converted to Isar theory format;
authorwenzelm
Fri, 16 Sep 2005 23:01:29 +0200
changeset 17441 5b5feca0344a
parent 17440 df77edc4f5d0
child 17442 c0f0b92c198c
converted to Isar theory format;
src/CTT/Arith.ML
src/CTT/Arith.thy
src/CTT/Bool.ML
src/CTT/Bool.thy
src/CTT/CTT.ML
src/CTT/CTT.thy
src/CTT/Main.thy
src/CTT/ROOT.ML
src/CTT/ex/synth.ML
--- a/src/CTT/Arith.ML	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/Arith.ML	Fri Sep 16 23:01:29 2005 +0200
@@ -1,4 +1,4 @@
-(*  Title:      CTT/Arith
+(*  Title:      CTT/Arith.ML
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
@@ -31,7 +31,7 @@
 
 Goalw arith_defs "[| a:N;  b:N |] ==> succ(a) #+ b = succ(a #+ b) : N";
 by (rew_tac []) ;
-qed "addC_succ"; 
+qed "addC_succ";
 
 
 (** Multiplication *)
@@ -144,7 +144,7 @@
 
 
 (*Commutative law for addition.  Can be proved using three inductions.
-  Must simplify after first induction!  Orientation of rewrites is delicate*)  
+  Must simplify after first induction!  Orientation of rewrites is delicate*)
 Goal "[| a:N;  b:N |] ==> a #+ b = b #+ a : N";
 by (NE_tac "a" 1);
 by (hyp_arith_rew_tac []);
@@ -182,7 +182,7 @@
 by (hyp_arith_rew_tac [add_assoc RS sym_elem]);
 by (REPEAT (assume_tac 1
      ORELSE resolve_tac ([add_commute,mult_typingL,add_typingL]@ intrL_rls@
-			 [refl_elem])   1)) ;
+                         [refl_elem])   1)) ;
 qed "mult_succ_right";
 
 (*Commutative law for multiplication*)
@@ -227,18 +227,18 @@
 Goal "b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)";
 by (NE_tac "b" 1);
 (*strip one "universal quantifier" but not the "implication"*)
-by (resolve_tac intr_rls 3);  
+by (resolve_tac intr_rls 3);
 (*case analysis on x in
     (succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *)
-by (NE_tac "x" 4 THEN assume_tac 4); 
+by (NE_tac "x" 4 THEN assume_tac 4);
 (*Prepare for simplification of types -- the antecedent succ(u)<=x *)
 by (rtac replace_type 5);
 by (rtac replace_type 4);
-by (arith_rew_tac []); 
+by (arith_rew_tac []);
 (*Solves first 0 goal, simplifies others.  Two sugbgoals remain.
   Both follow by rewriting, (2) using quantified induction hyp*)
 by (intr_tac[]);  (*strips remaining PRODs*)
-by (hyp_arith_rew_tac [add_0_right]);  
+by (hyp_arith_rew_tac [add_0_right]);
 by (assume_tac 1);
 qed "add_diff_inverse_lemma";
 
@@ -319,7 +319,7 @@
 by (typechk_tac [diff_typing]);
 qed "absdiff_eq0_lem";
 
-(*if  a |-| b = 0  then  a = b  
+(*if  a |-| b = 0  then  a = b
   proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*)
 Goal "[| a |-| b = 0 : N;  a:N;  b:N |] ==> a = b : N";
 by (rtac EqE 1);
@@ -340,11 +340,11 @@
 Goalw [mod_def] "[| a:N;  b:N |] ==> a mod b : N";
 by (typechk_tac [absdiff_typing]) ;
 qed "mod_typing";
- 
+
 Goalw [mod_def] "[| a=c:N;  b=d:N |] ==> a mod b = c mod d : N";
 by (equal_tac [absdiff_typingL]) ;
 qed "mod_typingL";
- 
+
 
 (*computation for  mod : 0 and successor cases*)
 
@@ -352,7 +352,7 @@
 by (rew_tac [absdiff_typing]) ;
 qed "modC0";
 
-Goalw [mod_def]   
+Goalw [mod_def]
 "[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N";
 by (rew_tac [absdiff_typing]) ;
 qed "modC_succ";
@@ -377,7 +377,7 @@
 by (rew_tac [mod_typing, absdiff_typing]) ;
 qed "divC0";
 
