | TERM _          => get_def_ax axioms
+                   | Type.TYPE_MATCH => get_def_ax axioms)
   in
     get_def_ax (Theory.all_axioms_of thy)
   end;
@@ -553,43 +554,42 @@
 (* get_typedef: looks up the definition of a type, as created by "typedef"   *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> Term.typ -> (string * Term.term) option *)
+(* theory -> Term.typ -> (string * Term.term) option *)
 
-  fun get_typedef thy T =
+fun get_typedef thy T =
   let
     (* (string * Term.term) list -> (string * Term.term) option *)
     fun get_typedef_ax [] = NONE
       | get_typedef_ax ((axname, ax) :: axioms) =
-      (let
-        (* Term.term -> Term.typ option *)
-        fun type_of_type_definition (Const (s', T')) =
-          if s'= @{const_name type_definition} then
-            SOME T'
-          else
-            NONE
-          | type_of_type_definition (Free _)           = NONE
-          | type_of_type_definition (Var _)            = NONE
-          | type_of_type_definition (Bound _)          = NONE
-          | type_of_type_definition (Abs (_, _, body)) =
-          type_of_type_definition body
-          | type_of_type_definition (t1 $ t2)          =
-          (case type_of_type_definition t1 of
-            SOME x => SOME x
-          | NONE   => type_of_type_definition t2)
-      in
-        case type_of_type_definition ax of
-          SOME T' =>
-          let
-            val T''      = (domain_type o domain_type) T'
-            val typeSubs = Sign.typ_match thy (T'', T) Vartab.empty
+          (let
+            (* Term.term -> Term.typ option *)
+            fun type_of_type_definition (Const (s', T')) =
+                  if s'= @{const_name type_definition} then
+                    SOME T'
+                  else
+                    NONE
+              | type_of_type_definition (Free _) = NONE
+              | type_of_type_definition (Var _) = NONE
+              | type_of_type_definition (Bound _) = NONE
+              | type_of_type_definition (Abs (_, _, body)) =
+                  type_of_type_definition body
+              | type_of_type_definition (t1 $ t2) =
+                  (case type_of_type_definition t1 of
+                    SOME x => SOME x
+                  | NONE => type_of_type_definition t2)
           in
-            SOME (axname, monomorphic_term typeSubs ax)
-          end
-        | NONE =>
-          get_typedef_ax axioms
-      end handle ERROR _         => get_typedef_ax axioms
-               | TERM _          => get_typedef_ax axioms
-               | Type.TYPE_MATCH => get_typedef_ax axioms)
+            case type_of_type_definition ax of
+              SOME T' =>
+                let
+                  val T''      = (domain_type o domain_type) T'
+                  val typeSubs = Sign.typ_match thy (T'', T) Vartab.empty
+                in
+                  SOME (axname, monomorphic_term typeSubs ax)
+                end
+            | NONE => get_typedef_ax axioms
+          end handle ERROR _         => get_typedef_ax axioms
+                   | TERM _          => get_typedef_ax axioms
+                   | Type.TYPE_MATCH => get_typedef_ax axioms)
   in
     get_typedef_ax (Theory.all_axioms_of thy)
   end;
@@ -599,9 +599,9 @@
 (*               created by the "axclass" command                            *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> string -> (string * Term.term) option *)
+(* theory -> string -> (string * Term.term) option *)
 
-  fun get_classdef thy class =
+fun get_classdef thy class =
   let
     val axname = class ^ "_class_def"
   in
@@ -617,15 +617,15 @@
 (*              that definition does not need to be unfolded                 *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> Term.term -> Term.term *)
+(* theory -> Term.term -> Term.term *)
 
-  (* Note: we could intertwine unfolding of constants and beta-(eta-)       *)
-  (*       normalization; this would save some unfolding for terms where    *)
-  (*       constants are eliminated by beta-reduction (e.g. 'K c1 c2').  On *)
-  (*       the other hand, this would cause additional work for terms where *)
-  (*       constants are duplicated by beta-reduction (e.g. 'S c1 c2 c3').  *)
+(* Note: we could intertwine unfolding of constants and beta-(eta-)       *)
+(*       normalization; this would save some unfolding for terms where    *)
+(*       constants are eliminated by beta-reduction (e.g. 'K c1 c2').  On *)
+(*       the other hand, this would cause additional work for terms where *)
+(*       constants are duplicated by beta-reduction (e.g. 'S c1 c2 c3').  *)
 
-  fun unfold_defs thy t =
+fun unfold_defs thy t =
   let
     (* Term.term -> Term.term *)
     fun unfold_loop t =
@@ -658,13 +658,13 @@
       | Const (@{const_name Finite_Set.card}, _) => t
       | Const (@{const_name Finite_Set.finite}, _) => t
       | Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ bool}])])) => t
+          Type ("fun", [@{typ nat}, @{typ bool}])])) => t
       | Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
       | Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
       | Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
       | Const (@{const_name List.append}, _) => t
 (* UNSOUND
       | Const (@{const_name lfp}, _) => t
@@ -674,27 +674,28 @@
       | Const (@{const_name snd}, _) => t
       (* simply-typed lambda calculus *)
       | Const (s, T) =>
-        (if is_IDT_constructor thy (s, T)
-          orelse is_IDT_recursor thy (s, T) then
-          t  (* do not unfold IDT constructors/recursors *)
-        (* unfold the constant if there is a defining equation *)
-        else case get_def thy (s, T) of
-          SOME (axname, rhs) =>
-          (* Note: if the term to be unfolded (i.e. 'Const (s, T)')  *)
-          (* occurs on the right-hand side of the equation, i.e. in  *)
-          (* 'rhs', we must not use this equation to unfold, because *)
-          (* that would loop.  Here would be the right place to      *)
-          (* check this.  However, getting this really right seems   *)
-          (* difficult because the user may state arbitrary axioms,  *)
-          (* which could interact with overloading to create loops.  *)
-          ((*tracing (" unfolding: " ^ axname);*)
-           unfold_loop rhs)
-        | NONE => t)
-      | Free _           => t
-      | Var _            => t
-      | Bound _          => t
+          (if is_IDT_constructor thy (s, T)
+            orelse is_IDT_recursor thy (s, T) then
+            t  (* do not unfold IDT constructors/recursors *)
+          (* unfold the constant if there is a defining equation *)
+          else
+            case get_def thy (s, T) of
+              SOME (axname, rhs) =>
+              (* Note: if the term to be unfolded (i.e. 'Const (s, T)')  *)
+              (* occurs on the right-hand side of the equation, i.e. in  *)
+              (* 'rhs', we must not use this equation to unfold, because *)
+              (* that would loop.  Here would be the right place to      *)
+              (* check this.  However, getting this really right seems   *)
+              (* difficult because the user may state arbitrary axioms,  *)
+              (* which could interact with overloading to create loops.  *)
+              ((*tracing (" unfolding: " ^ axname);*)
+               unfold_loop rhs)
+            | NONE => t)
+      | Free _ => t
+      | Var _ => t
+      | Bound _ => t
       | Abs (s, T, body) => Abs (s, T, unfold_loop body)
-      | t1 $ t2          => (unfold_loop t1) $ (unfold_loop t2)
+      | t1 $ t2 => (unfold_loop t1) $ (unfold_loop t2)
     val result = Envir.beta_eta_contract (unfold_loop t)
   in
     result
@@ -705,27 +706,27 @@
 (*                 versions of) all HOL axioms that are relevant w.r.t 't'   *)
 (* ------------------------------------------------------------------------- *)
 
-  (* Note: to make the collection of axioms more easily extensible, this    *)
-  (*       function could be based on user-supplied "axiom collectors",     *)
-  (*       similar to 'interpret'/interpreters or 'print'/printers          *)
+(* Note: to make the collection of axioms more easily extensible, this    *)
+(*       function could be based on user-supplied "axiom collectors",     *)
+(*       similar to 'interpret'/interpreters or 'print'/printers          *)
 
-  (* Note: currently we use "inverse" functions to the definitional         *)
-  (*       mechanisms provided by Isabelle/HOL, e.g. for "axclass",         *)
-  (*       "typedef", "definition".  A more general approach could consider *)
-  (*       *every* axiom of the theory and collect it if it has a constant/ *)
-  (*       type/typeclass in common with the term 't'.                      *)
+(* Note: currently we use "inverse" functions to the definitional         *)
+(*       mechanisms provided by Isabelle/HOL, e.g. for "axclass",         *)
+(*       "typedef", "definition".  A more general approach could consider *)
+(*       *every* axiom of the theory and collect it if it has a constant/ *)
+(*       type/typeclass in common with the term 't'.                      *)
 
-  (* theory -> Term.term -> Term.term list *)
+(* theory -> Term.term -> Term.term list *)
 
-  (* Which axioms are "relevant" for a particular term/type goes hand in    *)
-  (* hand with the interpretation of that term/type by its interpreter (see *)
-  (* way below): if the interpretation respects an axiom anyway, the axiom  *)
-  (* does not need to be added as a constraint here.                        *)
+(* Which axioms are "relevant" for a particular term/type goes hand in    *)
+(* hand with the interpretation of that term/type by its interpreter (see *)
+(* way below): if the interpretation respects an axiom anyway, the axiom  *)
+(* does not need to be added as a constraint here.                        *)
 
-  (* To avoid collecting the same axiom multiple times, we use an           *)
-  (* accumulator 'axs' which contains all axioms collected so far.          *)
+(* To avoid collecting the same axiom multiple times, we use an           *)
+(* accumulator 'axs' which contains all axioms collected so far.          *)
 
-  fun collect_axioms thy t =
+fun collect_axioms thy t =
   let
     val _ = tracing "Adding axioms..."
     val axioms = Theory.all_axioms_of thy
@@ -782,7 +783,7 @@
         | NONE =>
           (case get_typedef thy T of
             SOME (axname, ax) =>
-            collect_this_axiom (axname, ax) axs
+              collect_this_axiom (axname, ax) axs
           | NONE =>
             (* unspecified type, perhaps introduced with "typedecl" *)
             (* at least collect relevant type axioms for the argument types *)
@@ -808,19 +809,19 @@
       | Const (@{const_name False}, _) => axs
       | Const (@{const_name undefined}, T) => collect_type_axioms T axs
       | Const (@{const_name The}, T) =>
-        let
-          val ax = specialize_type thy (@{const_name The}, T)
-            (the (AList.lookup (op =) axioms "HOL.the_eq_trivial"))
-        in
-          collect_this_axiom ("HOL.the_eq_trivial", ax) axs
-        end
+          let
+            val ax = specialize_type thy (@{const_name The}, T)
+              (the (AList.lookup (op =) axioms "HOL.the_eq_trivial"))
+          in
+            collect_this_axiom ("HOL.the_eq_trivial", ax) axs
+          end
       | Const (@{const_name Hilbert_Choice.Eps}, T) =>
-        let
-          val ax = specialize_type thy (@{const_name Hilbert_Choice.Eps}, T)
-            (the (AList.lookup (op =) axioms "Hilbert_Choice.someI"))
-        in
-          collect_this_axiom ("Hilbert_Choice.someI", ax) axs
-        end
+          let
+            val ax = specialize_type thy (@{const_name Hilbert_Choice.Eps}, T)
+              (the (AList.lookup (op =) axioms "Hilbert_Choice.someI"))
+          in
+            collect_this_axiom ("Hilbert_Choice.someI", ax) axs
+          end
       | Const (@{const_name All}, T) => collect_type_axioms T axs
       | Const (@{const_name Ex}, T) => collect_type_axioms T axs
       | Const (@{const_name HOL.eq}, T) => collect_type_axioms T axs
@@ -898,70 +899,70 @@
 (*               and all mutually recursive IDTs are considered.             *)
 (* ------------------------------------------------------------------------- *)
 
-  fun ground_types thy t =
+fun ground_types thy t =
   let
     fun collect_types T acc =
       (case T of
         Type ("fun", [T1, T2]) => collect_types T1 (collect_types T2 acc)
-      | Type ("prop", [])      => acc
-      | Type (s, Ts)           =>
-        (case Datatype.get_info thy s of
-          SOME info =>  (* inductive datatype *)
-          let
-            val index        = #index info
-            val descr        = #descr info
-            val (_, typs, _) = the (AList.lookup (op =) descr index)
-            val typ_assoc    = typs ~~ Ts
-            (* sanity check: every element in 'dtyps' must be a *)
-            (* 'DtTFree'                                        *)
-            val _ = if Library.exists (fn d =>
-              case d of Datatype_Aux.DtTFree _ => false | _ => true) typs then
-              raise REFUTE ("ground_types", "datatype argument (for type "
-                ^ Syntax.string_of_typ_global thy T ^ ") is not a variable")
-            else ()
-            (* required for mutually recursive datatypes; those need to   *)
-            (* be added even if they are an instance of an otherwise non- *)
-            (* recursive datatype                                         *)
-            fun collect_dtyp d acc =
-            let
-              val dT = typ_of_dtyp descr typ_assoc d
-            in
-              case d of
-                Datatype_Aux.DtTFree _ =>
-                collect_types dT acc
-              | Datatype_Aux.DtType (_, ds) =>
-                collect_types dT (fold_rev collect_dtyp ds acc)
-              | Datatype_Aux.DtRec i =>
-                if member (op =) acc dT then
-                  acc  (* prevent infinite recursion *)
-                else
+      | Type ("prop", []) => acc
+      | Type (s, Ts) =>
+          (case Datatype.get_info thy s of
+            SOME info =>  (* inductive datatype *)
+              let
+                val index = #index info
+                val descr = #descr info
+                val (_, typs, _) = the (AList.lookup (op =) descr index)
+                val typ_assoc = typs ~~ Ts
+                (* sanity check: every element in 'dtyps' must be a *)
+                (* 'DtTFree'                                        *)
+                val _ = if Library.exists (fn d =>
+                  case d of Datatype_Aux.DtTFree _ => false | _ => true) typs then
+                  raise REFUTE ("ground_types", "datatype argument (for type "
+                    ^ Syntax.string_of_typ_global thy T ^ ") is not a variable")
+                else ()
+                (* required for mutually recursive datatypes; those need to   *)
+                (* be added even if they are an instance of an otherwise non- *)
+                (* recursive datatype                                         *)
+                fun collect_dtyp d acc =
                   let
-                    val (_, dtyps, dconstrs) = the (AList.lookup (op =) descr i)
-                    (* if the current type is a recursive IDT (i.e. a depth *)
-                    (* is required), add it to 'acc'                        *)
-                    val acc_dT = if Library.exists (fn (_, ds) =>
-                      Library.exists Datatype_Aux.is_rec_type ds) dconstrs then
-                        insert (op =) dT acc
-                      else acc
-                    (* collect argument types *)
-                    val acc_dtyps = fold_rev collect_dtyp dtyps acc_dT
-                    (* collect constructor types *)
-                    val acc_dconstrs = fold_rev collect_dtyp (maps snd dconstrs) acc_dtyps
+                    val dT = typ_of_dtyp descr typ_assoc d
                   in
-                    acc_dconstrs
+                    case d of
+                      Datatype_Aux.DtTFree _ =>
+                      collect_types dT acc
+                    | Datatype_Aux.DtType (_, ds) =>
+                      collect_types dT (fold_rev collect_dtyp ds acc)
+                    | Datatype_Aux.DtRec i =>
+                      if member (op =) acc dT then
+                        acc  (* prevent infinite recursion *)
+                      else
+                        let
+                          val (_, dtyps, dconstrs) = the (AList.lookup (op =) descr i)
+                          (* if the current type is a recursive IDT (i.e. a depth *)
+                          (* is required), add it to 'acc'                        *)
+                          val acc_dT = if Library.exists (fn (_, ds) =>
+                            Library.exists Datatype_Aux.is_rec_type ds) dconstrs then
+                              insert (op =) dT acc
+                            else acc
+                          (* collect argument types *)
+                          val acc_dtyps = fold_rev collect_dtyp dtyps acc_dT
+                          (* collect constructor types *)
+                          val acc_dconstrs = fold_rev collect_dtyp (maps snd dconstrs) acc_dtyps
+                        in
+                          acc_dconstrs
+                        end
                   end
-            end
-          in
-            (* argument types 'Ts' could be added here, but they are also *)
-            (* added by 'collect_dtyp' automatically                      *)
-            collect_dtyp (Datatype_Aux.DtRec index) acc
-          end
-        | NONE =>
-          (* not an inductive datatype, e.g. defined via "typedef" or *)
-          (* "typedecl"                                               *)
-          insert (op =) T (fold collect_types Ts acc))
-      | TFree _                => insert (op =) T acc
-      | TVar _                 => insert (op =) T acc)
+              in
+                (* argument types 'Ts' could be added here, but they are also *)
+                (* added by 'collect_dtyp' automatically                      *)
+                collect_dtyp (Datatype_Aux.DtRec index) acc
+              end
+          | NONE =>
+            (* not an inductive datatype, e.g. defined via "typedef" or *)
+            (* "typedecl"                                               *)
+            insert (op =) T (fold collect_types Ts acc))
+      | TFree _ => insert (op =) T acc
+      | TVar _ => insert (op =) T acc)
   in
     fold_types collect_types t []
   end;
@@ -973,11 +974,11 @@
 (*                list") are identified.                                     *)
 (* ------------------------------------------------------------------------- *)
 
-  (* Term.typ -> string *)
+(* Term.typ -> string *)
 
-  fun string_of_typ (Type (s, _))     = s
-    | string_of_typ (TFree (s, _))    = s
-    | string_of_typ (TVar ((s,_), _)) = s;
+fun string_of_typ (Type (s, _))     = s
+  | string_of_typ (TFree (s, _))    = s
+  | string_of_typ (TVar ((s,_), _)) = s;
 
 (* ------------------------------------------------------------------------- *)
 (* first_universe: returns the "first" (i.e. smallest) universe by assigning *)
@@ -985,9 +986,9 @@
 (*                 'sizes'                                                   *)
 (* ------------------------------------------------------------------------- *)
 
-  (* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
+(* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
 
-  fun first_universe xs sizes minsize =
+fun first_universe xs sizes minsize =
   let
     fun size_of_typ T =
       case AList.lookup (op =) sizes (string_of_typ T) of
@@ -1004,39 +1005,39 @@
 (*                type may have a fixed size given in 'sizes'                *)
 (* ------------------------------------------------------------------------- *)
 
-  (* (Term.typ * int) list -> (string * int) list -> int -> int ->
-    (Term.typ * int) list option *)
+(* (Term.typ * int) list -> (string * int) list -> int -> int ->
+  (Term.typ * int) list option *)
 