-Goalw [div_def] 
+Goalw [div_def]
  "[| a:N;  b:N |] ==> succ(a) div b = \
 \    rec(succ(a) mod b, succ(a div b), %x y. a div b) : N";
 by (rew_tac [mod_typing]) ;
@@ -406,19 +406,17 @@
 (*Main Result.  Holds when b is 0 since   a mod 0 = a     and    a div 0 = 0  *)
 Goal "[| a:N;  b:N |] ==> a mod b  #+  (a div b) #* b = a : N";
 by (NE_tac "a" 1);
-by (arith_rew_tac (div_typing_rls@[modC0,modC_succ,divC0,divC_succ2])); 
+by (arith_rew_tac (div_typing_rls@[modC0,modC_succ,divC0,divC_succ2]));
 by (rtac EqE 1);
 (*case analysis on   succ(u mod b)|-|b  *)
-by (res_inst_tac [("a1", "succ(u mod b) |-| b")] 
+by (res_inst_tac [("a1", "succ(u mod b) |-| b")]
                  (iszero_decidable RS PlusE) 1);
 by (etac SumE 3);
 by (hyp_arith_rew_tac (div_typing_rls @
-        [modC0,modC_succ, divC0, divC_succ2])); 
+        [modC0,modC_succ, divC0, divC_succ2]));
 (*Replace one occurence of  b  by succ(u mod b).  Clumsy!*)
 by (resolve_tac [ add_typingL RS trans_elem ] 1);
 by (eresolve_tac [EqE RS absdiff_eq0 RS sym_elem] 1);
 by (rtac refl_elem 3);
-by (hyp_arith_rew_tac (div_typing_rls)); 
+by (hyp_arith_rew_tac (div_typing_rls));
 qed "mod_div_equality";
-
-writeln"Reached end of file.";
--- a/src/CTT/Arith.thy	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/Arith.thy	Fri Sep 16 23:01:29 2005 +0200
@@ -1,30 +1,42 @@
-(*  Title:      CTT/arith
+(*  Title:      CTT/Arith.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
-
-Arithmetic operators and their definitions
-
-Proves about elementary arithmetic: addition, multiplication, etc.
-Tests definitions and simplifier.
 *)
 
-Arith = CTT +
+header {* Arithmetic operators and their definitions *}
+
+theory Arith
+imports Bool
+begin
 
-consts "#+","-","|-|"   :: "[i,i]=>i"   (infixr 65)
-       "#*",div,mod     :: "[i,i]=>i"   (infixr 70)
+text {*
+  Proves about elementary arithmetic: addition, multiplication, etc.
+  Tests definitions and simplifier.
+*}
+
+consts
+  "#+"  :: "[i,i]=>i"   (infixr 65)
+  "-"   :: "[i,i]=>i"   (infixr 65)
+  "|-|" :: "[i,i]=>i"   (infixr 65)
+  "#*"  :: "[i,i]=>i"   (infixr 70)
+  div   :: "[i,i]=>i"   (infixr 70)
+  mod   :: "[i,i]=>i"   (infixr 70)
 
 syntax (xsymbols)
-  "op #*"      :: [i, i] => i   (infixr "#\\<times>" 70)
+  "op #*"      :: "[i, i] => i"   (infixr "#\<times>" 70)
 
 syntax (HTML output)
-  "op #*"      :: [i, i] => i   (infixr "#\\<times>" 70)
+  "op #*"      :: "[i, i] => i"   (infixr "#\<times>" 70)
 
-rules
-  add_def     "a#+b == rec(a, b, %u v. succ(v))"  
-  diff_def    "a-b == rec(b, a, %u v. rec(v, 0, %x y. x))"  
-  absdiff_def "a|-|b == (a-b) #+ (b-a)"  
-  mult_def    "a#*b == rec(a, 0, %u v. b #+ v)"  
-  mod_def     "a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))"
-  div_def     "a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))"
+defs
+  add_def:     "a#+b == rec(a, b, %u v. succ(v))"
+  diff_def:    "a-b == rec(b, a, %u v. rec(v, 0, %x y. x))"
+  absdiff_def: "a|-|b == (a-b) #+ (b-a)"
+  mult_def:    "a#*b == rec(a, 0, %u v. b #+ v)"
+  mod_def:     "a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))"
+  div_def:     "a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))"
+
+ML {* use_legacy_bindings (the_context ()) *}
+
 end
--- a/src/CTT/Bool.ML	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/Bool.ML	Fri Sep 16 23:01:29 2005 +0200
@@ -2,8 +2,6 @@
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
-
-The two-element type (booleans and conditionals)
 *)
 
 val bool_defs = [Bool_def,true_def,false_def,cond_def];
@@ -27,7 +25,7 @@
 qed "boolI_false";
 
 (*elimination rule: typing of cond*)
-Goalw bool_defs 
+Goalw bool_defs
     "[| p:Bool;  a : C(true);  b : C(false) |] ==> cond(p,a,b) : C(p)";
 by (typechk_tac []);
 by (ALLGOALS (etac TE));
@@ -43,7 +41,7 @@
 
 (*computation rules for true, false*)
 
-Goalw bool_defs 
+Goalw bool_defs
     "[| a : C(true);  b : C(false) |] ==> cond(true,a,b) = a : C(true)";
 by (resolve_tac comp_rls 1);
 by (typechk_tac []);
@@ -58,6 +56,3 @@
 by (ALLGOALS (etac TE));
 by (typechk_tac []) ;
 qed "boolC_false";
-
-writeln"Reached end of file.";
-
--- a/src/CTT/Bool.thy	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/Bool.thy	Fri Sep 16 23:01:29 2005 +0200
@@ -2,18 +2,26 @@
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
-
-The two-element type (booleans and conditionals)
 *)
 
-Bool = CTT +
+header {* The two-element type (booleans and conditionals) *}
+
+theory Bool
+imports CTT
+uses "~~/src/Provers/typedsimp.ML" "rew.ML"
+begin
 
-consts Bool             :: "t"
-       true,false       :: "i"
-       cond             :: "[i,i,i]=>i"
-rules
-  Bool_def      "Bool == T+T"
-  true_def      "true == inl(tt)"
-  false_def     "false == inr(tt)"
-  cond_def      "cond(a,b,c) == when(a, %u. b, %u. c)"
+consts
+  Bool        :: "t"
+  true        :: "i"
+  false       :: "i"
+  cond        :: "[i,i,i]=>i"
+defs
+  Bool_def:   "Bool == T+T"
+  true_def:   "true == inl(tt)"
+  false_def:  "false == inr(tt)"
+  cond_def:   "cond(a,b,c) == when(a, %u. b, %u. c)"
+
+ML {* use_legacy_bindings (the_context ()) *}
+
 end
--- a/src/CTT/CTT.ML	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/CTT.ML	Fri Sep 16 23:01:29 2005 +0200
@@ -10,7 +10,7 @@
 val form_rls = [NF, ProdF, SumF, PlusF, EqF, FF, TF]
 and formL_rls = [ProdFL, SumFL, PlusFL, EqFL];
 
- 
+
 (*Introduction rules
   OMITTED: EqI, because its premise is an eqelem, not an elem*)
 val intr_rls = [NI0, NI_succ, ProdI, SumI, PlusI_inl, PlusI_inr, TI]
@@ -42,7 +42,7 @@
 
 val intrL2_rls = [NI_succL, ProdIL, SumIL2, PlusI_inlL, PlusI_inrL];
 
-(*Exploit p:Prod(A,B) to create the assumption z:B(a).  
+(*Exploit p:Prod(A,B) to create the assumption z:B(a).
   A more natural form of product elimination. *)
 val prems = Goal "[| p: Prod(A,B);  a: A;  !!z. z: B(a) ==> c(z): C(z) \
 \    |] ==> c(p`a): C(p`a)";
@@ -56,7 +56,7 @@
   | is_rigid_elem (Const("CTT.Type",_) $ a) = not(is_Var (head_of a))
   | is_rigid_elem _ = false;
 
-(*Try solving a:A or a=b:A by assumption provided a is rigid!*) 
+(*Try solving a:A or a=b:A by assumption provided a is rigid!*)
 val test_assume_tac = SUBGOAL(fn (prem,i) =>
     if is_rigid_elem (Logic.strip_assums_concl prem)
     then  assume_tac i  else  no_tac);
@@ -81,7 +81,7 @@
   in  REPEAT_FIRST (ASSUME tac)  end;
 