-  fun next_universe xs sizes minsize maxsize =
+fun next_universe xs sizes minsize maxsize =
   let
     (* creates the "first" list of length 'len', where the sum of all list *)
     (* elements is 'sum', and the length of the list is 'len'              *)
     (* int -> int -> int -> int list option *)
     fun make_first _ 0 sum =
-      if sum=0 then
-        SOME []
-      else
-        NONE
+          if sum = 0 then
+            SOME []
+          else
+            NONE
       | make_first max len sum =
-      if sum<=max orelse max<0 then
-        Option.map (fn xs' => sum :: xs') (make_first max (len-1) 0)
-      else
-        Option.map (fn xs' => max :: xs') (make_first max (len-1) (sum-max))
+          if sum <= max orelse max < 0 then
+            Option.map (fn xs' => sum :: xs') (make_first max (len-1) 0)
+          else
+            Option.map (fn xs' => max :: xs') (make_first max (len-1) (sum-max))
     (* enumerates all int lists with a fixed length, where 0<=x<='max' for *)
     (* all list elements x (unless 'max'<0)                                *)
     (* int -> int -> int -> int list -> int list option *)
     fun next max len sum [] =
-      NONE
+          NONE
       | next max len sum [x] =
-      (* we've reached the last list element, so there's no shift possible *)
-      make_first max (len+1) (sum+x+1)  (* increment 'sum' by 1 *)
+          (* we've reached the last list element, so there's no shift possible *)
+          make_first max (len+1) (sum+x+1)  (* increment 'sum' by 1 *)
       | next max len sum (x1::x2::xs) =
-      if x1>0 andalso (x2<max orelse max<0) then
-        (* we can shift *)
-        SOME (the (make_first max (len+1) (sum+x1-1)) @ (x2+1) :: xs)
-      else
-        (* continue search *)
-        next max (len+1) (sum+x1) (x2::xs)
+          if x1>0 andalso (x2<max orelse max<0) then
+            (* we can shift *)
+            SOME (the (make_first max (len+1) (sum+x1-1)) @ (x2+1) :: xs)
+          else
+            (* continue search *)
+            next max (len+1) (sum+x1) (x2::xs)
     (* only consider those types for which the size is not fixed *)
     val mutables = filter_out (AList.defined (op =) sizes o string_of_typ o fst) xs
     (* subtract 'minsize' from every size (will be added again at the end) *)
@@ -1044,16 +1045,15 @@
   in
     case next (maxsize-minsize) 0 0 diffs of
       SOME diffs' =>
-      (* merge with those types for which the size is fixed *)
-      SOME (fst (fold_map (fn (T, _) => fn ds =>
-        case AList.lookup (op =) sizes (string_of_typ T) of
-        (* return the fixed size *)
-          SOME n => ((T, n), ds)
-        (* consume the head of 'ds', add 'minsize' *)
-        | NONE   => ((T, minsize + hd ds), tl ds))
-        xs diffs'))
-    | NONE =>
-      NONE
+        (* merge with those types for which the size is fixed *)
+        SOME (fst (fold_map (fn (T, _) => fn ds =>
+          case AList.lookup (op =) sizes (string_of_typ T) of
+          (* return the fixed size *)
+            SOME n => ((T, n), ds)
+          (* consume the head of 'ds', add 'minsize' *)
+          | NONE   => ((T, minsize + hd ds), tl ds))
+          xs diffs'))
+    | NONE => NONE
   end;
 
 (* ------------------------------------------------------------------------- *)
@@ -1061,12 +1061,10 @@
 (*         formula that is true iff the interpretation denotes "true"        *)
 (* ------------------------------------------------------------------------- *)
 
-  (* interpretation -> prop_formula *)
+(* interpretation -> prop_formula *)
 
-  fun toTrue (Leaf [fm, _]) =
-    fm
-    | toTrue _              =
-    raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
+fun toTrue (Leaf [fm, _]) = fm
+  | toTrue _ = raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
 
 (* ------------------------------------------------------------------------- *)
 (* toFalse: converts the interpretation of a Boolean value to a              *)
@@ -1074,12 +1072,10 @@
 (*          denotes "false"                                                  *)
 (* ------------------------------------------------------------------------- *)
 
-  (* interpretation -> prop_formula *)
+(* interpretation -> prop_formula *)
 
-  fun toFalse (Leaf [_, fm]) =
-    fm
-    | toFalse _              =
-    raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
+fun toFalse (Leaf [_, fm]) = fm
+  | toFalse _ = raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
 
 (* ------------------------------------------------------------------------- *)
 (* find_model: repeatedly calls 'interpret' with appropriate parameters,     *)
@@ -1092,10 +1088,11 @@
 (* negate    : if true, find a model that makes 't' false (rather than true) *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> params -> Term.term -> bool -> unit *)
+(* theory -> params -> Term.term -> bool -> unit *)
 
-  fun find_model thy {sizes, minsize, maxsize, maxvars, maxtime, satsolver,
-    no_assms, expect} assm_ts t negate =
+fun find_model thy
+    {sizes, minsize, maxsize, maxvars, maxtime, satsolver, no_assms, expect}
+    assm_ts t negate =
   let
     (* string -> unit *)
     fun check_expect outcome_code =
@@ -1103,141 +1100,142 @@
       else error ("Unexpected outcome: " ^ quote outcome_code ^ ".")
     (* unit -> unit *)
     fun wrapper () =
-    let
-      val timer  = Timer.startRealTimer ()
-      val t = if no_assms then t
-              else if negate then Logic.list_implies (assm_ts, t)
-              else Logic.mk_conjunction_list (t :: assm_ts)
-      val u      = unfold_defs thy t
-      val _      = tracing ("Unfolded term: " ^ Syntax.string_of_term_global thy u)
-      val axioms = collect_axioms thy u
-      (* Term.typ list *)
-      val types = fold (union (op =) o ground_types thy) (u :: axioms) []
-      val _     = tracing ("Ground types: "
-        ^ (if null types then "none."
-           else commas (map (Syntax.string_of_typ_global thy) types)))
-      (* we can only consider fragments of recursive IDTs, so we issue a  *)
-      (* warning if the formula contains a recursive IDT                  *)
-      (* TODO: no warning needed for /positive/ occurrences of IDTs       *)
-      val maybe_spurious = Library.exists (fn
-          Type (s, _) =>
-          (case Datatype.get_info thy s of
-            SOME info =>  (* inductive datatype *)
-            let
-              val index           = #index info
-              val descr           = #descr info
-              val (_, _, constrs) = the (AList.lookup (op =) descr index)
-            in
-              (* recursive datatype? *)
-              Library.exists (fn (_, ds) =>
-                Library.exists Datatype_Aux.is_rec_type ds) constrs
-            end
-          | NONE => false)
-        | _ => false) types
-      val _ = if maybe_spurious then
-          warning ("Term contains a recursive datatype; "
-            ^ "countermodel(s) may be spurious!")
-        else
-          ()
-      (* (Term.typ * int) list -> string *)
-      fun find_model_loop universe =
       let
-        val msecs_spent = Time.toMilliseconds (Timer.checkRealTimer timer)
-        val _ = maxtime = 0 orelse msecs_spent < 1000 * maxtime
-                orelse raise TimeLimit.TimeOut
-        val init_model = (universe, [])
-        val init_args  = {maxvars = maxvars, def_eq = false, next_idx = 1,
-          bounds = [], wellformed = True}
-        val _ = tracing ("Translating term (sizes: "
-          ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
-        (* translate 'u' and all axioms *)
-        val (intrs, (model, args)) = fold_map (fn t' => fn (m, a) =>
+        val timer = Timer.startRealTimer ()
+        val t =
+          if no_assms then t
+          else if negate then Logic.list_implies (assm_ts, t)
+          else Logic.mk_conjunction_list (t :: assm_ts)
+        val u = unfold_defs thy t
+        val _ = tracing ("Unfolded term: " ^ Syntax.string_of_term_global thy u)
+        val axioms = collect_axioms thy u
+        (* Term.typ list *)
+        val types = fold (union (op =) o ground_types thy) (u :: axioms) []
+        val _ = tracing ("Ground types: "
+          ^ (if null types then "none."
+             else commas (map (Syntax.string_of_typ_global thy) types)))
+        (* we can only consider fragments of recursive IDTs, so we issue a  *)
+        (* warning if the formula contains a recursive IDT                  *)
+        (* TODO: no warning needed for /positive/ occurrences of IDTs       *)
+        val maybe_spurious = Library.exists (fn
+            Type (s, _) =>
+              (case Datatype.get_info thy s of
+                SOME info =>  (* inductive datatype *)
+                  let
+                    val index           = #index info
+                    val descr           = #descr info
+                    val (_, _, constrs) = the (AList.lookup (op =) descr index)
+                  in
+                    (* recursive datatype? *)
+                    Library.exists (fn (_, ds) =>
+                      Library.exists Datatype_Aux.is_rec_type ds) constrs
+                  end
+              | NONE => false)
+          | _ => false) types
+        val _ =
+          if maybe_spurious then
+            warning ("Term contains a recursive datatype; "
+              ^ "countermodel(s) may be spurious!")
+          else
+            ()
+        (* (Term.typ * int) list -> string *)
+        fun find_model_loop universe =
           let
-            val (i, m', a') = interpret thy m a t'
+            val msecs_spent = Time.toMilliseconds (Timer.checkRealTimer timer)
+            val _ = maxtime = 0 orelse msecs_spent < 1000 * maxtime
+                    orelse raise TimeLimit.TimeOut
+            val init_model = (universe, [])
+            val init_args  = {maxvars = maxvars, def_eq = false, next_idx = 1,
+              bounds = [], wellformed = True}
+            val _ = tracing ("Translating term (sizes: "
+              ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
+            (* translate 'u' and all axioms *)
+            val (intrs, (model, args)) = fold_map (fn t' => fn (m, a) =>
+              let
+                val (i, m', a') = interpret thy m a t'
+              in
+                (* set 'def_eq' to 'true' *)
+                (i, (m', {maxvars = #maxvars a', def_eq = true,
+                  next_idx = #next_idx a', bounds = #bounds a',
+                  wellformed = #wellformed a'}))
+              end) (u :: axioms) (init_model, init_args)
+            (* make 'u' either true or false, and make all axioms true, and *)
+            (* add the well-formedness side condition                       *)
+            val fm_u = (if negate then toFalse else toTrue) (hd intrs)
+            val fm_ax = PropLogic.all (map toTrue (tl intrs))
+            val fm = PropLogic.all [#wellformed args, fm_ax, fm_u]
+            val _ =
+              (if satsolver = "dpll" orelse satsolver = "enumerate" then
+                warning ("Using SAT solver " ^ quote satsolver ^
+                         "; for better performance, consider installing an \
+                         \external solver.")
+               else ());
+            val solver =
+              SatSolver.invoke_solver satsolver
+              handle Option.Option =>
+                     error ("Unknown SAT solver: " ^ quote satsolver ^
+                            ". Available solvers: " ^
+                            commas (map (quote o fst) (!SatSolver.solvers)) ^ ".")
           in
-            (* set 'def_eq' to 'true' *)
-            (i, (m', {maxvars = #maxvars a', def_eq = true,
-              next_idx = #next_idx a', bounds = #bounds a',
-              wellformed = #wellformed a'}))
-          end) (u :: axioms) (init_model, init_args)
-        (* make 'u' either true or false, and make all axioms true, and *)
-        (* add the well-formedness side condition                       *)
-        val fm_u  = (if negate then toFalse else toTrue) (hd intrs)
-        val fm_ax = PropLogic.all (map toTrue (tl intrs))
-        val fm    = PropLogic.all [#wellformed args, fm_ax, fm_u]
-        val _ =
-          (if satsolver = "dpll" orelse satsolver = "enumerate" then
-            warning ("Using SAT solver " ^ quote satsolver ^
-                     "; for better performance, consider installing an \
-                     \external solver.")
-          else
-            ());
-        val solver =
-          SatSolver.invoke_solver satsolver
-          handle Option.Option =>
-                 error ("Unknown SAT solver: " ^ quote satsolver ^
-                        ". Available solvers: " ^
-                        commas (map (quote o fst) (!SatSolver.solvers)) ^ ".")
-      in
-        priority "Invoking SAT solver...";
-        (case solver fm of
-          SatSolver.SATISFIABLE assignment =>
-          (priority ("*** Model found: ***\n" ^ print_model thy model
-            (fn i => case assignment i of SOME b => b | NONE => true));
-           if maybe_spurious then "potential" else "genuine")
-        | SatSolver.UNSATISFIABLE _ =>
-          (priority "No model exists.";
-          case next_universe universe sizes minsize maxsize of
-            SOME universe' => find_model_loop universe'
-          | NONE           => (priority
-            "Search terminated, no larger universe within the given limits.";
-            "none"))
-        | SatSolver.UNKNOWN =>
-          (priority "No model found.";
-          case next_universe universe sizes minsize maxsize of
-            SOME universe' => find_model_loop universe'
-          | NONE           => (priority
-            "Search terminated, no larger universe within the given limits.";
-            "unknown"))
-        ) handle SatSolver.NOT_CONFIGURED =>
-          (error ("SAT solver " ^ quote satsolver ^ " is not configured.");
-           "unknown")
-      end handle MAXVARS_EXCEEDED =>
-        (priority ("Search terminated, number of Boolean variables ("
-          ^ string_of_int maxvars ^ " allowed) exceeded.");
-          "unknown")
+            priority "Invoking SAT solver...";
+            (case solver fm of
+              SatSolver.SATISFIABLE assignment =>
+                (priority ("*** Model found: ***\n" ^ print_model thy model
+                  (fn i => case assignment i of SOME b => b | NONE => true));
+                 if maybe_spurious then "potential" else "genuine")
+            | SatSolver.UNSATISFIABLE _ =>
+                (priority "No model exists.";
+                case next_universe universe sizes minsize maxsize of
+                  SOME universe' => find_model_loop universe'
+                | NONE => (priority
+                  "Search terminated, no larger universe within the given limits.";
+                  "none"))
+            | SatSolver.UNKNOWN =>
+                (priority "No model found.";
+                case next_universe universe sizes minsize maxsize of
+                  SOME universe' => find_model_loop universe'
+                | NONE           => (priority
+                  "Search terminated, no larger universe within the given limits.";
+                  "unknown"))) handle SatSolver.NOT_CONFIGURED =>
+              (error ("SAT solver " ^ quote satsolver ^ " is not configured.");
+               "unknown")
+          end
+          handle MAXVARS_EXCEEDED =>
+            (priority ("Search terminated, number of Boolean variables ("
+              ^ string_of_int maxvars ^ " allowed) exceeded.");
+              "unknown")
+
         val outcome_code = find_model_loop (first_universe types sizes minsize)
       in
         check_expect outcome_code
       end
-    in
-      (* some parameter sanity checks *)
-      minsize>=1 orelse
-        error ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
-      maxsize>=1 orelse
-        error ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
-      maxsize>=minsize orelse
-        error ("\"maxsize\" (=" ^ string_of_int maxsize ^
-        ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
-      maxvars>=0 orelse
-        error ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
-      maxtime>=0 orelse
-        error ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
-      (* enter loop with or without time limit *)
-      priority ("Trying to find a model that "
-        ^ (if negate then "refutes" else "satisfies") ^ ": "
-        ^ Syntax.string_of_term_global thy t);
-      if maxtime>0 then (
-        TimeLimit.timeLimit (Time.fromSeconds maxtime)
-          wrapper ()
-        handle TimeLimit.TimeOut =>
-          (priority ("Search terminated, time limit (" ^
-              string_of_int maxtime
-              ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.");
-           check_expect "unknown")
-      ) else
+  in
+    (* some parameter sanity checks *)
+    minsize>=1 orelse
+      error ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
+    maxsize>=1 orelse
+      error ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
+    maxsize>=minsize orelse
+      error ("\"maxsize\" (=" ^ string_of_int maxsize ^
+      ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
+    maxvars>=0 orelse
+      error ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
+    maxtime>=0 orelse
+      error ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
+    (* enter loop with or without time limit *)
+    priority ("Trying to find a model that "
+      ^ (if negate then "refutes" else "satisfies") ^ ": "
+      ^ Syntax.string_of_term_global thy t);
+    if maxtime > 0 then (
+      TimeLimit.timeLimit (Time.fromSeconds maxtime)
         wrapper ()
-    end;
+      handle TimeLimit.TimeOut =>
+        (priority ("Search terminated, time limit (" ^
+            string_of_int maxtime
+            ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.");
+         check_expect "unknown")
+    ) else wrapper ()
+  end;
 
 
 (* ------------------------------------------------------------------------- *)
@@ -1250,10 +1248,10 @@
 (*               parameters                                                  *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> (string * string) list -> Term.term list -> Term.term -> unit *)
+(* theory -> (string * string) list -> Term.term list -> Term.term -> unit *)
 
-  fun satisfy_term thy params assm_ts t =
-    find_model thy (actual_params thy params) assm_ts t false;
+fun satisfy_term thy params assm_ts t =
+  find_model thy (actual_params thy params) assm_ts t false;
 
 (* ------------------------------------------------------------------------- *)
 (* refute_term: calls 'find_model' to find a model that refutes 't'          *)
@@ -1261,9 +1259,9 @@
 (*              parameters                                                   *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> (string * string) list -> Term.term list -> Term.term -> unit *)
+(* theory -> (string * string) list -> Term.term list -> Term.term -> unit *)
 
-  fun refute_term thy params assm_ts t =
+fun refute_term thy params assm_ts t =
   let
     (* disallow schematic type variables, since we cannot properly negate  *)
     (* terms containing them (their logical meaning is that there EXISTS a *)
@@ -1293,23 +1291,22 @@
     (* quantified variables.                                             *)
     (* maps  !!x1...xn. !xk...xm. t   to   t  *)
     fun strip_all_body (Const (@{const_name all}, _) $ Abs (_, _, t)) =
-        strip_all_body t
+          strip_all_body t
       | strip_all_body (Const (@{const_name Trueprop}, _) $ t) =
-        strip_all_body t
+          strip_all_body t
       | strip_all_body (Const (@{const_name All}, _) $ Abs (_, _, t)) =
-        strip_all_body t
+          strip_all_body t
       | strip_all_body t = t
     (* maps  !!x1...xn. !xk...xm. t   to   [x1, ..., xn, xk, ..., xm]  *)
     fun strip_all_vars (Const (@{const_name all}, _) $ Abs (a, T, t)) =
-      (a, T) :: strip_all_vars t
+          (a, T) :: strip_all_vars t
       | strip_all_vars (Const (@{const_name Trueprop}, _) $ t) =
-      strip_all_vars t
+          strip_all_vars t
       | strip_all_vars (Const (@{const_name All}, _) $ Abs (a, T, t)) =
-      (a, T) :: strip_all_vars t
-      | strip_all_vars t =
-      [] : (string * typ) list
+          (a, T) :: strip_all_vars t
+      | strip_all_vars t = [] : (string * typ) list
     val strip_t = strip_all_body ex_closure
-    val frees   = Term.rename_wrt_term strip_t (strip_all_vars ex_closure)
+    val frees = Term.rename_wrt_term strip_t (strip_all_vars ex_closure)
     val subst_t = Term.subst_bounds (map Free frees, strip_t)
   in
     find_model thy (actual_params thy params) assm_ts subst_t true
@@ -1319,7 +1316,7 @@
 (* refute_goal                                                               *)
 (* ------------------------------------------------------------------------- *)
 
-  fun refute_goal ctxt params th i =
+fun refute_goal ctxt params th i =
   let
     val t = th |> prop_of
   in
@@ -1346,39 +1343,38 @@
 (*                 variables)                                                *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> Term.typ -> interpretation list *)
+(* theory -> model -> Term.typ -> interpretation list *)
 
-  fun make_constants thy model T =
+fun make_constants thy model T =
   let
     (* returns a list with all unit vectors of length n *)
     (* int -> interpretation list *)
     fun unit_vectors n =
-    let
-      (* returns the k-th unit vector of length n *)
-      (* int * int -> interpretation *)
-      fun unit_vector (k, n) =
-        Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-      (* int -> interpretation list *)
-      fun unit_vectors_loop k =
-        if k>n then [] else unit_vector (k,n) :: unit_vectors_loop (k+1)
-    in
-      unit_vectors_loop 1
-    end
+      let
+        (* returns the k-th unit vector of length n *)
+        (* int * int -> interpretation *)
+        fun unit_vector (k, n) =
+          Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
+        (* int -> interpretation list *)
+        fun unit_vectors_loop k =
+          if k>n then [] else unit_vector (k,n) :: unit_vectors_loop (k+1)
+      in
+        unit_vectors_loop 1
+      end
     (* returns a list of lists, each one consisting of n (possibly *)
     (* identical) elements from 'xs'                               *)
     (* int -> 'a list -> 'a list list *)
-    fun pick_all 1 xs =
-      map single xs
+    fun pick_all 1 xs = map single xs
       | pick_all n xs =
-      let val rec_pick = pick_all (n-1) xs in
-        maps (fn x => map (cons x) rec_pick) xs
-      end
+          let val rec_pick = pick_all (n - 1) xs in
+            maps (fn x => map (cons x) rec_pick) xs
+          end
     (* returns all constant interpretations that have the same tree *)
     (* structure as the interpretation argument                     *)
     (* interpretation -> interpretation list *)
     fun make_constants_intr (Leaf xs) = unit_vectors (length xs)
       | make_constants_intr (Node xs) = map Node (pick_all (length xs)
-      (make_constants_intr (hd xs)))
+          (make_constants_intr (hd xs)))
     (* obtain the interpretation for a variable of type 'T' *)
     val (i, _, _) = interpret thy model {maxvars=0, def_eq=false, next_idx=1,
       bounds=[], wellformed=True} (Free ("dummy", T))
@@ -1390,11 +1386,12 @@
 (* power: 'power (a, b)' computes a^b, for a>=0, b>=0                        *)
 (* ------------------------------------------------------------------------- *)
 