 
-(*Solve a:A (a flexible, A rigid) by introduction rules. 
+(*Solve a:A (a flexible, A rigid) by introduction rules.
   Cannot use stringtrees (filt_resolve_tac) since
   goals like ?a:SUM(A,B) have a trivial head-string *)
 fun intr_tac thms =
@@ -125,22 +125,22 @@
 val eqintr_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(EqI::intr_rls) 1));
 
 (** Tactics that instantiate CTT-rules.
-    Vars in the given terms will be incremented! 
+    Vars in the given terms will be incremented!
     The (rtac EqE i) lets them apply to equality judgements. **)
 
-fun NE_tac (sp: string) i = 
+fun NE_tac (sp: string) i =
   TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] NE i;
 
-fun SumE_tac (sp: string) i = 
+fun SumE_tac (sp: string) i =
   TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] SumE i;
 
-fun PlusE_tac (sp: string) i = 
+fun PlusE_tac (sp: string) i =
   TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] PlusE i;
 
 (** Predicate logic reasoning, WITH THINNING!!  Procedures adapted from NJ. **)
 
 (*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *)
-fun add_mp_tac i = 
+fun add_mp_tac i =
     rtac subst_prodE i  THEN  assume_tac i  THEN  assume_tac i;
 
 (*Finds P-->Q and P in the assumptions, replaces implication by Q *)
@@ -148,11 +148,11 @@
 
 (*"safe" when regarded as predicate calculus rules*)
 val safe_brls = sort (make_ord lessb)
-    [ (true,FE), (true,asm_rl), 
+    [ (true,FE), (true,asm_rl),
       (false,ProdI), (true,SumE), (true,PlusE) ];
 
 val unsafe_brls =
-    [ (false,PlusI_inl), (false,PlusI_inr), (false,SumI), 
+    [ (false,PlusI_inl), (false,PlusI_inr), (false,SumI),
       (true,subst_prodE) ];
 
 (*0 subgoals vs 1 or more*)
@@ -160,12 +160,12 @@
     List.partition (apl(0,op=) o subgoals_of_brl) safe_brls;
 
 fun safestep_tac thms i =
-    form_tac  ORELSE  
+    form_tac  ORELSE
     resolve_tac thms i  ORELSE
     biresolve_tac safe0_brls i  ORELSE  mp_tac i  ORELSE
     DETERM (biresolve_tac safep_brls i);
 
-fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i); 
+fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i);
 
 fun step_tac thms = safestep_tac thms  ORELSE'  biresolve_tac unsafe_brls;
 
--- a/src/CTT/CTT.thy	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/CTT.thy	Fri Sep 16 23:01:29 2005 +0200
@@ -1,21 +1,23 @@
-(*  Title:      CTT/ctt.thy
+(*  Title:      CTT/CTT.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
-
-Constructive Type Theory
 *)
 
-CTT = Pure +
+header {* Constructive Type Theory *}
 
-types
-  i
-  t
-  o
+theory CTT
+imports Pure
+begin
+
+typedecl i
+typedecl t
+typedecl o
 
 consts
   (*Types*)
-  F,T       :: "t"          (*F is empty, T contains one element*)
+  F         :: "t"
+  T         :: "t"          (*F is empty, T contains one element*)
   contr     :: "i=>i"
   tt        :: "i"
   (*Natural numbers*)
@@ -23,11 +25,13 @@
   succ      :: "i=>i"
   rec       :: "[i, i, [i,i]=>i] => i"
   (*Unions*)
-  inl,inr   :: "i=>i"
+  inl       :: "i=>i"
+  inr       :: "i=>i"
   when      :: "[i, i=>i, i=>i]=>i"
   (*General Sum and Binary Product*)
   Sum       :: "[t, i=>t]=>t"
-  fst,snd   :: "i=>i"
+  fst       :: "i=>i"
+  snd       :: "i=>i"
   split     :: "[i, [i,i]=>i] =>i"
   (*General Product and Function Space*)
   Prod      :: "[t, i=>t]=>t"
@@ -64,24 +68,30 @@
   "SUM x:A. B"  => "Sum(A, %x. B)"
   "A * B"       => "Sum(A, _K(B))"
 
+print_translation {*
+  [("Prod", dependent_tr' ("@PROD", "@-->")),
+   ("Sum", dependent_tr' ("@SUM", "@*"))]
+*}
+
+
 syntax (xsymbols)
-  "@-->"    :: "[t,t]=>t"           ("(_ \\<longrightarrow>/ _)" [31,30] 30)
-  "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
-  Elem      :: "[i, t]=>prop"       ("(_ /\\<in> _)" [10,10] 5)
-  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
-  "@SUM"    :: "[idt,t,t] => t"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
-  "@PROD"   :: "[idt,t,t] => t"     ("(3\\<Pi> _\\<in>_./ _)"    10)
-  "lam "    :: "[idts, i] => i"     ("(3\\<lambda>\\<lambda>_./ _)" 10)
+  "@-->"    :: "[t,t]=>t"           ("(_ \<longrightarrow>/ _)" [31,30] 30)
+  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
+  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
+  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
+  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
+  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
+  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 
 syntax (HTML output)
-  "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
-  Elem      :: "[i, t]=>prop"       ("(_ /\\<in> _)" [10,10] 5)
-  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
-  "@SUM"    :: "[idt,t,t] => t"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
-  "@PROD"   :: "[idt,t,t] => t"     ("(3\\<Pi> _\\<in>_./ _)"    10)
-  "lam "    :: "[idts, i] => i"     ("(3\\<lambda>\\<lambda>_./ _)" 10)
+  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
+  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
+  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
+  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
+  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
+  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 
-rules
+axioms
 
   (*Reduction: a weaker notion than equality;  a hack for simplification.
     Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
@@ -89,167 +99,167 @@
 
   (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
     No new theorems can be proved about the standard judgements.*)
-  refl_red "Reduce[a,a]"
-  red_if_equal "a = b : A ==> Reduce[a,b]"
-  trans_red "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
+  refl_red: "Reduce[a,a]"
+  red_if_equal: "a = b : A ==> Reduce[a,b]"
+  trans_red: "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
 
   (*Reflexivity*)
 
-  refl_type "A type ==> A = A"
-  refl_elem "a : A ==> a = a : A"
+  refl_type: "A type ==> A = A"
+  refl_elem: "a : A ==> a = a : A"
 
   (*Symmetry*)
 
-  sym_type  "A = B ==> B = A"
-  sym_elem  "a = b : A ==> b = a : A"
+  sym_type:  "A = B ==> B = A"
+  sym_elem:  "a = b : A ==> b = a : A"
 
   (*Transitivity*)
 
-  trans_type   "[| A = B;  B = C |] ==> A = C"
-  trans_elem   "[| a = b : A;  b = c : A |] ==> a = c : A"
+  trans_type:   "[| A = B;  B = C |] ==> A = C"
+  trans_elem:   "[| a = b : A;  b = c : A |] ==> a = c : A"
 
-  equal_types  "[| a : A;  A = B |] ==> a : B"
-  equal_typesL "[| a = b : A;  A = B |] ==> a = b : B"
+  equal_types:  "[| a : A;  A = B |] ==> a : B"
+  equal_typesL: "[| a = b : A;  A = B |] ==> a = b : B"
 
   (*Substitution*)
 
-  subst_type   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
-  subst_typeL  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
+  subst_type:   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
+  subst_typeL:  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
 
-  subst_elem   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
-  subst_elemL
+  subst_elem:   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
+  subst_elemL:
     "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
 
 
   (*The type N -- natural numbers*)
 
-  NF "N type"
-  NI0 "0 : N"
-  NI_succ "a : N ==> succ(a) : N"
-  NI_succL  "a = b : N ==> succ(a) = succ(b) : N"
+  NF: "N type"
+  NI0: "0 : N"
+  NI_succ: "a : N ==> succ(a) : N"
+  NI_succL:  "a = b : N ==> succ(a) = succ(b) : N"
 
-  NE
-   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
+  NE:
+   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
    ==> rec(p, a, %u v. b(u,v)) : C(p)"
 
-  NEL
-   "[| p = q : N;  a = c : C(0);  
-      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] 
+  NEL:
+   "[| p = q : N;  a = c : C(0);
+      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |]
    ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)"
 
-  NC0
-   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
+  NC0:
+   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
    ==> rec(0, a, %u v. b(u,v)) = a : C(0)"
 
-  NC_succ
-   "[| p: N;  a: C(0);  
-       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  
+  NC_succ:
+   "[| p: N;  a: C(0);
+       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>
    rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))"
 