-  (* int * int -> int *)
+(* int * int -> int *)
 
-  fun power (a, 0) = 1
-    | power (a, 1) = a
-    | power (a, b) = let val ab = power(a, b div 2) in
+fun power (a, 0) = 1
+  | power (a, 1) = a
+  | power (a, b) =
+      let val ab = power(a, b div 2) in
         ab * ab * power(a, b mod 2)
       end;
 
@@ -1403,17 +1400,17 @@
 (*               (make_constants T)', but implemented more efficiently)      *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> Term.typ -> int *)
+(* theory -> model -> Term.typ -> int *)
 
-  (* returns 0 for an empty ground type or a function type with empty      *)
-  (* codomain, but fails for a function type with empty domain --          *)
-  (* admissibility of datatype constructor argument types (see "Inductive  *)
-  (* datatypes in HOL - lessons learned ...", S. Berghofer, M. Wenzel,     *)
-  (* TPHOLs 99) ensures that recursive, possibly empty, datatype fragments *)
-  (* never occur as the domain of a function type that is the type of a    *)
-  (* constructor argument                                                  *)
+(* returns 0 for an empty ground type or a function type with empty      *)
+(* codomain, but fails for a function type with empty domain --          *)
+(* admissibility of datatype constructor argument types (see "Inductive  *)
+(* datatypes in HOL - lessons learned ...", S. Berghofer, M. Wenzel,     *)
+(* TPHOLs 99) ensures that recursive, possibly empty, datatype fragments *)
+(* never occur as the domain of a function type that is the type of a    *)
+(* constructor argument                                                  *)
 
-  fun size_of_type thy model T =
+fun size_of_type thy model T =
   let
     (* returns the number of elements that have the same tree structure as a *)
     (* given interpretation                                                  *)
@@ -1430,11 +1427,11 @@
 (* TT/FF: interpretations that denote "true" or "false", respectively        *)
 (* ------------------------------------------------------------------------- *)
 
-  (* interpretation *)
+(* interpretation *)
 
-  val TT = Leaf [True, False];
+val TT = Leaf [True, False];
 
-  val FF = Leaf [False, True];
+val FF = Leaf [False, True];
 
 (* ------------------------------------------------------------------------- *)
 (* make_equality: returns an interpretation that denotes (extensional)       *)
@@ -1447,46 +1444,46 @@
 (*   'not_equal' to another interpretation                                   *)
 (* ------------------------------------------------------------------------- *)
 
-  (* We could in principle represent '=' on a type T by a particular        *)
-  (* interpretation.  However, the size of that interpretation is quadratic *)
-  (* in the size of T.  Therefore comparing the interpretations 'i1' and    *)
-  (* 'i2' directly is more efficient than constructing the interpretation   *)
-  (* for equality on T first, and "applying" this interpretation to 'i1'    *)
-  (* and 'i2' in the usual way (cf. 'interpretation_apply') then.           *)
+(* We could in principle represent '=' on a type T by a particular        *)
+(* interpretation.  However, the size of that interpretation is quadratic *)
+(* in the size of T.  Therefore comparing the interpretations 'i1' and    *)
+(* 'i2' directly is more efficient than constructing the interpretation   *)
+(* for equality on T first, and "applying" this interpretation to 'i1'    *)
+(* and 'i2' in the usual way (cf. 'interpretation_apply') then.           *)
 
-  (* interpretation * interpretation -> interpretation *)
+(* interpretation * interpretation -> interpretation *)
 
-  fun make_equality (i1, i2) =
+fun make_equality (i1, i2) =
   let
     (* interpretation * interpretation -> prop_formula *)
     fun equal (i1, i2) =
       (case i1 of
         Leaf xs =>
-        (case i2 of
-          Leaf ys => PropLogic.dot_product (xs, ys)  (* defined and equal *)
-        | Node _  => raise REFUTE ("make_equality",
-          "second interpretation is higher"))
+          (case i2 of
+            Leaf ys => PropLogic.dot_product (xs, ys)  (* defined and equal *)
+          | Node _  => raise REFUTE ("make_equality",
+            "second interpretation is higher"))
       | Node xs =>
-        (case i2 of
-          Leaf _  => raise REFUTE ("make_equality",
-          "first interpretation is higher")
-        | Node ys => PropLogic.all (map equal (xs ~~ ys))))
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_equality",
+            "first interpretation is higher")
+          | Node ys => PropLogic.all (map equal (xs ~~ ys))))
     (* interpretation * interpretation -> prop_formula *)
     fun not_equal (i1, i2) =
       (case i1 of
         Leaf xs =>
-        (case i2 of
-          (* defined and not equal *)
-          Leaf ys => PropLogic.all ((PropLogic.exists xs)
-          :: (PropLogic.exists ys)
-          :: (map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))
-        | Node _  => raise REFUTE ("make_equality",
-          "second interpretation is higher"))
+          (case i2 of
+            (* defined and not equal *)
+            Leaf ys => PropLogic.all ((PropLogic.exists xs)
+            :: (PropLogic.exists ys)
+            :: (map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))
+          | Node _  => raise REFUTE ("make_equality",
+            "second interpretation is higher"))
       | Node xs =>
-        (case i2 of
-          Leaf _  => raise REFUTE ("make_equality",
-          "first interpretation is higher")
-        | Node ys => PropLogic.exists (map not_equal (xs ~~ ys))))
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_equality",
+            "first interpretation is higher")
+          | Node ys => PropLogic.exists (map not_equal (xs ~~ ys))))
   in
     (* a value may be undefined; therefore 'not_equal' is not just the *)
     (* negation of 'equal'                                             *)
@@ -1502,25 +1499,25 @@
 (* to an undefined interpretation.                                           *)
 (* ------------------------------------------------------------------------- *)
 
-  (* interpretation * interpretation -> interpretation *)
+(* interpretation * interpretation -> interpretation *)
 
-  fun make_def_equality (i1, i2) =
+fun make_def_equality (i1, i2) =
   let
     (* interpretation * interpretation -> prop_formula *)
     fun equal (i1, i2) =
       (case i1 of
         Leaf xs =>
-        (case i2 of
-          (* defined and equal, or both undefined *)
-          Leaf ys => SOr (PropLogic.dot_product (xs, ys),
-          SAnd (PropLogic.all (map SNot xs), PropLogic.all (map SNot ys)))
-        | Node _  => raise REFUTE ("make_def_equality",
-          "second interpretation is higher"))
+          (case i2 of
+            (* defined and equal, or both undefined *)
+            Leaf ys => SOr (PropLogic.dot_product (xs, ys),
+            SAnd (PropLogic.all (map SNot xs), PropLogic.all (map SNot ys)))
+          | Node _  => raise REFUTE ("make_def_equality",
+            "second interpretation is higher"))
       | Node xs =>
-        (case i2 of
-          Leaf _  => raise REFUTE ("make_def_equality",
-          "first interpretation is higher")
-        | Node ys => PropLogic.all (map equal (xs ~~ ys))))
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_def_equality",
+            "first interpretation is higher")
+          | Node ys => PropLogic.all (map equal (xs ~~ ys))))
     (* interpretation *)
     val eq = equal (i1, i2)
   in
@@ -1533,9 +1530,9 @@
 (*                       argument denoted by 'i2'                            *)
 (* ------------------------------------------------------------------------- *)
 
-  (* interpretation * interpretation -> interpretation *)
+(* interpretation * interpretation -> interpretation *)
 
-  fun interpretation_apply (i1, i2) =
+fun interpretation_apply (i1, i2) =
   let
     (* interpretation * interpretation -> interpretation *)
     fun interpretation_disjunction (tr1,tr2) =
@@ -1546,50 +1543,46 @@
       tree_map (map (fn x => SAnd (fm,x))) tr
     (* prop_formula list * interpretation list -> interpretation *)
     fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
-      prop_formula_times_interpretation (fm,tr)
+          prop_formula_times_interpretation (fm,tr)
       | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
-      interpretation_disjunction (prop_formula_times_interpretation (fm,tr),
-        prop_formula_list_dot_product_interpretation_list (fms,trees))
+          interpretation_disjunction (prop_formula_times_interpretation (fm,tr),
+            prop_formula_list_dot_product_interpretation_list (fms,trees))
       | prop_formula_list_dot_product_interpretation_list (_,_) =
-      raise REFUTE ("interpretation_apply", "empty list (in dot product)")
+          raise REFUTE ("interpretation_apply", "empty list (in dot product)")
     (* concatenates 'x' with every list in 'xss', returning a new list of *)
     (* lists                                                              *)
     (* 'a -> 'a list list -> 'a list list *)
-    fun cons_list x xss =
-      map (cons x) xss
+    fun cons_list x xss = map (cons x) xss
     (* returns a list of lists, each one consisting of one element from each *)
     (* element of 'xss'                                                      *)
     (* 'a list list -> 'a list list *)
-    fun pick_all [xs] =
-      map single xs
+    fun pick_all [xs] = map single xs
       | pick_all (xs::xss) =
-      let val rec_pick = pick_all xss in
-        maps (fn x => map (cons x) rec_pick) xs
-      end
-      | pick_all _ =
-      raise REFUTE ("interpretation_apply", "empty list (in pick_all)")
+          let val rec_pick = pick_all xss in
+            maps (fn x => map (cons x) rec_pick) xs
+          end
+      | pick_all _ = raise REFUTE ("interpretation_apply", "empty list (in pick_all)")
     (* interpretation -> prop_formula list *)
-    fun interpretation_to_prop_formula_list (Leaf xs) =
-      xs
+    fun interpretation_to_prop_formula_list (Leaf xs) = xs
       | interpretation_to_prop_formula_list (Node trees) =
-      map PropLogic.all (pick_all
-        (map interpretation_to_prop_formula_list trees))
+          map PropLogic.all (pick_all
+            (map interpretation_to_prop_formula_list trees))
   in
     case i1 of
       Leaf _ =>
-      raise REFUTE ("interpretation_apply", "first interpretation is a leaf")
+        raise REFUTE ("interpretation_apply", "first interpretation is a leaf")
     | Node xs =>
-      prop_formula_list_dot_product_interpretation_list
-        (interpretation_to_prop_formula_list i2, xs)
+        prop_formula_list_dot_product_interpretation_list
+          (interpretation_to_prop_formula_list i2, xs)
   end;
 
 (* ------------------------------------------------------------------------- *)
 (* eta_expand: eta-expands a term 't' by adding 'i' lambda abstractions      *)
 (* ------------------------------------------------------------------------- *)
 
-  (* Term.term -> int -> Term.term *)
+(* Term.term -> int -> Term.term *)
 
-  fun eta_expand t i =
+fun eta_expand t i =
   let
     val Ts = Term.binder_types (Term.fastype_of t)
     val t' = Term.incr_boundvars i t
@@ -1605,167 +1598,163 @@
 (*               their arguments) of the size of the argument types          *)
 (* ------------------------------------------------------------------------- *)
 
-  fun size_of_dtyp thy typ_sizes descr typ_assoc constructors =
-    Integer.sum (map (fn (_, dtyps) =>
-      Integer.prod (map (size_of_type thy (typ_sizes, []) o
-        (typ_of_dtyp descr typ_assoc)) dtyps))
-          constructors);
+fun size_of_dtyp thy typ_sizes descr typ_assoc constructors =
+  Integer.sum (map (fn (_, dtyps) =>
+    Integer.prod (map (size_of_type thy (typ_sizes, []) o
+      (typ_of_dtyp descr typ_assoc)) dtyps))
+        constructors);
 
 
 (* ------------------------------------------------------------------------- *)
 (* INTERPRETERS: Actual Interpreters                                         *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* simply typed lambda calculus: Isabelle's basic term syntax, with type *)
-  (* variables, function types, and propT                                  *)
+(* simply typed lambda calculus: Isabelle's basic term syntax, with type *)
+(* variables, function types, and propT                                  *)
 
-  fun stlc_interpreter thy model args t =
+fun stlc_interpreter thy model args t =
   let
-    val (typs, terms)                                   = model
+    val (typs, terms) = model
     val {maxvars, def_eq, next_idx, bounds, wellformed} = args
     (* Term.typ -> (interpretation * model * arguments) option *)
     fun interpret_groundterm T =
-    let
-      (* unit -> (interpretation * model * arguments) option *)
-      fun interpret_groundtype () =
       let
-        (* the model must specify a size for ground types *)
-        val size = if T = Term.propT then 2
-          else the (AList.lookup (op =) typs T)
-        val next = next_idx+size
-        (* check if 'maxvars' is large enough *)
-        val _    = (if next-1>maxvars andalso maxvars>0 then
-          raise MAXVARS_EXCEEDED else ())
-        (* prop_formula list *)
-        val fms  = map BoolVar (next_idx upto (next_idx+size-1))
-        (* interpretation *)
-        val intr = Leaf fms
-        (* prop_formula list -> prop_formula *)
-        fun one_of_two_false []      = True
-          | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
-          SOr (SNot x, SNot x')) xs), one_of_two_false xs)
-        (* prop_formula *)
-        val wf   = one_of_two_false fms
+        (* unit -> (interpretation * model * arguments) option *)
+        fun interpret_groundtype () =
+          let
+            (* the model must specify a size for ground types *)
+            val size =
+              if T = Term.propT then 2
+              else the (AList.lookup (op =) typs T)
+            val next = next_idx + size
+            (* check if 'maxvars' is large enough *)
+            val _ = (if next - 1 > maxvars andalso maxvars > 0 then
+              raise MAXVARS_EXCEEDED else ())
+            (* prop_formula list *)
+            val fms  = map BoolVar (next_idx upto (next_idx + size - 1))
+            (* interpretation *)
+            val intr = Leaf fms
+            (* prop_formula list -> prop_formula *)
+            fun one_of_two_false [] = True
+              | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
+                  SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+            (* prop_formula *)
+            val wf = one_of_two_false fms
+          in
+            (* extend the model, increase 'next_idx', add well-formedness *)
+            (* condition                                                  *)
+            SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
+              def_eq = def_eq, next_idx = next, bounds = bounds,
+              wellformed = SAnd (wellformed, wf)})
+          end
       in
-        (* extend the model, increase 'next_idx', add well-formedness *)
-        (* condition                                                  *)
-        SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
-          def_eq = def_eq, next_idx = next, bounds = bounds,
-          wellformed = SAnd (wellformed, wf)})
+        case T of
+          Type ("fun", [T1, T2]) =>
+            let
+              (* we create 'size_of_type ... T1' different copies of the        *)
+              (* interpretation for 'T2', which are then combined into a single *)
+              (* new interpretation                                             *)
+              (* make fresh copies, with different variable indices *)
+              (* 'idx': next variable index                         *)
+              (* 'n'  : number of copies                            *)
+              (* int -> int -> (int * interpretation list * prop_formula *)
+              fun make_copies idx 0 = (idx, [], True)
+                | make_copies idx n =
+                    let
+                      val (copy, _, new_args) = interpret thy (typs, [])
+                        {maxvars = maxvars, def_eq = false, next_idx = idx,
+                        bounds = [], wellformed = True} (Free ("dummy", T2))
+                      val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
+                    in
+                      (idx', copy :: copies, SAnd (#wellformed new_args, wf'))
+                    end
+              val (next, copies, wf) = make_copies next_idx
+                (size_of_type thy model T1)
+              (* combine copies into a single interpretation *)
+              val intr = Node copies
+            in
+              (* extend the model, increase 'next_idx', add well-formedness *)
+              (* condition                                                  *)
+              SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
+                def_eq = def_eq, next_idx = next, bounds = bounds,
+                wellformed = SAnd (wellformed, wf)})
+            end
+        | Type _  => interpret_groundtype ()
+        | TFree _ => interpret_groundtype ()
+        | TVar  _ => interpret_groundtype ()
       end
-    in
-      case T of
-        Type ("fun", [T1, T2]) =>
-        let
-          (* we create 'size_of_type ... T1' different copies of the        *)
-          (* interpretation for 'T2', which are then combined into a single *)
-          (* new interpretation                                             *)
-          (* make fresh copies, with different variable indices *)
-          (* 'idx': next variable index                         *)
-          (* 'n'  : number of copies                            *)
-          (* int -> int -> (int * interpretation list * prop_formula *)
-          fun make_copies idx 0 =
-            (idx, [], True)
-            | make_copies idx n =
-            let
-              val (copy, _, new_args) = interpret thy (typs, [])
-                {maxvars = maxvars, def_eq = false, next_idx = idx,
-                bounds = [], wellformed = True} (Free ("dummy", T2))
-              val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
-            in
-              (idx', copy :: copies, SAnd (#wellformed new_args, wf'))
-            end
-          val (next, copies, wf) = make_copies next_idx
-            (size_of_type thy model T1)
-          (* combine copies into a single interpretation *)
-          val intr = Node copies
-        in
-          (* extend the model, increase 'next_idx', add well-formedness *)
-          (* condition                                                  *)
-          SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
-            def_eq = def_eq, next_idx = next, bounds = bounds,
-            wellformed = SAnd (wellformed, wf)})
-        end
-      | Type _  => interpret_groundtype ()
-      | TFree _ => interpret_groundtype ()
-      | TVar  _ => interpret_groundtype ()
-    end
   in
     case AList.lookup (op =) terms t of
       SOME intr =>
-      (* return an existing interpretation *)
-      SOME (intr, model, args)
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
     | NONE =>
-      (case t of
-        Const (_, T)     =>
-        interpret_groundterm T
-      | Free (_, T)      =>
-        interpret_groundterm T
-      | Var (_, T)       =>
-        interpret_groundterm T
-      | Bound i          =>
-        SOME (List.nth (#bounds args, i), model, args)
-      | Abs (x, T, body) =>
-        let
-          (* create all constants of type 'T' *)
-          val constants = make_constants thy model T
-          (* interpret the 'body' separately for each constant *)
-          val (bodies, (model', args')) = fold_map
-            (fn c => fn (m, a) =>
-              let
-                (* add 'c' to 'bounds' *)
-                val (i', m', a') = interpret thy m {maxvars = #maxvars a,
-                  def_eq = #def_eq a, next_idx = #next_idx a,
-                  bounds = (c :: #bounds a), wellformed = #wellformed a} body
-              in
-                (* keep the new model m' and 'next_idx' and 'wellformed', *)
-                (* but use old 'bounds'                                   *)
-                (i', (m', {maxvars = maxvars, def_eq = def_eq,
-                  next_idx = #next_idx a', bounds = bounds,
-                  wellformed = #wellformed a'}))
-              end)
-            constants (model, args)
-        in
-          SOME (Node bodies, model', args')
-        end
-      | t1 $ t2 =>
-        let
-          (* interpret 't1' and 't2' separately *)
-          val (intr1, model1, args1) = interpret thy model args t1
-          val (intr2, model2, args2) = interpret thy model1 args1 t2
-        in
-          SOME (interpretation_apply (intr1, intr2), model2, args2)
-        end)
+        (case t of
+          Const (_, T) => interpret_groundterm T
+        | Free (_, T) => interpret_groundterm T
+        | Var (_, T) => interpret_groundterm T
+        | Bound i => SOME (List.nth (#bounds args, i), model, args)
+        | Abs (x, T, body) =>
+            let
+              (* create all constants of type 'T' *)
+              val constants = make_constants thy model T
+              (* interpret the 'body' separately for each constant *)
+              val (bodies, (model', args')) = fold_map
+                (fn c => fn (m, a) =>
+                  let
+                    (* add 'c' to 'bounds' *)
+                    val (i', m', a') = interpret thy m {maxvars = #maxvars a,
+                      def_eq = #def_eq a, next_idx = #next_idx a,
+                      bounds = (c :: #bounds a), wellformed = #wellformed a} body
+                  in
+                    (* keep the new model m' and 'next_idx' and 'wellformed', *)
+                    (* but use old 'bounds'                                   *)
+                    (i', (m', {maxvars = maxvars, def_eq = def_eq,
+                      next_idx = #next_idx a', bounds = bounds,
+                      wellformed = #wellformed a'}))
+                  end)
+                constants (model, args)
+            in
+              SOME (Node bodies, model', args')
+            end
+        | t1 $ t2 =>
+            let
+              (* interpret 't1' and 't2' separately *)
+              val (intr1, model1, args1) = interpret thy model args t1
+              val (intr2, model2, args2) = interpret thy model1 args1 t2
+            in
+              SOME (interpretation_apply (intr1, intr2), model2, args2)
+            end)
   end;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  fun Pure_interpreter thy model args t =
-    case t of
-      Const (@{const_name all}, _) $ t1 =>
+fun Pure_interpreter thy model args t =
+  case t of
+    Const (@{const_name all}, _) $ t1 =>
       let
         val (i, m, a) = interpret thy model args t1
       in
         case i of
           Node xs =>
-          (* 3-valued logic *)
-          let
-            val fmTrue  = PropLogic.all (map toTrue xs)
-            val fmFalse = PropLogic.exists (map toFalse xs)
-          in
-            SOME (Leaf [fmTrue, fmFalse], m, a)
-          end
+            (* 3-valued logic *)
+            let
+              val fmTrue  = PropLogic.all (map toTrue xs)
+              val fmFalse = PropLogic.exists (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
         | _ =>
           raise REFUTE ("Pure_interpreter",
             "\"all\" is followed by a non-function")
       end
-    | Const (@{const_name all}, _) =>
+  | Const (@{const_name all}, _) =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name "=="}, _) $ t1 $ t2 =>
+  | Const (@{const_name "=="}, _) $ t1 $ t2 =>
       let
         val (i1, m1, a1) = interpret thy model args t1
         val (i2, m2, a2) = interpret thy m1 a1 t2
@@ -1774,11 +1763,11 @@
         SOME ((if #def_eq args then make_def_equality else make_equality)
           (i1, i2), m2, a2)
       end
-    | Const (@{const_name "=="}, _) $ t1 =>
+  | Const (@{const_name "=="}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name "=="}, _) =>
+  | Const (@{const_name "=="}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
-    | Const (@{const_name "==>"}, _) $ t1 $ t2 =>
+  | Const (@{const_name "==>"}, _) $ t1 $ t2 =>
       (* 3-valued logic *)
       let
         val (i1, m1, a1) = interpret thy model args t1
@@ -1788,80 +1777,80 @@
       in
         SOME (Leaf [fmTrue, fmFalse], m2, a2)
       end
-    | Const (@{const_name "==>"}, _) $ t1 =>
+  | Const (@{const_name "==>"}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name "==>"}, _) =>
+  | Const (@{const_name "==>"}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
-    | _ => NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  fun HOLogic_interpreter thy model args t =
-  (* Providing interpretations directly is more efficient than unfolding the *)
-  (* logical constants.  In HOL however, logical constants can themselves be *)
-  (* arguments.  They are then translated using eta-expansion.               *)
-    case t of
-      Const (@{const_name Trueprop}, _) =>
+fun HOLogic_interpreter thy model args t =
+(* Providing interpretations directly is more efficient than unfolding the *)
+(* logical constants.  In HOL however, logical constants can themselves be *)
+(* arguments.  They are then translated using eta-expansion.               *)
+  case t of
+    Const (@{const_name Trueprop}, _) =>
       SOME (Node [TT, FF], model, args)
-    | Const (@{const_name Not}, _) =>
+  | Const (@{const_name Not}, _) =>
       SOME (Node [FF, TT], model, args)
-    (* redundant, since 'True' is also an IDT constructor *)
-    | Const (@{const_name True}, _) =>
+  (* redundant, since 'True' is also an IDT constructor *)
+  | Const (@{const_name True}, _) =>
       SOME (TT, model, args)
-    (* redundant, since 'False' is also an IDT constructor *)
-    | Const (@{const_name False}, _) =>
+  (* redundant, since 'False' is also an IDT constructor *)
+  | Const (@{const_name False}, _) =>
       SOME (FF, model, args)
-    | Const (@{const_name All}, _) $ t1 =>  (* similar to "all" (Pure) *)
+  | Const (@{const_name All}, _) $ t1 =>  (* similar to "all" (Pure) *)
       let
         val (i, m, a) = interpret thy model args t1
       in
         case i of
           Node xs =>
-          (* 3-valued logic *)
-          let
-            val fmTrue  = PropLogic.all (map toTrue xs)
-            val fmFalse = PropLogic.exists (map toFalse xs)
-          in
-            SOME (Leaf [fmTrue, fmFalse], m, a)
-          end
+            (* 3-valued logic *)
+            let
+              val fmTrue  = PropLogic.all (map toTrue xs)
+              val fmFalse = PropLogic.exists (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
         | _ =>
           raise REFUTE ("HOLogic_interpreter",
             "\"All\" is followed by a non-function")
       end
-    | Const (@{const_name All}, _) =>
+  | Const (@{const_name All}, _) =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name Ex}, _) $ t1 =>
+  | Const (@{const_name Ex}, _) $ t1 =>
       let
         val (i, m, a) = interpret thy model args t1
       in
         case i of
           Node xs =>
-          (* 3-valued logic *)
-          let
-            val fmTrue  = PropLogic.exists (map toTrue xs)
-            val fmFalse = PropLogic.all (map toFalse xs)
-          in
-            SOME (Leaf [fmTrue, fmFalse], m, a)
-          end
+            (* 3-valued logic *)
+            let
+              val fmTrue  = PropLogic.exists (map toTrue xs)
+              val fmFalse = PropLogic.all (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
         | _ =>
           raise REFUTE ("HOLogic_interpreter",
             "\"Ex\" is followed by a non-function")
       end
-    | Const (@{const_name Ex}, _) =>
+  | Const (@{const_name Ex}, _) =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>  (* similar to "==" (Pure) *)
+  | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>  (* similar to "==" (Pure) *)
       let
         val (i1, m1, a1) = interpret thy model args t1
         val (i2, m2, a2) = interpret thy m1 a1 t2
       in
         SOME (make_equality (i1, i2), m2, a2)
       end
-    | Const (@{const_name HOL.eq}, _) $ t1 =>
+  | Const (@{const_name HOL.eq}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name HOL.eq}, _) =>
+  | Const (@{const_name HOL.eq}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
-    | Const (@{const_name HOL.conj}, _) $ t1 $ t2 =>
+  | Const (@{const_name HOL.conj}, _) $ t1 $ t2 =>
       (* 3-valued logic *)
       let
         val (i1, m1, a1) = interpret thy model args t1
@@ -1871,14 +1860,14 @@
       in
         SOME (Leaf [fmTrue, fmFalse], m2, a2)
       end
-    | Const (@{const_name HOL.conj}, _) $ t1 =>
+  | Const (@{const_name HOL.conj}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name HOL.conj}, _) =>
+  | Const (@{const_name HOL.conj}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
       (* this would make "undef" propagate, even for formulae like *)
       (* "False & undef":                                          *)
       (* SOME (Node [Node [TT, FF], Node [FF, FF]], model, args) *)
-    | Const (@{const_name HOL.disj}, _) $ t1 $ t2 =>
+  | Const (@{const_name HOL.disj}, _) $ t1 $ t2 =>
       (* 3-valued logic *)
       let
         val (i1, m1, a1) = interpret thy model args t1
@@ -1888,14 +1877,14 @@
       in
         SOME (Leaf [fmTrue, fmFalse], m2, a2)
       end
-    | Const (@{const_name HOL.disj}, _) $ t1 =>
+  | Const (@{const_name HOL.disj}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name HOL.disj}, _) =>
+  | Const (@{const_name HOL.disj}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
       (* this would make "undef" propagate, even for formulae like *)
       (* "True | undef":                                           *)
       (* SOME (Node [Node [TT, TT], Node [TT, FF]], model, args) *)
-    | Const (@{const_name HOL.implies}, _) $ t1 $ t2 =>  (* similar to "==>" (Pure) *)
+  | Const (@{const_name HOL.implies}, _) $ t1 $ t2 =>  (* similar to "==>" (Pure) *)
       (* 3-valued logic *)
       let
         val (i1, m1, a1) = interpret thy model args t1
@@ -1905,117 +1894,119 @@
       in
         SOME (Leaf [fmTrue, fmFalse], m2, a2)
       end
-    | Const (@{const_name HOL.implies}, _) $ t1 =>
+  | Const (@{const_name HOL.implies}, _) $ t1 =>
       SOME (interpret thy model args (eta_expand t 1))
-    | Const (@{const_name HOL.implies}, _) =>
+  | Const (@{const_name HOL.implies}, _) =>
       SOME (interpret thy model args (eta_expand t 2))
       (* this would make "undef" propagate, even for formulae like *)
       (* "False --> undef":                                        *)
       (* SOME (Node [Node [TT, FF], Node [TT, TT]], model, args) *)
-    | _ => NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* interprets variables and constants whose type is an IDT (this is        *)
-  (* relatively easy and merely requires us to compute the size of the IDT); *)
-  (* constructors of IDTs however are properly interpreted by                *)
-  (* 'IDT_constructor_interpreter'                                           *)
+(* interprets variables and constants whose type is an IDT (this is        *)
+(* relatively easy and merely requires us to compute the size of the IDT); *)
+(* constructors of IDTs however are properly interpreted by                *)
+(* 'IDT_constructor_interpreter'                                           *)
 
-  fun IDT_interpreter thy model args t =
+fun IDT_interpreter thy model args t =
   let
     val (typs, terms) = model
     (* Term.typ -> (interpretation * model * arguments) option *)
     fun interpret_term (Type (s, Ts)) =
-      (case Datatype.get_info thy s of
-        SOME info =>  (* inductive datatype *)
-        let
-          (* int option -- only recursive IDTs have an associated depth *)
-          val depth = AList.lookup (op =) typs (Type (s, Ts))
-          (* sanity check: depth must be at least 0 *)
-          val _ = (case depth of SOME n =>
-            if n<0 then
-              raise REFUTE ("IDT_interpreter", "negative depth")
-            else ()
-            | _ => ())
-        in
-          (* termination condition to avoid infinite recursion *)
-          if depth = (SOME 0) then
-            (* return a leaf of size 0 *)
-            SOME (Leaf [], model, args)
-          else
-            let
-              val index               = #index info
-              val descr               = #descr info
-              val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-              val typ_assoc           = dtyps ~~ Ts
-              (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-              val _ = if Library.exists (fn d =>
-                  case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
-                then
-                  raise REFUTE ("IDT_interpreter",
-                    "datatype argument (for type "
-                    ^ Syntax.string_of_typ_global thy (Type (s, Ts))
-                    ^ ") is not a variable")
-                else ()
-              (* if the model specifies a depth for the current type, *)
-              (* decrement it to avoid infinite recursion             *)
-              val typs'    = case depth of NONE => typs | SOME n =>
-                AList.update (op =) (Type (s, Ts), n-1) typs
-              (* recursively compute the size of the datatype *)
-              val size     = size_of_dtyp thy typs' descr typ_assoc constrs
-              val next_idx = #next_idx args
-              val next     = next_idx+size
-              (* check if 'maxvars' is large enough *)
-              val _        = (if next-1 > #maxvars args andalso
-                #maxvars args > 0 then raise MAXVARS_EXCEEDED else ())
-              (* prop_formula list *)
-              val fms      = map BoolVar (next_idx upto (next_idx+size-1))
-              (* interpretation *)
-              val intr     = Leaf fms
-              (* prop_formula list -> prop_formula *)
-              fun one_of_two_false []      = True
-                | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
-                SOr (SNot x, SNot x')) xs), one_of_two_false xs)
-              (* prop_formula *)
-              val wf       = one_of_two_false fms
-            in
-              (* extend the model, increase 'next_idx', add well-formedness *)
-              (* condition                                                  *)
-              SOME (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args,
-                def_eq = #def_eq args, next_idx = next, bounds = #bounds args,
-                wellformed = SAnd (#wellformed args, wf)})
-            end
-        end
-      | NONE =>  (* not an inductive datatype *)
-        NONE)
+          (case Datatype.get_info thy s of
+            SOME info =>  (* inductive datatype *)
+              let
+                (* int option -- only recursive IDTs have an associated depth *)
+                val depth = AList.lookup (op =) typs (Type (s, Ts))
+                (* sanity check: depth must be at least 0 *)
+                val _ =
+                  (case depth of SOME n =>
+                    if n < 0 then
+                      raise REFUTE ("IDT_interpreter", "negative depth")
+                    else ()
+                  | _ => ())
+              in
+                (* termination condition to avoid infinite recursion *)
+                if depth = (SOME 0) then
+                  (* return a leaf of size 0 *)
+                  SOME (Leaf [], model, args)
+                else
+                  let
+                    val index               = #index info
+                    val descr               = #descr info
+                    val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                    val typ_assoc           = dtyps ~~ Ts
+                    (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                    val _ =
+                      if Library.exists (fn d =>
+                        case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
+                      then
+                        raise REFUTE ("IDT_interpreter",
+                          "datatype argument (for type "
+                          ^ Syntax.string_of_typ_global thy (Type (s, Ts))
+                          ^ ") is not a variable")
+                      else ()
+                    (* if the model specifies a depth for the current type, *)
+                    (* decrement it to avoid infinite recursion             *)
+                    val typs' = case depth of NONE => typs | SOME n =>
+                      AList.update (op =) (Type (s, Ts), n-1) typs
+                    (* recursively compute the size of the datatype *)
+                    val size     = size_of_dtyp thy typs' descr typ_assoc constrs
+                    val next_idx = #next_idx args
+                    val next     = next_idx+size
+                    (* check if 'maxvars' is large enough *)
+                    val _        = (if next-1 > #maxvars args andalso
+                      #maxvars args > 0 then raise MAXVARS_EXCEEDED else ())
+                    (* prop_formula list *)
+                    val fms      = map BoolVar (next_idx upto (next_idx+size-1))
+                    (* interpretation *)
+                    val intr     = Leaf fms
+                    (* prop_formula list -> prop_formula *)
+                    fun one_of_two_false [] = True
+                      | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
+                          SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+                    (* prop_formula *)
+                    val wf = one_of_two_false fms
+                  in
+                    (* extend the model, increase 'next_idx', add well-formedness *)
+                    (* condition                                                  *)
+                    SOME (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args,
+                      def_eq = #def_eq args, next_idx = next, bounds = #bounds args,
+                      wellformed = SAnd (#wellformed args, wf)})
+                  end
+              end
+          | NONE =>  (* not an inductive datatype *)
+              NONE)
       | interpret_term _ =  (* a (free or schematic) type variable *)
-      NONE
+          NONE
   in
     case AList.lookup (op =) terms t of
       SOME intr =>
-      (* return an existing interpretation *)
-      SOME (intr, model, args)
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
     | NONE =>
-      (case t of
-        Free (_, T)  => interpret_term T
-      | Var (_, T)   => interpret_term T
-      | Const (_, T) => interpret_term T
-      | _            => NONE)
+        (case t of
+          Free (_, T) => interpret_term T
+        | Var (_, T) => interpret_term T
+        | Const (_, T) => interpret_term T
+        | _ => NONE)
   end;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* This function imposes an order on the elements of a datatype fragment  *)
-  (* as follows: C_i x_1 ... x_n < C_j y_1 ... y_m iff i < j or             *)
-  (* (x_1, ..., x_n) < (y_1, ..., y_m).  With this order, a constructor is  *)
-  (* a function C_i that maps some argument indices x_1, ..., x_n to the    *)
-  (* datatype element given by index C_i x_1 ... x_n.  The idea remains the *)
-  (* same for recursive datatypes, although the computation of indices gets *)
-  (* a little tricky.                                                       *)
+(* This function imposes an order on the elements of a datatype fragment  *)
+(* as follows: C_i x_1 ... x_n < C_j y_1 ... y_m iff i < j or             *)
+(* (x_1, ..., x_n) < (y_1, ..., y_m).  With this order, a constructor is  *)
+(* a function C_i that maps some argument indices x_1, ..., x_n to the    *)
+(* datatype element given by index C_i x_1 ... x_n.  The idea remains the *)
+(* same for recursive datatypes, although the computation of indices gets *)
+(* a little tricky.                                                       *)
 
-  fun IDT_constructor_interpreter thy model args t =
+fun IDT_constructor_interpreter thy model args t =
   let
     (* returns a list of canonical representations for terms of the type 'T' *)
     (* It would be nice if we could just use 'print' for this, but 'print'   *)
@@ -2023,638 +2014,637 @@
     (* lead to infinite recursion when we have (mutually) recursive IDTs.    *)
     (* (Term.typ * int) list -> Term.typ -> Term.term list *)
     fun canonical_terms typs T =
-      (case T of
-        Type ("fun", [T1, T2]) =>
-        (* 'T2' might contain a recursive IDT, so we cannot use 'print' (at *)
-        (* least not for 'T2'                                               *)
-        let
-          (* returns a list of lists, each one consisting of n (possibly *)
-          (* identical) elements from 'xs'                               *)
-          (* int -> 'a list -> 'a list list *)
-          fun pick_all 1 xs =
-            map single xs
-          | pick_all n xs =
-            let val rec_pick = pick_all (n-1) xs in
-              maps (fn x => map (cons x) rec_pick) xs
+          (case T of
+            Type ("fun", [T1, T2]) =>
+            (* 'T2' might contain a recursive IDT, so we cannot use 'print' (at *)
+            (* least not for 'T2'                                               *)
+            let
+              (* returns a list of lists, each one consisting of n (possibly *)
+              (* identical) elements from 'xs'                               *)
+              (* int -> 'a list -> 'a list list *)
+              fun pick_all 1 xs = map single xs
+                | pick_all n xs =
+                    let val rec_pick = pick_all (n-1) xs in
+                      maps (fn x => map (cons x) rec_pick) xs
+                    end
+              (* ["x1", ..., "xn"] *)
+              val terms1 = canonical_terms typs T1
+              (* ["y1", ..., "ym"] *)
+              val terms2 = canonical_terms typs T2
+              (* [[("x1", "y1"), ..., ("xn", "y1")], ..., *)
+              (*   [("x1", "ym"), ..., ("xn", "ym")]]     *)
+              val functions = map (curry (op ~~) terms1)
+                (pick_all (length terms1) terms2)
+              (* [["(x1, y1)", ..., "(xn, y1)"], ..., *)
+              (*   ["(x1, ym)", ..., "(xn, ym)"]]     *)
+              val pairss = map (map HOLogic.mk_prod) functions
+              (* Term.typ *)
+              val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
+              val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
+              (* Term.term *)
+              val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
+              val HOLogic_insert    =
+                Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
+            in
+              (* functions as graphs, i.e. as a (HOL) set of pairs "(x, y)" *)
+              map (fn ps => fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) ps
+                HOLogic_empty_set) pairss
             end
-          (* ["x1", ..., "xn"] *)
-          val terms1 = canonical_terms typs T1
-          (* ["y1", ..., "ym"] *)
-          val terms2 = canonical_terms typs T2
-          (* [[("x1", "y1"), ..., ("xn", "y1")], ..., *)
-          (*   [("x1", "ym"), ..., ("xn", "ym")]]     *)
-          val functions = map (curry (op ~~) terms1)
-            (pick_all (length terms1) terms2)
-          (* [["(x1, y1)", ..., "(xn, y1)"], ..., *)
-          (*   ["(x1, ym)", ..., "(xn, ym)"]]     *)
-          val pairss = map (map HOLogic.mk_prod) functions
-          (* Term.typ *)
-          val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
-          val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
-          (* Term.term *)
-          val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
-          val HOLogic_insert    =
-            Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
-        in
-          (* functions as graphs, i.e. as a (HOL) set of pairs "(x, y)" *)
-          map (fn ps => fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) ps
-            HOLogic_empty_set) pairss
-        end
       | Type (s, Ts) =>
-        (case Datatype.get_info thy s of
-          SOME info =>
-          (case AList.lookup (op =) typs T of
-            SOME 0 =>
-            (* termination condition to avoid infinite recursion *)
-            []  (* at depth 0, every IDT is empty *)
-          | _ =>
-            let
-              val index               = #index info
-              val descr               = #descr info
-              val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-              val typ_assoc           = dtyps ~~ Ts
-              (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-              val _ = if Library.exists (fn d =>
-                  case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
-                then
-                  raise REFUTE ("IDT_constructor_interpreter",
-                    "datatype argument (for type "
-                    ^ Syntax.string_of_typ_global thy T
-                    ^ ") is not a variable")
-                else ()
-              (* decrement depth for the IDT 'T' *)
-              val typs' = (case AList.lookup (op =) typs T of NONE => typs
-                | SOME n => AList.update (op =) (T, n-1) typs)
-              fun constructor_terms terms [] = terms
-                | constructor_terms terms (d::ds) =
+          (case Datatype.get_info thy s of
+            SOME info =>
+              (case AList.lookup (op =) typs T of
+                SOME 0 =>
+                  (* termination condition to avoid infinite recursion *)
+                  []  (* at depth 0, every IDT is empty *)
+              | _ =>
                 let
-                  val dT = typ_of_dtyp descr typ_assoc d
-                  val d_terms = canonical_terms typs' dT
+                  val index = #index info
+                  val descr = #descr info
+                  val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                  val typ_assoc = dtyps ~~ Ts
+                  (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                  val _ =
+                    if Library.exists (fn d =>
+                      case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
+                    then
+                      raise REFUTE ("IDT_constructor_interpreter",
+                        "datatype argument (for type "
+                        ^ Syntax.string_of_typ_global thy T
+                        ^ ") is not a variable")
+                    else ()
+                  (* decrement depth for the IDT 'T' *)
+                  val typs' =
+                    (case AList.lookup (op =) typs T of NONE => typs
+                    | SOME n => AList.update (op =) (T, n-1) typs)
+                  fun constructor_terms terms [] = terms
+                    | constructor_terms terms (d::ds) =
+                        let
+                          val dT = typ_of_dtyp descr typ_assoc d
+                          val d_terms = canonical_terms typs' dT
+                        in
+                          (* C_i x_1 ... x_n < C_i y_1 ... y_n if *)
+                          (* (x_1, ..., x_n) < (y_1, ..., y_n)    *)
+                          constructor_terms
+                            (map_product (curry op $) terms d_terms) ds
+                        end
                 in
-                  (* C_i x_1 ... x_n < C_i y_1 ... y_n if *)
-                  (* (x_1, ..., x_n) < (y_1, ..., y_n)    *)
-                  constructor_terms
-                    (map_product (curry op $) terms d_terms) ds
-                end
-            in
-              (* C_i ... < C_j ... if i < j *)
-              maps (fn (cname, ctyps) =>
-                let
-                  val cTerm = Const (cname,
-                    map (typ_of_dtyp descr typ_assoc) ctyps ---> T)
-                in
-                  constructor_terms [cTerm] ctyps
-                end) constrs
-            end)
-        | NONE =>
-          (* not an inductive datatype; in this case the argument types in *)
-          (* 'Ts' may not be IDTs either, so 'print' should be safe        *)
+                  (* C_i ... < C_j ... if i < j *)
+                  maps (fn (cname, ctyps) =>
+                    let
+                      val cTerm = Const (cname,
+                        map (typ_of_dtyp descr typ_assoc) ctyps ---> T)
+                    in
+                      constructor_terms [cTerm] ctyps
+                    end) constrs
+                end)
+          | NONE =>
+              (* not an inductive datatype; in this case the argument types in *)
+              (* 'Ts' may not be IDTs either, so 'print' should be safe        *)
+              map (fn intr => print thy (typs, []) T intr (K false))
+                (make_constants thy (typs, []) T))
+      | _ =>  (* TFree ..., TVar ... *)
           map (fn intr => print thy (typs, []) T intr (K false))
             (make_constants thy (typs, []) T))
-      | _ =>  (* TFree ..., TVar ... *)
-        map (fn intr => print thy (typs, []) T intr (K false))
-          (make_constants thy (typs, []) T))
     val (typs, terms) = model
   in
     case AList.lookup (op =) terms t of
       SOME intr =>
-      (* return an existing interpretation *)
-      SOME (intr, model, args)
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
     | NONE =>
-      (case t of
-        Const (s, T) =>
-        (case body_type T of
-          Type (s', Ts') =>
-          (case Datatype.get_info thy s' of
-            SOME info =>  (* body type is an inductive datatype *)
-            let
-              val index               = #index info
-              val descr               = #descr info
-              val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-              val typ_assoc           = dtyps ~~ Ts'
-              (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-              val _ = if Library.exists (fn d =>
-                  case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
-                then
-                  raise REFUTE ("IDT_constructor_interpreter",
-                    "datatype argument (for type "
-                    ^ Syntax.string_of_typ_global thy (Type (s', Ts'))
-                    ^ ") is not a variable")
-                else ()
-              (* split the constructors into those occuring before/after *)
-              (* 'Const (s, T)'                                          *)
-              val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
-                not (cname = s andalso Sign.typ_instance thy (T,
-                  map (typ_of_dtyp descr typ_assoc) ctypes
-                    ---> Type (s', Ts')))) constrs
-            in
-              case constrs2 of
-                [] =>
-                (* 'Const (s, T)' is not a constructor of this datatype *)
-                NONE
-              | (_, ctypes)::cs =>
-                let
-                  (* int option -- only /recursive/ IDTs have an associated *)
-                  (*               depth                                    *)
-                  val depth = AList.lookup (op =) typs (Type (s', Ts'))
-                  (* this should never happen: at depth 0, this IDT fragment *)
-                  (* is definitely empty, and in this case we don't need to  *)
-                  (* interpret its constructors                              *)
-                  val _ = (case depth of SOME 0 =>
-                      raise REFUTE ("IDT_constructor_interpreter",
-                        "depth is 0")
-                    | _ => ())
-                  val typs' = (case depth of NONE => typs | SOME n =>
-                    AList.update (op =) (Type (s', Ts'), n-1) typs)
-                  (* elements of the datatype come before elements generated *)
-                  (* by 'Const (s, T)' iff they are generated by a           *)
-                  (* constructor in constrs1                                 *)
-                  val offset = size_of_dtyp thy typs' descr typ_assoc constrs1
-                  (* compute the total (current) size of the datatype *)
-                  val total = offset +
-                    size_of_dtyp thy typs' descr typ_assoc constrs2
-                  (* sanity check *)
-                  val _ = if total <> size_of_type thy (typs, [])
-                    (Type (s', Ts')) then
-                      raise REFUTE ("IDT_constructor_interpreter",
-                        "total is not equal to current size")
-                    else ()
-                  (* returns an interpretation where everything is mapped to *)
-                  (* an "undefined" element of the datatype                  *)
-                  fun make_undef [] =
-                    Leaf (replicate total False)
-                    | make_undef (d::ds) =
+        (case t of
+          Const (s, T) =>
+            (case body_type T of
+              Type (s', Ts') =>
+                (case Datatype.get_info thy s' of
+                  SOME info =>  (* body type is an inductive datatype *)
                     let
-                      (* compute the current size of the type 'd' *)
-                      val dT   = typ_of_dtyp descr typ_assoc d
-                      val size = size_of_type thy (typs, []) dT
-                    in
-                      Node (replicate size (make_undef ds))
-                    end
-                  (* returns the interpretation for a constructor *)
-                  fun make_constr [] offset =
-                    if offset < total then
-                      (Leaf (replicate offset False @ True ::
-                        (replicate (total - offset - 1) False)), offset + 1)
-                    else
-                      raise REFUTE ("IDT_constructor_interpreter",
-                        "offset >= total")
-                    | make_constr (d::ds) offset =
-                    let
-                      (* Term.typ *)
-                      val dT = typ_of_dtyp descr typ_assoc d
-                      (* compute canonical term representations for all   *)
-                      (* elements of the type 'd' (with the reduced depth *)
-                      (* for the IDT)                                     *)
-                      val terms' = canonical_terms typs' dT
-                      (* sanity check *)
-                      val _ =
-                        if length terms' <> size_of_type thy (typs', []) dT
+                      val index               = #index info
+                      val descr               = #descr info
+                      val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                      val typ_assoc           = dtyps ~~ Ts'
+                      (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                      val _ = if Library.exists (fn d =>
+                          case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
                         then
                           raise REFUTE ("IDT_constructor_interpreter",
-                            "length of terms' is not equal to old size")
-                        else ()
-                      (* compute canonical term representations for all   *)
-                      (* elements of the type 'd' (with the current depth *)
-                      (* for the IDT)                                     *)
-                      val terms = canonical_terms typs dT
-                      (* sanity check *)
-                      val _ =
-                        if length terms <> size_of_type thy (typs, []) dT
-                        then
-                          raise REFUTE ("IDT_constructor_interpreter",
-                            "length of terms is not equal to current size")
-                        else ()
-                      (* sanity check *)
-                      val _ =
-                        if length terms < length terms' then
-                          raise REFUTE ("IDT_constructor_interpreter",
-                            "current size is less than old size")
+                            "datatype argument (for type "
+                            ^ Syntax.string_of_typ_global thy (Type (s', Ts'))
+                            ^ ") is not a variable")
                         else ()
-                      (* sanity check: every element of terms' must also be *)
-                      (*               present in terms                     *)
-                      val _ =
-                        if forall (member (op =) terms) terms' then ()
-                        else
-                          raise REFUTE ("IDT_constructor_interpreter",
-                            "element has disappeared")
-                      (* sanity check: the order on elements of terms' is    *)
-                      (*               the same in terms, for those elements *)
-                      val _ =
-                        let
-                          fun search (x::xs) (y::ys) =
-                                if x = y then search xs ys else search (x::xs) ys
-                            | search (x::xs) [] =
+                      (* split the constructors into those occuring before/after *)
+                      (* 'Const (s, T)'                                          *)
+                      val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
+                        not (cname = s andalso Sign.typ_instance thy (T,
+                          map (typ_of_dtyp descr typ_assoc) ctypes
+                            ---> Type (s', Ts')))) constrs
+                    in
+                      case constrs2 of
+                        [] =>
+                          (* 'Const (s, T)' is not a constructor of this datatype *)
+                          NONE
+                      | (_, ctypes)::cs =>
+                          let
+                            (* int option -- only /recursive/ IDTs have an associated *)
+                            (*               depth                                    *)
+                            val depth = AList.lookup (op =) typs (Type (s', Ts'))
+                            (* this should never happen: at depth 0, this IDT fragment *)
+                            (* is definitely empty, and in this case we don't need to  *)
+                            (* interpret its constructors                              *)
+                            val _ = (case depth of SOME 0 =>
+                                raise REFUTE ("IDT_constructor_interpreter",
+                                  "depth is 0")
+                              | _ => ())
+                            val typs' = (case depth of NONE => typs | SOME n =>
+                              AList.update (op =) (Type (s', Ts'), n-1) typs)
+                            (* elements of the datatype come before elements generated *)
+                            (* by 'Const (s, T)' iff they are generated by a           *)
+                            (* constructor in constrs1                                 *)
+                            val offset = size_of_dtyp thy typs' descr typ_assoc constrs1
+                            (* compute the total (current) size of the datatype *)
+                            val total = offset +
+                              size_of_dtyp thy typs' descr typ_assoc constrs2
+                            (* sanity check *)
+                            val _ = if total <> size_of_type thy (typs, [])
+                              (Type (s', Ts')) then
                                 raise REFUTE ("IDT_constructor_interpreter",
-                                  "element order not preserved")
-                            | search [] _ = ()
-                        in  search terms' terms  end
-                      (* int * interpretation list *)
-                      val (intrs, new_offset) =
-                        fold_map (fn t_elem => fn off =>
-                          (* if 't_elem' existed at the previous depth,    *)
-                          (* proceed recursively, otherwise map the entire *)
-                          (* subtree to "undefined"                        *)
-                          if member (op =) terms' t_elem then
-                            make_constr ds off
-                          else
-                            (make_undef ds, off))
-                        terms offset
-                    in
-                      (Node intrs, new_offset)
+                                  "total is not equal to current size")
+                              else ()
+                            (* returns an interpretation where everything is mapped to *)
+                            (* an "undefined" element of the datatype                  *)
+                            fun make_undef [] = Leaf (replicate total False)
+                              | make_undef (d::ds) =
+                                  let
+                                    (* compute the current size of the type 'd' *)
+                                    val dT   = typ_of_dtyp descr typ_assoc d
+                                    val size = size_of_type thy (typs, []) dT
+                                  in
+                                    Node (replicate size (make_undef ds))
+                                  end
+                            (* returns the interpretation for a constructor *)
+                            fun make_constr [] offset =
+                                  if offset < total then
+                                    (Leaf (replicate offset False @ True ::
+                                      (replicate (total - offset - 1) False)), offset + 1)
+                                  else
+                                    raise REFUTE ("IDT_constructor_interpreter",
+                                      "offset >= total")
+                              | make_constr (d::ds) offset =
+                                  let
+                                    (* Term.typ *)
+                                    val dT = typ_of_dtyp descr typ_assoc d
+                                    (* compute canonical term representations for all   *)
+                                    (* elements of the type 'd' (with the reduced depth *)
+                                    (* for the IDT)                                     *)
+                                    val terms' = canonical_terms typs' dT
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms' <> size_of_type thy (typs', []) dT
+                                      then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "length of terms' is not equal to old size")
+                                      else ()
+                                    (* compute canonical term representations for all   *)
+                                    (* elements of the type 'd' (with the current depth *)
+                                    (* for the IDT)                                     *)
+                                    val terms = canonical_terms typs dT
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms <> size_of_type thy (typs, []) dT
+                                      then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "length of terms is not equal to current size")
+                                      else ()
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms < length terms' then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "current size is less than old size")
+                                      else ()
+                                    (* sanity check: every element of terms' must also be *)
+                                    (*               present in terms                     *)
+                                    val _ =
+                                      if forall (member (op =) terms) terms' then ()
+                                      else
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "element has disappeared")
+                                    (* sanity check: the order on elements of terms' is    *)
+                                    (*               the same in terms, for those elements *)
+                                    val _ =
+                                      let
+                                        fun search (x::xs) (y::ys) =
+                                              if x = y then search xs ys else search (x::xs) ys
+                                          | search (x::xs) [] =
+                                              raise REFUTE ("IDT_constructor_interpreter",
+                                                "element order not preserved")
+                                          | search [] _ = ()
+                                      in search terms' terms end
+                                    (* int * interpretation list *)
+                                    val (intrs, new_offset) =
+                                      fold_map (fn t_elem => fn off =>
+                                        (* if 't_elem' existed at the previous depth,    *)
+                                        (* proceed recursively, otherwise map the entire *)
+                                        (* subtree to "undefined"                        *)
+                                        if member (op =) terms' t_elem then
+                                          make_constr ds off
+                                        else
+                                          (make_undef ds, off))
+                                      terms offset
+                                  in
+                                    (Node intrs, new_offset)
+                                  end
+                          in
+                            SOME (fst (make_constr ctypes offset), model, args)
+                          end
                     end
-                in
-                  SOME (fst (make_constr ctypes offset), model, args)
-                end
-            end
-          | NONE =>  (* body type is not an inductive datatype *)
-            NONE)
-        | _ =>  (* body type is a (free or schematic) type variable *)
+                | NONE =>  (* body type is not an inductive datatype *)
+                    NONE)
+            | _ =>  (* body type is a (free or schematic) type variable *)
+              NONE)
+        | _ =>  (* term is not a constant *)
           NONE)
-      | _ =>  (* term is not a constant *)
-        NONE)
   end;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* Difficult code ahead.  Make sure you understand the                *)
-  (* 'IDT_constructor_interpreter' and the order in which it enumerates *)
-  (* elements of an IDT before you try to understand this function.     *)
+(* Difficult code ahead.  Make sure you understand the                *)
+(* 'IDT_constructor_interpreter' and the order in which it enumerates *)
+(* elements of an IDT before you try to understand this function.     *)
 
-  fun IDT_recursion_interpreter thy model args t =
-    (* careful: here we descend arbitrarily deep into 't', possibly before *)
-    (* any other interpreter for atomic terms has had a chance to look at  *)
-    (* 't'                                                                 *)
-    case strip_comb t of
-      (Const (s, T), params) =>
+fun IDT_recursion_interpreter thy model args t =
+  (* careful: here we descend arbitrarily deep into 't', possibly before *)
+  (* any other interpreter for atomic terms has had a chance to look at  *)
+  (* 't'                                                                 *)
+  case strip_comb t of
+    (Const (s, T), params) =>
       (* iterate over all datatypes in 'thy' *)
       Symtab.fold (fn (_, info) => fn result =>
         case result of
           SOME _ =>
-          result  (* just keep 'result' *)
+            result  (* just keep 'result' *)
         | NONE =>
-          if member (op =) (#rec_names info) s then
-            (* we do have a recursion operator of one of the (mutually *)
-            (* recursive) datatypes given by 'info'                    *)
-            let
-              (* number of all constructors, including those of different  *)
-              (* (mutually recursive) datatypes within the same descriptor *)
-              val mconstrs_count =
-                Integer.sum (map (fn (_, (_, _, cs)) => length cs) (#descr info))
-            in
-              if mconstrs_count < length params then
-                (* too many actual parameters; for now we'll use the *)
-                (* 'stlc_interpreter' to strip off one application   *)
-                NONE
-              else if mconstrs_count > length params then
-                (* too few actual parameters; we use eta expansion          *)
-                (* Note that the resulting expansion of lambda abstractions *)
-                (* by the 'stlc_interpreter' may be rather slow (depending  *)
-                (* on the argument types and the size of the IDT, of        *)
-                (* course).                                                 *)
-                SOME (interpret thy model args (eta_expand t
-                  (mconstrs_count - length params)))
-              else  (* mconstrs_count = length params *)
-                let
-                  (* interpret each parameter separately *)
-                  val (p_intrs, (model', args')) = fold_map (fn p => fn (m, a) =>
-                    let
-                      val (i, m', a') = interpret thy m a p
-                    in
-                      (i, (m', a'))
-                    end) params (model, args)
-                  val (typs, _) = model'
-                  (* 'index' is /not/ necessarily the index of the IDT that *)
-                  (* the recursion operator is associated with, but merely  *)
-                  (* the index of some mutually recursive IDT               *)
-                  val index         = #index info
-                  val descr         = #descr info
-                  val (_, dtyps, _) = the (AList.lookup (op =) descr index)
-                  (* sanity check: we assume that the order of constructors *)
-                  (*               in 'descr' is the same as the order of   *)
-                  (*               corresponding parameters, otherwise the  *)
-                  (*               association code below won't match the   *)
-                  (*               right constructors/parameters; we also   *)
-                  (*               assume that the order of recursion       *)
-                  (*               operators in '#rec_names info' is the    *)
-                  (*               same as the order of corresponding       *)
-                  (*               datatypes in 'descr'                     *)
-                  val _ = if map fst descr <> (0 upto (length descr - 1)) then
-                      raise REFUTE ("IDT_recursion_interpreter",
-                        "order of constructors and corresponding parameters/" ^
-                          "recursion operators and corresponding datatypes " ^
-                          "different?")
-                    else ()
-                  (* sanity check: every element in 'dtyps' must be a *)
-                  (*               'DtTFree'                          *)
-                  val _ = if Library.exists (fn d =>
-                    case d of Datatype_Aux.DtTFree _ => false
-                            | _ => true) dtyps
-                    then
-                      raise REFUTE ("IDT_recursion_interpreter",
-                        "datatype argument is not a variable")
-                    else ()
-                  (* the type of a recursion operator is *)
-                  (* [T1, ..., Tn, IDT] ---> Tresult     *)
-                  val IDT = List.nth (binder_types T, mconstrs_count)
-                  (* by our assumption on the order of recursion operators *)
-                  (* and datatypes, this is the index of the datatype      *)
-                  (* corresponding to the given recursion operator         *)
-                  val idt_index = find_index (fn s' => s' = s) (#rec_names info)
-                  (* mutually recursive types must have the same type   *)
-                  (* parameters, unless the mutual recursion comes from *)
-                  (* indirect recursion                                 *)
-                  fun rec_typ_assoc acc [] =
-                    acc
-                    | rec_typ_assoc acc ((d, T)::xs) =
-                    (case AList.lookup op= acc d of
-                      NONE =>
-                      (case d of
-                        Datatype_Aux.DtTFree _ =>
-                        (* add the association, proceed *)
-                        rec_typ_assoc ((d, T)::acc) xs
-                      | Datatype_Aux.DtType (s, ds) =>
-                        let
-                          val (s', Ts) = dest_Type T
-                        in
-                          if s=s' then
-                            rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
-                          else
-                            raise REFUTE ("IDT_recursion_interpreter",
-                              "DtType/Type mismatch")
-                        end
-                      | Datatype_Aux.DtRec i =>
-                        let
-                          val (_, ds, _) = the (AList.lookup (op =) descr i)
-                          val (_, Ts)    = dest_Type T
-                        in
-                          rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
-                        end)
-                    | SOME T' =>
-                      if T=T' then
-                        (* ignore the association since it's already *)
-                        (* present, proceed                          *)
-                        rec_typ_assoc acc xs
-                      else
+            if member (op =) (#rec_names info) s then
+              (* we do have a recursion operator of one of the (mutually *)
+              (* recursive) datatypes given by 'info'                    *)
+              let
+                (* number of all constructors, including those of different  *)
+                (* (mutually recursive) datatypes within the same descriptor *)
+                val mconstrs_count =
+                  Integer.sum (map (fn (_, (_, _, cs)) => length cs) (#descr info))
+              in
+                if mconstrs_count < length params then
+                  (* too many actual parameters; for now we'll use the *)
+                  (* 'stlc_interpreter' to strip off one application   *)
+                  NONE
+                else if mconstrs_count > length params then
+                  (* too few actual parameters; we use eta expansion          *)
+                  (* Note that the resulting expansion of lambda abstractions *)
+                  (* by the 'stlc_interpreter' may be rather slow (depending  *)
+                  (* on the argument types and the size of the IDT, of        *)
+                  (* course).                                                 *)
+                  SOME (interpret thy model args (eta_expand t
+                    (mconstrs_count - length params)))
+                else  (* mconstrs_count = length params *)
+                  let
+                    (* interpret each parameter separately *)
+                    val (p_intrs, (model', args')) = fold_map (fn p => fn (m, a) =>
+                      let
+                        val (i, m', a') = interpret thy m a p
+                      in
+                        (i, (m', a'))
+                      end) params (model, args)
+                    val (typs, _) = model'
+                    (* 'index' is /not/ necessarily the index of the IDT that *)
+                    (* the recursion operator is associated with, but merely  *)
+                    (* the index of some mutually recursive IDT               *)
+                    val index         = #index info
+                    val descr         = #descr info
+                    val (_, dtyps, _) = the (AList.lookup (op =) descr index)
+                    (* sanity check: we assume that the order of constructors *)
+                    (*               in 'descr' is the same as the order of   *)
+                    (*               corresponding parameters, otherwise the  *)
+                    (*               association code below won't match the   *)
+                    (*               right constructors/parameters; we also   *)
+                    (*               assume that the order of recursion       *)
+                    (*               operators in '#rec_names info' is the    *)
+                    (*               same as the order of corresponding       *)
+                    (*               datatypes in 'descr'                     *)
+                    val _ = if map fst descr <> (0 upto (length descr - 1)) then
+                        raise REFUTE ("IDT_recursion_interpreter",
+                          "order of constructors and corresponding parameters/" ^
+                            "recursion operators and corresponding datatypes " ^
+                            "different?")
+                      else ()
+                    (* sanity check: every element in 'dtyps' must be a *)
+                    (*               'DtTFree'                          *)
+                    val _ =
+                      if Library.exists (fn d =>
+                        case d of Datatype_Aux.DtTFree _ => false
+                                | _ => true) dtyps
+                      then
                         raise REFUTE ("IDT_recursion_interpreter",
-                          "different type associations for the same dtyp"))
-                  val typ_assoc = filter
-                    (fn (Datatype_Aux.DtTFree _, _) => true | (_, _) => false)
-                    (rec_typ_assoc []
-                      (#2 (the (AList.lookup (op =) descr idt_index)) ~~ (snd o dest_Type) IDT))
-                  (* sanity check: typ_assoc must associate types to the   *)
-                  (*               elements of 'dtyps' (and only to those) *)
-                  val _ = if not (eq_set (op =) (dtyps, map fst typ_assoc))
-                    then
-                      raise REFUTE ("IDT_recursion_interpreter",
-                        "type association has extra/missing elements")
-                    else ()
-                  (* interpret each constructor in the descriptor (including *)
-                  (* those of mutually recursive datatypes)                  *)
-                  (* (int * interpretation list) list *)
-                  val mc_intrs = map (fn (idx, (_, _, cs)) =>
-                    let
-                      val c_return_typ = typ_of_dtyp descr typ_assoc
-                        (Datatype_Aux.DtRec idx)
-                    in
-                      (idx, map (fn (cname, cargs) =>
-                        (#1 o interpret thy (typs, []) {maxvars=0,
-                          def_eq=false, next_idx=1, bounds=[],
-                          wellformed=True}) (Const (cname, map (typ_of_dtyp
-                          descr typ_assoc) cargs ---> c_return_typ))) cs)
-                    end) descr
-                  (* associate constructors with corresponding parameters *)
-                  (* (int * (interpretation * interpretation) list) list *)
-                  val (mc_p_intrs, p_intrs') = fold_map
-                    (fn (idx, c_intrs) => fn p_intrs' =>
+                          "datatype argument is not a variable")
+                      else ()
+                    (* the type of a recursion operator is *)
+                    (* [T1, ..., Tn, IDT] ---> Tresult     *)
+                    val IDT = List.nth (binder_types T, mconstrs_count)
+                    (* by our assumption on the order of recursion operators *)
+                    (* and datatypes, this is the index of the datatype      *)
+                    (* corresponding to the given recursion operator         *)
+                    val idt_index = find_index (fn s' => s' = s) (#rec_names info)
+                    (* mutually recursive types must have the same type   *)
+                    (* parameters, unless the mutual recursion comes from *)
+                    (* indirect recursion                                 *)
+                    fun rec_typ_assoc acc [] = acc
+                      | rec_typ_assoc acc ((d, T)::xs) =
+                          (case AList.lookup op= acc d of
+                            NONE =>
+                              (case d of
+                                Datatype_Aux.DtTFree _ =>
+                                (* add the association, proceed *)
+                                rec_typ_assoc ((d, T)::acc) xs
+                              | Datatype_Aux.DtType (s, ds) =>
+                                  let
+                                    val (s', Ts) = dest_Type T
+                                  in
+                                    if s=s' then
+                                      rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
+                                    else
+                                      raise REFUTE ("IDT_recursion_interpreter",
+                                        "DtType/Type mismatch")
+                                  end
+                              | Datatype_Aux.DtRec i =>
+                                  let
+                                    val (_, ds, _) = the (AList.lookup (op =) descr i)
+                                    val (_, Ts)    = dest_Type T
+                                  in
+                                    rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
+                                  end)
+                          | SOME T' =>
+                              if T=T' then
+                                (* ignore the association since it's already *)
+                                (* present, proceed                          *)
+                                rec_typ_assoc acc xs
+                              else
+                                raise REFUTE ("IDT_recursion_interpreter",
+                                  "different type associations for the same dtyp"))
+                    val typ_assoc = filter
+                      (fn (Datatype_Aux.DtTFree _, _) => true | (_, _) => false)
+                      (rec_typ_assoc []
+                        (#2 (the (AList.lookup (op =) descr idt_index)) ~~ (snd o dest_Type) IDT))
+                    (* sanity check: typ_assoc must associate types to the   *)
+                    (*               elements of 'dtyps' (and only to those) *)
+                    val _ =
+                      if not (eq_set (op =) (dtyps, map fst typ_assoc))
+                      then
+                        raise REFUTE ("IDT_recursion_interpreter",
+                          "type association has extra/missing elements")
+                      else ()
+                    (* interpret each constructor in the descriptor (including *)
+                    (* those of mutually recursive datatypes)                  *)
+                    (* (int * interpretation list) list *)
+                    val mc_intrs = map (fn (idx, (_, _, cs)) =>
                       let
-                        val len = length c_intrs
+                        val c_return_typ = typ_of_dtyp descr typ_assoc
+                          (Datatype_Aux.DtRec idx)
                       in
-                        ((idx, c_intrs ~~ List.take (p_intrs', len)),
-                          List.drop (p_intrs', len))
-                      end) mc_intrs p_intrs
-                  (* sanity check: no 'p_intr' may be left afterwards *)
-                  val _ = if p_intrs' <> [] then
-                      raise REFUTE ("IDT_recursion_interpreter",
-                        "more parameter than constructor interpretations")
-                    else ()
-                  (* The recursion operator, applied to 'mconstrs_count'     *)
-                  (* arguments, is a function that maps every element of the *)
-                  (* inductive datatype to an element of some result type.   *)
-                  (* Recursion operators for mutually recursive IDTs are     *)
-                  (* translated simultaneously.                              *)
-                  (* Since the order on datatype elements is given by an     *)
-                  (* order on constructors (and then by the order on         *)
-                  (* argument tuples), we can simply copy corresponding      *)
-                  (* subtrees from 'p_intrs', in the order in which they are *)
-                  (* given.                                                  *)
-                  (* interpretation * interpretation -> interpretation list *)
-                  fun ci_pi (Leaf xs, pi) =
-                    (* if the constructor does not match the arguments to a *)
-                    (* defined element of the IDT, the corresponding value  *)
-                    (* of the parameter must be ignored                     *)
-                    if List.exists (equal True) xs then [pi] else []
-                    | ci_pi (Node xs, Node ys) =
-                    maps ci_pi (xs ~~ ys)
-                    | ci_pi (Node _, Leaf _) =
-                    raise REFUTE ("IDT_recursion_interpreter",
-                      "constructor takes more arguments than the " ^
-                        "associated parameter")
-                  (* (int * interpretation list) list *)
-                  val rec_operators = map (fn (idx, c_p_intrs) =>
-                    (idx, maps ci_pi c_p_intrs)) mc_p_intrs
-                  (* sanity check: every recursion operator must provide as  *)
-                  (*               many values as the corresponding datatype *)
-                  (*               has elements                              *)
-                  val _ = map (fn (idx, intrs) =>
-                    let
-                      val T = typ_of_dtyp descr typ_assoc
-                        (Datatype_Aux.DtRec idx)
-                    in
-                      if length intrs <> size_of_type thy (typs, []) T then
+                        (idx, map (fn (cname, cargs) =>
+                          (#1 o interpret thy (typs, []) {maxvars=0,
+                            def_eq=false, next_idx=1, bounds=[],
+                            wellformed=True}) (Const (cname, map (typ_of_dtyp
+                            descr typ_assoc) cargs ---> c_return_typ))) cs)
+                      end) descr
+                    (* associate constructors with corresponding parameters *)
+                    (* (int * (interpretation * interpretation) list) list *)
+                    val (mc_p_intrs, p_intrs') = fold_map
+                      (fn (idx, c_intrs) => fn p_intrs' =>
+                        let
+                          val len = length c_intrs
+                        in
+                          ((idx, c_intrs ~~ List.take (p_intrs', len)),
+                            List.drop (p_intrs', len))
+                        end) mc_intrs p_intrs
+                    (* sanity check: no 'p_intr' may be left afterwards *)
+                    val _ =
+                      if p_intrs' <> [] then
                         raise REFUTE ("IDT_recursion_interpreter",
-                          "wrong number of interpretations for rec. operator")
+                          "more parameter than constructor interpretations")
                       else ()
-                    end) rec_operators
-                  (* For non-recursive datatypes, we are pretty much done at *)
-                  (* this point.  For recursive datatypes however, we still  *)
-                  (* need to apply the interpretations in 'rec_operators' to *)
-                  (* (recursively obtained) interpretations for recursive    *)
-                  (* constructor arguments.  To do so more efficiently, we   *)
-                  (* copy 'rec_operators' into arrays first.  Each Boolean   *)
-                  (* indicates whether the recursive arguments have been     *)
-                  (* considered already.                                     *)
-                  (* (int * (bool * interpretation) Array.array) list *)
-                  val REC_OPERATORS = map (fn (idx, intrs) =>
-                    (idx, Array.fromList (map (pair false) intrs)))
-                    rec_operators
-                  (* takes an interpretation, and if some leaf of this     *)
-                  (* interpretation is the 'elem'-th element of the type,  *)
-                  (* the indices of the arguments leading to this leaf are *)
-                  (* returned                                              *)
-                  (* interpretation -> int -> int list option *)
-                  fun get_args (Leaf xs) elem =
-                    if find_index (fn x => x = True) xs = elem then
-                      SOME []
-                    else
-                      NONE
-                    | get_args (Node xs) elem =
-                    let
-                      (* interpretation list * int -> int list option *)
-                      fun search ([], _) =
-                        NONE
-                        | search (x::xs, n) =
-                        (case get_args x elem of
-                          SOME result => SOME (n::result)
-                        | NONE        => search (xs, n+1))
-                    in
-                      search (xs, 0)
-                    end
-                  (* returns the index of the constructor and indices for *)
-                  (* its arguments that generate the 'elem'-th element of *)
-                  (* the datatype given by 'idx'                          *)
-                  (* int -> int -> int * int list *)
-                  fun get_cargs idx elem =
-                  let
-                    (* int * interpretation list -> int * int list *)
-                    fun get_cargs_rec (_, []) =
-                      raise REFUTE ("IDT_recursion_interpreter",
-                        "no matching constructor found for datatype element")
-                      | get_cargs_rec (n, x::xs) =
-                        (case get_args x elem of
-                          SOME args => (n, args)
-                        | NONE      => get_cargs_rec (n+1, xs))
-                    in
-                      get_cargs_rec (0, the (AList.lookup (op =) mc_intrs idx))
-                    end
-                  (* computes one entry in 'REC_OPERATORS', and recursively *)
-                  (* all entries needed for it, where 'idx' gives the       *)
-                  (* datatype and 'elem' the element of it                  *)
-                  (* int -> int -> interpretation *)
-                  fun compute_array_entry idx elem =
-                  let
-                    val arr          = the (AList.lookup (op =) REC_OPERATORS idx)
-                    val (flag, intr) = Array.sub (arr, elem)
-                  in
-                    if flag then
-                      (* simply return the previously computed result *)
-                      intr
-                    else
-                      (* we have to apply 'intr' to interpretations for all *)
-                      (* recursive arguments                                *)
+                    (* The recursion operator, applied to 'mconstrs_count'     *)
+                    (* arguments, is a function that maps every element of the *)
+                    (* inductive datatype to an element of some result type.   *)
+                    (* Recursion operators for mutually recursive IDTs are     *)
+                    (* translated simultaneously.                              *)
+                    (* Since the order on datatype elements is given by an     *)
+                    (* order on constructors (and then by the order on         *)
+                    (* argument tuples), we can simply copy corresponding      *)
+                    (* subtrees from 'p_intrs', in the order in which they are *)
+                    (* given.                                                  *)
+                    (* interpretation * interpretation -> interpretation list *)
+                    fun ci_pi (Leaf xs, pi) =
+                          (* if the constructor does not match the arguments to a *)
+                          (* defined element of the IDT, the corresponding value  *)
+                          (* of the parameter must be ignored                     *)
+                          if List.exists (equal True) xs then [pi] else []
+                      | ci_pi (Node xs, Node ys) = maps ci_pi (xs ~~ ys)
+                      | ci_pi (Node _, Leaf _) =
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "constructor takes more arguments than the " ^
+                              "associated parameter")
+                    (* (int * interpretation list) list *)
+                    val rec_operators = map (fn (idx, c_p_intrs) =>
+                      (idx, maps ci_pi c_p_intrs)) mc_p_intrs
+                    (* sanity check: every recursion operator must provide as  *)
+                    (*               many values as the corresponding datatype *)
+                    (*               has elements                              *)
+                    val _ = map (fn (idx, intrs) =>
+                      let
+                        val T = typ_of_dtyp descr typ_assoc
+                          (Datatype_Aux.DtRec idx)
+                      in
+                        if length intrs <> size_of_type thy (typs, []) T then
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "wrong number of interpretations for rec. operator")
+                        else ()
+                      end) rec_operators
+                    (* For non-recursive datatypes, we are pretty much done at *)
+                    (* this point.  For recursive datatypes however, we still  *)
+                    (* need to apply the interpretations in 'rec_operators' to *)
+                    (* (recursively obtained) interpretations for recursive    *)
+                    (* constructor arguments.  To do so more efficiently, we   *)
+                    (* copy 'rec_operators' into arrays first.  Each Boolean   *)
+                    (* indicates whether the recursive arguments have been     *)
+                    (* considered already.                                     *)
+                    (* (int * (bool * interpretation) Array.array) list *)
+                    val REC_OPERATORS = map (fn (idx, intrs) =>
+                      (idx, Array.fromList (map (pair false) intrs)))
+                      rec_operators
+                    (* takes an interpretation, and if some leaf of this     *)
+                    (* interpretation is the 'elem'-th element of the type,  *)
+                    (* the indices of the arguments leading to this leaf are *)
+                    (* returned                                              *)
+                    (* interpretation -> int -> int list option *)
+                    fun get_args (Leaf xs) elem =
+                          if find_index (fn x => x = True) xs = elem then
+                            SOME []
+                          else
+                            NONE
+                      | get_args (Node xs) elem =
+                          let
+                            (* interpretation list * int -> int list option *)
+                            fun search ([], _) =
+                              NONE
+                              | search (x::xs, n) =
+                              (case get_args x elem of
+                                SOME result => SOME (n::result)
+                              | NONE        => search (xs, n+1))
+                          in
+                            search (xs, 0)
+                          end
+                    (* returns the index of the constructor and indices for *)
+                    (* its arguments that generate the 'elem'-th element of *)
+                    (* the datatype given by 'idx'                          *)
+                    (* int -> int -> int * int list *)
+                    fun get_cargs idx elem =
                       let
-                        (* int * int list *)
-                        val (c, args) = get_cargs idx elem
-                        (* find the indices of the constructor's /recursive/ *)
-                        (* arguments                                         *)
-                        val (_, _, constrs) = the (AList.lookup (op =) descr idx)
-                        val (_, dtyps)      = List.nth (constrs, c)
-                        val rec_dtyps_args  = filter
-                          (Datatype_Aux.is_rec_type o fst) (dtyps ~~ args)
-                        (* map those indices to interpretations *)
-                        val rec_dtyps_intrs = map (fn (dtyp, arg) =>
+                        (* int * interpretation list -> int * int list *)
+                        fun get_cargs_rec (_, []) =
+                              raise REFUTE ("IDT_recursion_interpreter",
+                                "no matching constructor found for datatype element")
+                          | get_cargs_rec (n, x::xs) =
+                              (case get_args x elem of
+                                SOME args => (n, args)
+                              | NONE => get_cargs_rec (n+1, xs))
+                      in
+                        get_cargs_rec (0, the (AList.lookup (op =) mc_intrs idx))
+                      end
+                    (* computes one entry in 'REC_OPERATORS', and recursively *)
+                    (* all entries needed for it, where 'idx' gives the       *)
+                    (* datatype and 'elem' the element of it                  *)
+                    (* int -> int -> interpretation *)
+                    fun compute_array_entry idx elem =
+                      let
+                        val arr = the (AList.lookup (op =) REC_OPERATORS idx)
+                        val (flag, intr) = Array.sub (arr, elem)
+                      in
+                        if flag then
+                          (* simply return the previously computed result *)
+                          intr
+                        else
+                          (* we have to apply 'intr' to interpretations for all *)
+                          (* recursive arguments                                *)
                           let
-                            val dT     = typ_of_dtyp descr typ_assoc dtyp
-                            val consts = make_constants thy (typs, []) dT
-                            val arg_i  = List.nth (consts, arg)
+                            (* int * int list *)
+                            val (c, args) = get_cargs idx elem
+                            (* find the indices of the constructor's /recursive/ *)
+                            (* arguments                                         *)
+                            val (_, _, constrs) = the (AList.lookup (op =) descr idx)
+                            val (_, dtyps)      = List.nth (constrs, c)
+                            val rec_dtyps_args  = filter
+                              (Datatype_Aux.is_rec_type o fst) (dtyps ~~ args)
+                            (* map those indices to interpretations *)
+                            val rec_dtyps_intrs = map (fn (dtyp, arg) =>
+                              let
+                                val dT     = typ_of_dtyp descr typ_assoc dtyp
+                                val consts = make_constants thy (typs, []) dT
+                                val arg_i  = List.nth (consts, arg)
+                              in
+                                (dtyp, arg_i)
+                              end) rec_dtyps_args
+                            (* takes the dtyp and interpretation of an element, *)
+                            (* and computes the interpretation for the          *)
+                            (* corresponding recursive argument                 *)
+                            fun rec_intr (Datatype_Aux.DtRec i) (Leaf xs) =
+                                  (* recursive argument is "rec_i params elem" *)
+                                  compute_array_entry i (find_index (fn x => x = True) xs)
+                              | rec_intr (Datatype_Aux.DtRec _) (Node _) =
+                                  raise REFUTE ("IDT_recursion_interpreter",
+                                    "interpretation for IDT is a node")
+                              | rec_intr (Datatype_Aux.DtType ("fun", [dt1, dt2])) (Node xs) =
+                                  (* recursive argument is something like     *)
+                                  (* "\<lambda>x::dt1. rec_? params (elem x)" *)
+                                  Node (map (rec_intr dt2) xs)
+                              | rec_intr (Datatype_Aux.DtType ("fun", [_, _])) (Leaf _) =
+                                  raise REFUTE ("IDT_recursion_interpreter",
+                                    "interpretation for function dtyp is a leaf")
+                              | rec_intr _ _ =
+                                  (* admissibility ensures that every recursive type *)
+                                  (* is of the form 'Dt_1 -> ... -> Dt_k ->          *)
+                                  (* (DtRec i)'                                      *)
+                                  raise REFUTE ("IDT_recursion_interpreter",
+                                    "non-recursive codomain in recursive dtyp")
+                            (* obtain interpretations for recursive arguments *)
+                            (* interpretation list *)
+                            val arg_intrs = map (uncurry rec_intr) rec_dtyps_intrs
+                            (* apply 'intr' to all recursive arguments *)
+                            val result = fold (fn arg_i => fn i =>
+                              interpretation_apply (i, arg_i)) arg_intrs intr
+                            (* update 'REC_OPERATORS' *)
+                            val _ = Array.update (arr, elem, (true, result))
                           in
-                            (dtyp, arg_i)
-                          end) rec_dtyps_args
-                        (* takes the dtyp and interpretation of an element, *)
-                        (* and computes the interpretation for the          *)
-                        (* corresponding recursive argument                 *)
-                        fun rec_intr (Datatype_Aux.DtRec i) (Leaf xs) =
-                          (* recursive argument is "rec_i params elem" *)
-                          compute_array_entry i (find_index (fn x => x = True) xs)
-                          | rec_intr (Datatype_Aux.DtRec _) (Node _) =
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "interpretation for IDT is a node")
-                          | rec_intr (Datatype_Aux.DtType ("fun", [dt1, dt2]))
-                            (Node xs) =
-                          (* recursive argument is something like     *)
-                          (* "\<lambda>x::dt1. rec_? params (elem x)" *)
-                          Node (map (rec_intr dt2) xs)
-                          | rec_intr (Datatype_Aux.DtType ("fun", [_, _]))
-                            (Leaf _) =
+                            result
+                          end
+                      end
+                    val idt_size = Array.length (the (AList.lookup (op =) REC_OPERATORS idt_index))
+                    (* sanity check: the size of 'IDT' should be 'idt_size' *)
+                    val _ =
+                        if idt_size <> size_of_type thy (typs, []) IDT then
                           raise REFUTE ("IDT_recursion_interpreter",
-                            "interpretation for function dtyp is a leaf")
-                          | rec_intr _ _ =
-                          (* admissibility ensures that every recursive type *)
-                          (* is of the form 'Dt_1 -> ... -> Dt_k ->          *)
-                          (* (DtRec i)'                                      *)
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "non-recursive codomain in recursive dtyp")
-                        (* obtain interpretations for recursive arguments *)
-                        (* interpretation list *)
-                        val arg_intrs = map (uncurry rec_intr) rec_dtyps_intrs
-                        (* apply 'intr' to all recursive arguments *)
-                        val result = fold (fn arg_i => fn i =>
-                          interpretation_apply (i, arg_i)) arg_intrs intr
-                        (* update 'REC_OPERATORS' *)
-                        val _ = Array.update (arr, elem, (true, result))
-                      in
-                        result
-                      end
+                            "unexpected size of IDT (wrong type associated?)")
+                        else ()
+                    (* interpretation *)
+                    val rec_op = Node (map_range (compute_array_entry idt_index) idt_size)
+                  in
+                    SOME (rec_op, model', args')
                   end
-                  val idt_size = Array.length (the (AList.lookup (op =) REC_OPERATORS idt_index))
-                  (* sanity check: the size of 'IDT' should be 'idt_size' *)
-                  val _ = if idt_size <> size_of_type thy (typs, []) IDT then
-                        raise REFUTE ("IDT_recursion_interpreter",
-                          "unexpected size of IDT (wrong type associated?)")
-                      else ()
-                  (* interpretation *)
-                  val rec_op = Node (map_range (compute_array_entry idt_index) idt_size)
-                in
-                  SOME (rec_op, model', args')
-                end
-            end
-          else
-            NONE  (* not a recursion operator of this datatype *)
+              end
+            else
+              NONE  (* not a recursion operator of this datatype *)
         ) (Datatype.get_all thy) NONE
-    | _ =>  (* head of term is not a constant *)
-      NONE;
+  | _ =>  (* head of term is not a constant *)
+    NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  fun set_interpreter thy model args t =
+fun set_interpreter thy model args t =
   let
     val (typs, terms) = model
   in
     case AList.lookup (op =) terms t of
       SOME intr =>
-      (* return an existing interpretation *)
-      SOME (intr, model, args)
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
     | NONE =>
-      (case t of
-      (* 'Collect' == identity *)
-        Const (@{const_name Collect}, _) $ t1 =>
-        SOME (interpret thy model args t1)
-      | Const (@{const_name Collect}, _) =>
-        SOME (interpret thy model args (eta_expand t 1))
-      (* 'op :' == application *)
-      | Const (@{const_name Set.member}, _) $ t1 $ t2 =>
-        SOME (interpret thy model args (t2 $ t1))
-      | Const (@{const_name Set.member}, _) $ t1 =>
-        SOME (interpret thy model args (eta_expand t 1))
-      | Const (@{const_name Set.member}, _) =>
-        SOME (interpret thy model args (eta_expand t 2))
-      | _ => NONE)
+        (case t of
+        (* 'Collect' == identity *)
+          Const (@{const_name Collect}, _) $ t1 =>
+            SOME (interpret thy model args t1)
+        | Const (@{const_name Collect}, _) =>
+            SOME (interpret thy model args (eta_expand t 1))
+        (* 'op :' == application *)
+        | Const (@{const_name Set.member}, _) $ t1 $ t2 =>
+            SOME (interpret thy model args (t2 $ t1))
+        | Const (@{const_name Set.member}, _) $ t1 =>
+            SOME (interpret thy model args (eta_expand t 1))
+        | Const (@{const_name Set.member}, _) =>
+            SOME (interpret thy model args (eta_expand t 2))
+        | _ => NONE)
   end;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'card' could in principle be interpreted with *)
-  (* interpreters available already (using its definition), but the code *)
-  (* below is more efficient                                             *)
+(* only an optimization: 'card' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
 
-  fun Finite_Set_card_interpreter thy model args t =
-    case t of
-      Const (@{const_name Finite_Set.card},
-        Type ("fun", [Type ("fun", [T, @{typ bool}]),
-                      @{typ nat}])) =>
+fun Finite_Set_card_interpreter thy model args t =
+  case t of
+    Const (@{const_name Finite_Set.card},
+        Type ("fun", [Type ("fun", [T, @{typ bool}]), @{typ nat}])) =>
       let
         (* interpretation -> int *)
         fun number_of_elements (Node xs) =
@@ -2668,8 +2658,8 @@
                   "interpretation for set type does not yield a Boolean"))
               xs 0
           | number_of_elements (Leaf _) =
-          raise REFUTE ("Finite_Set_card_interpreter",
-            "interpretation for set type is a leaf")
+              raise REFUTE ("Finite_Set_card_interpreter",
+                "interpretation for set type is a leaf")
         val size_of_nat = size_of_type thy model (@{typ nat})
         (* takes an interpretation for a set and returns an interpretation *)
         (* for a 'nat' denoting the set's cardinality                      *)
@@ -2678,7 +2668,7 @@
           let
             val n = number_of_elements i
           in
-            if n<size_of_nat then
+            if n < size_of_nat then
               Leaf ((replicate n False) @ True ::
                 (replicate (size_of_nat-n-1) False))
             else
@@ -2689,27 +2679,26 @@
       in
         SOME (Node (map card set_constants), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'finite' could in principle be interpreted with  *)
-  (* interpreters available already (using its definition), but the code    *)
-  (* below is more efficient                                                *)
+(* only an optimization: 'finite' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code    *)
+(* below is more efficient                                                *)
 
-  fun Finite_Set_finite_interpreter thy model args t =
-    case t of
-      Const (@{const_name Finite_Set.finite},
-        Type ("fun", [Type ("fun", [T, @{typ bool}]),
-                      @{typ bool}])) $ _ =>
+fun Finite_Set_finite_interpreter thy model args t =
+  case t of
+    Const (@{const_name Finite_Set.finite},
+      Type ("fun", [Type ("fun", [T, @{typ bool}]),
+                    @{typ bool}])) $ _ =>
         (* we only consider finite models anyway, hence EVERY set is *)
         (* "finite"                                                  *)
         SOME (TT, model, args)
-    | Const (@{const_name Finite_Set.finite},
-        Type ("fun", [Type ("fun", [T, @{typ bool}]),
-                      @{typ bool}])) =>
+  | Const (@{const_name Finite_Set.finite},
+      Type ("fun", [Type ("fun", [T, @{typ bool}]),
+                    @{typ bool}])) =>
       let
         val size_of_set =
           size_of_type thy model (Type ("fun", [T, HOLogic.boolT]))
@@ -2718,19 +2707,18 @@
         (* "finite"                                                  *)
         SOME (Node (replicate size_of_set TT), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'less' could in principle be interpreted with *)
-  (* interpreters available already (using its definition), but the code     *)
-  (* below is more efficient                                                 *)
+(* only an optimization: 'less' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code     *)
+(* below is more efficient                                                 *)
 
-  fun Nat_less_interpreter thy model args t =
-    case t of
-      Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
+fun Nat_less_interpreter thy model args t =
+  case t of
+    Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
         Type ("fun", [@{typ nat}, @{typ bool}])])) =>
       let
         val size_of_nat = size_of_type thy model (@{typ nat})
@@ -2741,19 +2729,18 @@
       in
         SOME (Node (map less (1 upto size_of_nat)), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'plus' could in principle be interpreted with *)
-  (* interpreters available already (using its definition), but the code     *)
-  (* below is more efficient                                                 *)
+(* only an optimization: 'plus' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code     *)
+(* below is more efficient                                                 *)
 
-  fun Nat_plus_interpreter thy model args t =
-    case t of
-      Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
+fun Nat_plus_interpreter thy model args t =
+  case t of
+    Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
         Type ("fun", [@{typ nat}, @{typ nat}])])) =>
       let
         val size_of_nat = size_of_type thy model (@{typ nat})
@@ -2772,19 +2759,18 @@
         SOME (Node (map_range (fn m => Node (map_range (plus m) size_of_nat)) size_of_nat),
           model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'minus' could in principle be interpreted *)
-  (* with interpreters available already (using its definition), but the *)
-  (* code below is more efficient                                        *)
+(* only an optimization: 'minus' could in principle be interpreted *)
+(* with interpreters available already (using its definition), but the *)
+(* code below is more efficient                                        *)
 
-  fun Nat_minus_interpreter thy model args t =
-    case t of
-      Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
+fun Nat_minus_interpreter thy model args t =
+  case t of
+    Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
         Type ("fun", [@{typ nat}, @{typ nat}])])) =>
       let
         val size_of_nat = size_of_type thy model (@{typ nat})
@@ -2800,19 +2786,18 @@
         SOME (Node (map_range (fn m => Node (map_range (minus m) size_of_nat)) size_of_nat),
           model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'times' could in principle be interpreted *)
-  (* with interpreters available already (using its definition), but the *)
-  (* code below is more efficient                                        *)
+(* only an optimization: 'times' could in principle be interpreted *)
+(* with interpreters available already (using its definition), but the *)
+(* code below is more efficient                                        *)
 
-  fun Nat_times_interpreter thy model args t =
-    case t of
-      Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
+fun Nat_times_interpreter thy model args t =
+  case t of
+    Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
         Type ("fun", [@{typ nat}, @{typ nat}])])) =>
       let
         val size_of_nat = size_of_type thy model (@{typ nat})
@@ -2831,25 +2816,25 @@
         SOME (Node (map_range (fn m => Node (map_range (mult m) size_of_nat)) size_of_nat),
           model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'append' could in principle be interpreted with *)
-  (* interpreters available already (using its definition), but the code   *)
-  (* below is more efficient                                               *)
+(* only an optimization: 'append' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code   *)
+(* below is more efficient                                               *)
 
-  fun List_append_interpreter thy model args t =
-    case t of
-      Const (@{const_name List.append}, Type ("fun", [Type ("List.list", [T]), Type ("fun",
+fun List_append_interpreter thy model args t =
+  case t of
+    Const (@{const_name List.append}, Type ("fun", [Type ("List.list", [T]), Type ("fun",
         [Type ("List.list", [_]), Type ("List.list", [_])])])) =>
       let
-        val size_elem   = size_of_type thy model T
-        val size_list   = size_of_type thy model (Type ("List.list", [T]))
+        val size_elem = size_of_type thy model T
+        val size_list = size_of_type thy model (Type ("List.list", [T]))
         (* maximal length of lists; 0 if we only consider the empty list *)
-        val list_length = let
+        val list_length =
+          let
             (* int -> int -> int -> int *)
             fun list_length_acc len lists total =
               if lists = total then
@@ -2893,12 +2878,12 @@
               in
                 case offsets' of
                   [] =>
-                  (* we're at the last node in the tree; the next value *)
-                  (* won't be used anyway                               *)
-                  (assoc, ([], 0))
+                    (* we're at the last node in the tree; the next value *)
+                    (* won't be used anyway                               *)
+                    (assoc, ([], 0))
                 | off'::offs' =>
-                  (* go to next sibling node *)
-                  (assoc, (offs', off' + 1))
+                    (* go to next sibling node *)
+                    (assoc, (offs', off' + 1))
               end
           end) elements ([], 0)
         (* we also need the reverse association (from length/offset to *)
@@ -2913,36 +2898,35 @@
             val len_elem = len_m + len_n
             val off_elem = off_m * power (size_elem, len_n) + off_n
           in
-            case AList.lookup op= lenoff'_lists (len_elem, off_elem)  of
+            case AList.lookup op= lenoff'_lists (len_elem, off_elem) of
               NONE =>
-              (* undefined *)
-              Leaf (replicate size_list False)
+                (* undefined *)
+                Leaf (replicate size_list False)
             | SOME element =>
-              Leaf ((replicate element False) @ True ::
-                (replicate (size_list - element - 1) False))
+                Leaf ((replicate element False) @ True ::
+                  (replicate (size_list - element - 1) False))
           end
       in
         SOME (Node (map (fn m => Node (map (append m) elements)) elements),
           model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
 (* UNSOUND
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'lfp' could in principle be interpreted with  *)
-  (* interpreters available already (using its definition), but the code *)
-  (* below is more efficient                                             *)
+(* only an optimization: 'lfp' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
 
-  fun lfp_interpreter thy model args t =
-    case t of
-      Const (@{const_name lfp}, Type ("fun", [Type ("fun",
-        [Type ("fun", [T, @{typ bool}]),
-         Type ("fun", [_, @{typ bool}])]),
-         Type ("fun", [_, @{typ bool}])])) =>
+fun lfp_interpreter thy model args t =
+  case t of
+    Const (@{const_name lfp}, Type ("fun", [Type ("fun",
+      [Type ("fun", [T, @{typ bool}]),
+       Type ("fun", [_, @{typ bool}])]),
+       Type ("fun", [_, @{typ bool}])])) =>
       let
         val size_elem = size_of_type thy model T
         (* the universe (i.e. the set that contains every element) *)
@@ -2957,294 +2941,296 @@
         (* "lfp(f) == Inter({u. f(u) <= u})" *)
         (* interpretation * interpretation -> bool *)
         fun is_subset (Node subs, Node sups) =
-          forall (fn (sub, sup) => (sub = FF) orelse (sup = TT))
-            (subs ~~ sups)
+              forall (fn (sub, sup) => (sub = FF) orelse (sup = TT)) (subs ~~ sups)
           | is_subset (_, _) =
-          raise REFUTE ("lfp_interpreter",
-            "is_subset: interpretation for set is not a node")
+              raise REFUTE ("lfp_interpreter",
+                "is_subset: interpretation for set is not a node")
         (* interpretation * interpretation -> interpretation *)
         fun intersection (Node xs, Node ys) =
-          Node (map (fn (x, y) => if x=TT andalso y=TT then TT else FF)
-            (xs ~~ ys))
+              Node (map (fn (x, y) => if x=TT andalso y=TT then TT else FF)
+                (xs ~~ ys))
           | intersection (_, _) =
-          raise REFUTE ("lfp_interpreter",
-            "intersection: interpretation for set is not a node")
+              raise REFUTE ("lfp_interpreter",
+                "intersection: interpretation for set is not a node")
         (* interpretation -> interpretaion *)
         fun lfp (Node resultsets) =
-          fold (fn (set, resultset) => fn acc =>
-            if is_subset (resultset, set) then
-              intersection (acc, set)
-            else
-              acc) (i_sets ~~ resultsets) i_univ
+              fold (fn (set, resultset) => fn acc =>
+                if is_subset (resultset, set) then
+                  intersection (acc, set)
+                else
+                  acc) (i_sets ~~ resultsets) i_univ
           | lfp _ =
-            raise REFUTE ("lfp_interpreter",
-              "lfp: interpretation for function is not a node")
+              raise REFUTE ("lfp_interpreter",
+                "lfp: interpretation for function is not a node")
       in
         SOME (Node (map lfp i_funs), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'gfp' could in principle be interpreted with  *)
-  (* interpreters available already (using its definition), but the code *)
-  (* below is more efficient                                             *)
+(* only an optimization: 'gfp' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
 
-  fun gfp_interpreter thy model args t =
-    case t of
-      Const (@{const_name gfp}, Type ("fun", [Type ("fun",
-        [Type ("fun", [T, @{typ bool}]),
-         Type ("fun", [_, @{typ bool}])]),
-         Type ("fun", [_, @{typ bool}])])) =>
-      let
-        val size_elem = size_of_type thy model T
-        (* the universe (i.e. the set that contains every element) *)
-        val i_univ = Node (replicate size_elem TT)
-        (* all sets with elements from type 'T' *)
-        val i_sets =
-          make_constants thy model (Type ("fun", [T, HOLogic.boolT]))
-        (* all functions that map sets to sets *)
-        val i_funs = make_constants thy model (Type ("fun",
-          [Type ("fun", [T, HOLogic.boolT]),
-           Type ("fun", [T, HOLogic.boolT])]))
-        (* "gfp(f) == Union({u. u <= f(u)})" *)
-        (* interpretation * interpretation -> bool *)
-        fun is_subset (Node subs, Node sups) =
-          forall (fn (sub, sup) => (sub = FF) orelse (sup = TT))
-            (subs ~~ sups)
-          | is_subset (_, _) =
-          raise REFUTE ("gfp_interpreter",
-            "is_subset: interpretation for set is not a node")
-        (* interpretation * interpretation -> interpretation *)
-        fun union (Node xs, Node ys) =
+fun gfp_interpreter thy model args t =
+  case t of
+    Const (@{const_name gfp}, Type ("fun", [Type ("fun",
+      [Type ("fun", [T, @{typ bool}]),
+       Type ("fun", [_, @{typ bool}])]),
+       Type ("fun", [_, @{typ bool}])])) =>
+    let
+      val size_elem = size_of_type thy model T
+      (* the universe (i.e. the set that contains every element) *)
+      val i_univ = Node (replicate size_elem TT)
+      (* all sets with elements from type 'T' *)
+      val i_sets =
+        make_constants thy model (Type ("fun", [T, HOLogic.boolT]))
+      (* all functions that map sets to sets *)
+      val i_funs = make_constants thy model (Type ("fun",
+        [Type ("fun", [T, HOLogic.boolT]),
+         Type ("fun", [T, HOLogic.boolT])]))
+      (* "gfp(f) == Union({u. u <= f(u)})" *)
+      (* interpretation * interpretation -> bool *)
+      fun is_subset (Node subs, Node sups) =
+            forall (fn (sub, sup) => (sub = FF) orelse (sup = TT))
+              (subs ~~ sups)
+        | is_subset (_, _) =
+            raise REFUTE ("gfp_interpreter",
+              "is_subset: interpretation for set is not a node")
+      (* interpretation * interpretation -> interpretation *)
+      fun union (Node xs, Node ys) =
             Node (map (fn (x,y) => if x=TT orelse y=TT then TT else FF)
                  (xs ~~ ys))
-          | union (_, _) =
-          raise REFUTE ("gfp_interpreter",
-            "union: interpretation for set is not a node")
-        (* interpretation -> interpretaion *)
-        fun gfp (Node resultsets) =
-          fold (fn (set, resultset) => fn acc =>
-            if is_subset (set, resultset) then
-              union (acc, set)
-            else
-              acc) (i_sets ~~ resultsets) i_univ
-          | gfp _ =
+        | union (_, _) =
+            raise REFUTE ("gfp_interpreter",
+              "union: interpretation for set is not a node")
+      (* interpretation -> interpretaion *)
+      fun gfp (Node resultsets) =
+            fold (fn (set, resultset) => fn acc =>
+              if is_subset (set, resultset) then
+                union (acc, set)
+              else
+                acc) (i_sets ~~ resultsets) i_univ
+        | gfp _ =
             raise REFUTE ("gfp_interpreter",
               "gfp: interpretation for function is not a node")
-      in
-        SOME (Node (map gfp i_funs), model, args)
-      end
-    | _ =>
-      NONE;
+    in
+      SOME (Node (map gfp i_funs), model, args)
+    end
+  | _ => NONE;
 *)
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'fst' could in principle be interpreted with  *)
-  (* interpreters available already (using its definition), but the code *)
-  (* below is more efficient                                             *)
+(* only an optimization: 'fst' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
 
-  fun Product_Type_fst_interpreter thy model args t =
-    case t of
-      Const (@{const_name fst}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
+fun Product_Type_fst_interpreter thy model args t =
+  case t of
+    Const (@{const_name fst}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
       let
         val constants_T = make_constants thy model T
-        val size_U      = size_of_type thy model U
+        val size_U = size_of_type thy model U
       in
         SOME (Node (maps (replicate size_U) constants_T), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
-  (* theory -> model -> arguments -> Term.term ->
-    (interpretation * model * arguments) option *)
+(* theory -> model -> arguments -> Term.term ->
+  (interpretation * model * arguments) option *)
 
-  (* only an optimization: 'snd' could in principle be interpreted with  *)
-  (* interpreters available already (using its definition), but the code *)
-  (* below is more efficient                                             *)
+(* only an optimization: 'snd' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
 
-  fun Product_Type_snd_interpreter thy model args t =
-    case t of
-      Const (@{const_name snd}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
+fun Product_Type_snd_interpreter thy model args t =
+  case t of
+    Const (@{const_name snd}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
       let
-        val size_T      = size_of_type thy model T
+        val size_T = size_of_type thy model T
         val constants_U = make_constants thy model U
       in
         SOME (Node (flat (replicate size_T constants_U)), model, args)
       end
-    | _ =>
-      NONE;
+  | _ => NONE;
 
 
 (* ------------------------------------------------------------------------- *)
 (* PRINTERS                                                                  *)
 (* ------------------------------------------------------------------------- *)
 
-  (* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
-    Term.term option *)
+(* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
+  Term.term option *)
 
-  fun stlc_printer thy model T intr assignment =
+fun stlc_printer thy model T intr assignment =
   let
     (* string -> string *)
     fun strip_leading_quote s =
       (implode o (fn [] => [] | x::xs => if x="'" then xs else x::xs)
         o explode) s
     (* Term.typ -> string *)
-    fun string_of_typ (Type (s, _))     = s
-      | string_of_typ (TFree (x, _))    = strip_leading_quote x
+    fun string_of_typ (Type (s, _)) = s
+      | string_of_typ (TFree (x, _)) = strip_leading_quote x
       | string_of_typ (TVar ((x,i), _)) =
-      strip_leading_quote x ^ string_of_int i
+          strip_leading_quote x ^ string_of_int i
     (* interpretation -> int *)
     fun index_from_interpretation (Leaf xs) =
-      find_index (PropLogic.eval assignment) xs
+          find_index (PropLogic.eval assignment) xs
       | index_from_interpretation _ =
-      raise REFUTE ("stlc_printer",
-        "interpretation for ground type is not a leaf")
+          raise REFUTE ("stlc_printer",
+            "interpretation for ground type is not a leaf")
   in
     case T of
       Type ("fun", [T1, T2]) =>
-      let
-        (* create all constants of type 'T1' *)
-        val constants = make_constants thy model T1
-        (* interpretation list *)
-        val results = (case intr of
-            Node xs => xs
-          | _       => raise REFUTE ("stlc_printer",
-            "interpretation for function type is a leaf"))
-        (* Term.term list *)
-        val pairs = map (fn (arg, result) =>
-          HOLogic.mk_prod
-            (print thy model T1 arg assignment,
-             print thy model T2 result assignment))
-          (constants ~~ results)
-        (* Term.typ *)
-        val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
-        val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
-        (* Term.term *)
-        val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
-        val HOLogic_insert    =
-          Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
-      in
-        SOME (fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) pairs HOLogic_empty_set)
-      end
-    | Type ("prop", [])      =>
-      (case index_from_interpretation intr of
-        ~1 => SOME (HOLogic.mk_Trueprop (Const (@{const_name undefined}, HOLogic.boolT)))
-      | 0  => SOME (HOLogic.mk_Trueprop HOLogic.true_const)
-      | 1  => SOME (HOLogic.mk_Trueprop HOLogic.false_const)
-      | _  => raise REFUTE ("stlc_interpreter",
-        "illegal interpretation for a propositional value"))
-    | Type _  => if index_from_interpretation intr = (~1) then
-        SOME (Const (@{const_name undefined}, T))
-      else
-        SOME (Const (string_of_typ T ^
-          string_of_int (index_from_interpretation intr), T))
-    | TFree _ => if index_from_interpretation intr = (~1) then
-        SOME (Const (@{const_name undefined}, T))
-      else
-        SOME (Const (string_of_typ T ^
-          string_of_int (index_from_interpretation intr), T))
-    | TVar _  => if index_from_interpretation intr = (~1) then
-        SOME (Const (@{const_name undefined}, T))
-      else
-        SOME (Const (string_of_typ T ^
-          string_of_int (index_from_interpretation intr), T))
+        let
+          (* create all constants of type 'T1' *)
+          val constants = make_constants thy model T1
+          (* interpretation list *)
+          val results =
+            (case intr of
+              Node xs => xs
+            | _ => raise REFUTE ("stlc_printer",
+              "interpretation for function type is a leaf"))
+          (* Term.term list *)
+          val pairs = map (fn (arg, result) =>
+            HOLogic.mk_prod
+              (print thy model T1 arg assignment,
+               print thy model T2 result assignment))
+            (constants ~~ results)
+          (* Term.typ *)
+          val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
+          val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
+          (* Term.term *)
+          val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
+          val HOLogic_insert    =
+            Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
+        in
+          SOME (fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) pairs HOLogic_empty_set)
+        end
+    | Type ("prop", []) =>
+        (case index_from_interpretation intr of
+          ~1 => SOME (HOLogic.mk_Trueprop (Const (@{const_name undefined}, HOLogic.boolT)))
+        | 0  => SOME (HOLogic.mk_Trueprop HOLogic.true_const)
+        | 1  => SOME (HOLogic.mk_Trueprop HOLogic.false_const)
+        | _  => raise REFUTE ("stlc_interpreter",
+          "illegal interpretation for a propositional value"))
+    | Type _  =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
+    | TFree _ =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
+    | TVar _  =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
   end;
 
-  (* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
-    Term.term option *)
+(* theory -> model -> Term.typ -> interpretation -> (int -> bool) ->
+  Term.term option *)
 
-  fun IDT_printer thy model T intr assignment =
-    (case T of
-      Type (s, Ts) =>
+fun IDT_printer thy model T intr assignment =
+  (case T of
+    Type (s, Ts) =>
       (case Datatype.get_info thy s of
         SOME info =>  (* inductive datatype *)
-        let
-          val (typs, _)           = model
-          val index               = #index info
-          val descr               = #descr info
-          val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-          val typ_assoc           = dtyps ~~ Ts
-          (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-          val _ = if Library.exists (fn d =>
-              case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
-            then
-              raise REFUTE ("IDT_printer", "datatype argument (for type " ^
-                Syntax.string_of_typ_global thy (Type (s, Ts)) ^ ") is not a variable")
-            else ()
-          (* the index of the element in the datatype *)
-          val element = (case intr of
-              Leaf xs => find_index (PropLogic.eval assignment) xs
-            | Node _  => raise REFUTE ("IDT_printer",
-              "interpretation is not a leaf"))
-        in
-          if element < 0 then
-            SOME (Const (@{const_name undefined}, Type (s, Ts)))
-          else let
-            (* takes a datatype constructor, and if for some arguments this  *)
-            (* constructor generates the datatype's element that is given by *)
-            (* 'element', returns the constructor (as a term) as well as the *)
-            (* indices of the arguments                                      *)
-            fun get_constr_args (cname, cargs) =
+          let
+            val (typs, _)           = model
+            val index               = #index info
+            val descr               = #descr info
+            val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+            val typ_assoc           = dtyps ~~ Ts
+            (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+            val _ =
+              if Library.exists (fn d =>
+                case d of Datatype_Aux.DtTFree _ => false | _ => true) dtyps
+              then
+                raise REFUTE ("IDT_printer", "datatype argument (for type " ^
+                  Syntax.string_of_typ_global thy (Type (s, Ts)) ^ ") is not a variable")
+              else ()
+            (* the index of the element in the datatype *)
+            val element =
+              (case intr of
+                Leaf xs => find_index (PropLogic.eval assignment) xs
+              | Node _  => raise REFUTE ("IDT_printer",
+                "interpretation is not a leaf"))
+          in
+            if element < 0 then
+              SOME (Const (@{const_name undefined}, Type (s, Ts)))
+            else
               let
-                val cTerm      = Const (cname,
-                  map (typ_of_dtyp descr typ_assoc) cargs ---> Type (s, Ts))
-                val (iC, _, _) = interpret thy (typs, []) {maxvars=0,
-                  def_eq=false, next_idx=1, bounds=[], wellformed=True} cTerm
-                (* interpretation -> int list option *)
-                fun get_args (Leaf xs) =
-                  if find_index (fn x => x = True) xs = element then
-                    SOME []
-                  else
-                    NONE
-                  | get_args (Node xs) =
+                (* takes a datatype constructor, and if for some arguments this  *)
+                (* constructor generates the datatype's element that is given by *)
+                (* 'element', returns the constructor (as a term) as well as the *)
+                (* indices of the arguments                                      *)
+                fun get_constr_args (cname, cargs) =
                   let
-                    (* interpretation * int -> int list option *)
-                    fun search ([], _) =
-                      NONE
-                      | search (x::xs, n) =
-                      (case get_args x of
-                        SOME result => SOME (n::result)
-                      | NONE        => search (xs, n+1))
+                    val cTerm      = Const (cname,
+                      map (typ_of_dtyp descr typ_assoc) cargs ---> Type (s, Ts))
+                    val (iC, _, _) = interpret thy (typs, []) {maxvars=0,
+                      def_eq=false, next_idx=1, bounds=[], wellformed=True} cTerm
+                    (* interpretation -> int list option *)
+                    fun get_args (Leaf xs) =
+                          if find_index (fn x => x = True) xs = element then
+                            SOME []
+                          else
+                            NONE
+                      | get_args (Node xs) =
+                          let
+                            (* interpretation * int -> int list option *)
+                            fun search ([], _) =
+                              NONE
+                              | search (x::xs, n) =
+                              (case get_args x of
+                                SOME result => SOME (n::result)
+                              | NONE        => search (xs, n+1))
+                          in
+                            search (xs, 0)
+                          end
                   in
-                    search (xs, 0)
+                    Option.map (fn args => (cTerm, cargs, args)) (get_args iC)
                   end
+                val (cTerm, cargs, args) =
+                  (* we could speed things up by computing the correct          *)
+                  (* constructor directly (rather than testing all              *)
+                  (* constructors), based on the order in which constructors    *)
+                  (* generate elements of datatypes; the current implementation *)
+                  (* of 'IDT_printer' however is independent of the internals   *)
+                  (* of 'IDT_constructor_interpreter'                           *)
+                  (case get_first get_constr_args constrs of
+                    SOME x => x
+                  | NONE   => raise REFUTE ("IDT_printer",
+                    "no matching constructor found for element " ^
+                    string_of_int element))
+                val argsTerms = map (fn (d, n) =>
+                  let
+                    val dT = typ_of_dtyp descr typ_assoc d
+                    (* we only need the n-th element of this list, so there   *)
+                    (* might be a more efficient implementation that does not *)
+                    (* generate all constants                                 *)
+                    val consts = make_constants thy (typs, []) dT
+                  in
+                    print thy (typs, []) dT (List.nth (consts, n)) assignment
+                  end) (cargs ~~ args)
               in
-                Option.map (fn args => (cTerm, cargs, args)) (get_args iC)
+                SOME (list_comb (cTerm, argsTerms))
               end
-            val (cTerm, cargs, args) =
-              (* we could speed things up by computing the correct          *)
-              (* constructor directly (rather than testing all              *)
-              (* constructors), based on the order in which constructors    *)
-              (* generate elements of datatypes; the current implementation *)
-              (* of 'IDT_printer' however is independent of the internals   *)
-              (* of 'IDT_constructor_interpreter'                           *)
-              (case get_first get_constr_args constrs of
-                SOME x => x
-              | NONE   => raise REFUTE ("IDT_printer",
-                "no matching constructor found for element " ^
-                string_of_int element))
-            val argsTerms = map (fn (d, n) =>
-              let
-                val dT     = typ_of_dtyp descr typ_assoc d
-                (* we only need the n-th element of this list, so there   *)
-                (* might be a more efficient implementation that does not *)
-                (* generate all constants                                 *)
-                val consts = make_constants thy (typs, []) dT
-              in
-                print thy (typs, []) dT (List.nth (consts, n)) assignment
-              end) (cargs ~~ args)
-          in
-            SOME (list_comb (cTerm, argsTerms))
           end
-        end
       | NONE =>  (* not an inductive datatype *)
-        NONE)
-    | _ =>  (* a (free or schematic) type variable *)
+          NONE)
+  | _ =>  (* a (free or schematic) type variable *)
       NONE);
 
 
@@ -3260,28 +3246,29 @@
 (*       subterms that are then passed to other interpreters!                *)
 (* ------------------------------------------------------------------------- *)
 
-  val setup =
-     add_interpreter "stlc"    stlc_interpreter #>
-     add_interpreter "Pure"    Pure_interpreter #>
-     add_interpreter "HOLogic" HOLogic_interpreter #>
-     add_interpreter "set"     set_interpreter #>
-     add_interpreter "IDT"             IDT_interpreter #>
-     add_interpreter "IDT_constructor" IDT_constructor_interpreter #>
-     add_interpreter "IDT_recursion"   IDT_recursion_interpreter #>
-     add_interpreter "Finite_Set.card"    Finite_Set_card_interpreter #>
-     add_interpreter "Finite_Set.finite"  Finite_Set_finite_interpreter #>
-     add_interpreter "Nat_Orderings.less" Nat_less_interpreter #>
-     add_interpreter "Nat_HOL.plus"       Nat_plus_interpreter #>
-     add_interpreter "Nat_HOL.minus"      Nat_minus_interpreter #>
-     add_interpreter "Nat_HOL.times"      Nat_times_interpreter #>
-     add_interpreter "List.append" List_append_interpreter #>
+val setup =
+   add_interpreter "stlc"    stlc_interpreter #>
+   add_interpreter "Pure"    Pure_interpreter #>
+   add_interpreter "HOLogic" HOLogic_interpreter #>
+   add_interpreter "set"     set_interpreter #>
+   add_interpreter "IDT"             IDT_interpreter #>
+   add_interpreter "IDT_constructor" IDT_constructor_interpreter #>
+   add_interpreter "IDT_recursion"   IDT_recursion_interpreter #>
+   add_interpreter "Finite_Set.card"    Finite_Set_card_interpreter #>
+   add_interpreter "Finite_Set.finite"  Finite_Set_finite_interpreter #>
+   add_interpreter "Nat_Orderings.less" Nat_less_interpreter #>
+   add_interpreter "Nat_HOL.plus"       Nat_plus_interpreter #>
+   add_interpreter "Nat_HOL.minus"      Nat_minus_interpreter #>
+   add_interpreter "Nat_HOL.times"      Nat_times_interpreter #>
+   add_interpreter "List.append" List_append_interpreter #>
 (* UNSOUND
-     add_interpreter "lfp" lfp_interpreter #>
-     add_interpreter "gfp" gfp_interpreter #>
+   add_interpreter "lfp" lfp_interpreter #>
+   add_interpreter "gfp" gfp_interpreter #>
 *)
-     add_interpreter "Product_Type.fst" Product_Type_fst_interpreter #>
-     add_interpreter "Product_Type.snd" Product_Type_snd_interpreter #>
-     add_printer "stlc" stlc_printer #>
-     add_printer "IDT"  IDT_printer;
+   add_interpreter "Product_Type.fst" Product_Type_fst_interpreter #>
+   add_interpreter "Product_Type.snd" Product_Type_snd_interpreter #>
+   add_printer "stlc" stlc_printer #>
+   add_printer "IDT"  IDT_printer;
 
-end  (* structure Refute *)
+end;
+