   (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
-  zero_ne_succ
+  zero_ne_succ:
     "[| a: N;  0 = succ(a) : N |] ==> 0: F"
 
 
   (*The Product of a family of types*)
 
-  ProdF  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"
+  ProdF:  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"
 
-  ProdFL
-   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> 
+  ProdFL:
+   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==>
    PROD x:A. B(x) = PROD x:C. D(x)"
 
-  ProdI
+  ProdI:
    "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)"
 
-  ProdIL
-   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==> 
+  ProdIL:
+   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==>
    lam x. b(x) = lam x. c(x) : PROD x:A. B(x)"
 
-  ProdE  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
-  ProdEL "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"
+  ProdE:  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
+  ProdEL: "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"
 
-  ProdC
-   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==> 
+  ProdC:
+   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==>
    (lam x. b(x)) ` a = b(a) : B(a)"
 
-  ProdC2
+  ProdC2:
    "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)"
 
 
   (*The Sum of a family of types*)
 
-  SumF  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
-  SumFL
+  SumF:  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
+  SumFL:
     "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)"
 
-  SumI  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
-  SumIL "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"
+  SumI:  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
+  SumIL: "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"
 
-  SumE
-    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
+  SumE:
+    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
     ==> split(p, %x y. c(x,y)) : C(p)"
 
-  SumEL
-    "[| p=q : SUM x:A. B(x); 
-       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] 
+  SumEL:
+    "[| p=q : SUM x:A. B(x);
+       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|]
     ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)"
 
-  SumC
-    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
+  SumC:
+    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
     ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)"
 
-  fst_def   "fst(a) == split(a, %x y. x)"
-  snd_def   "snd(a) == split(a, %x y. y)"
+  fst_def:   "fst(a) == split(a, %x y. x)"
+  snd_def:   "snd(a) == split(a, %x y. y)"
 
 
   (*The sum of two types*)
 
-  PlusF   "[| A type;  B type |] ==> A+B type"
-  PlusFL  "[| A = C;  B = D |] ==> A+B = C+D"
+  PlusF:   "[| A type;  B type |] ==> A+B type"
+  PlusFL:  "[| A = C;  B = D |] ==> A+B = C+D"
 
-  PlusI_inl   "[| a : A;  B type |] ==> inl(a) : A+B"
-  PlusI_inlL "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
+  PlusI_inl:   "[| a : A;  B type |] ==> inl(a) : A+B"
+  PlusI_inlL: "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
 
-  PlusI_inr   "[| A type;  b : B |] ==> inr(b) : A+B"
-  PlusI_inrL "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
+  PlusI_inr:   "[| A type;  b : B |] ==> inr(b) : A+B"
+  PlusI_inrL: "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
 
-  PlusE
-    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));  
-                !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusE:
+    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));
+                !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(p, %x. c(x), %y. d(y)) : C(p)"
 
-  PlusEL
-    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));   
-                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] 
+  PlusEL:
+    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));
+                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |]
     ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)"
 
-  PlusC_inl
-    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));  
-              !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusC_inl:
+    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));
+              !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))"
 
-  PlusC_inr
-    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));  
-              !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusC_inr:
+    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));
+              !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))"
 
 
   (*The type Eq*)
 
-  EqF    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
-  EqFL "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
-  EqI "a = b : A ==> eq : Eq(A,a,b)"
-  EqE "p : Eq(A,a,b) ==> a = b : A"
+  EqF:    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
+  EqFL: "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
+  EqI: "a = b : A ==> eq : Eq(A,a,b)"
+  EqE: "p : Eq(A,a,b) ==> a = b : A"
 
   (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
-  EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
+  EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
 
   (*The type F*)
 
-  FF "F type"
-  FE "[| p: F;  C type |] ==> contr(p) : C"
-  FEL  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
+  FF: "F type"
+  FE: "[| p: F;  C type |] ==> contr(p) : C"
+  FEL:  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
 
   (*The type T
      Martin-Lof's book (page 68) discusses elimination and computation.
@@ -257,17 +267,12 @@
      but with an extra premise C(x) type x:T.
      Also computation can be derived from elimination. *)
 
-  TF "T type"
-  TI "tt : T"
-  TE "[| p : T;  c : C(tt) |] ==> c : C(p)"
-  TEL "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
-  TC "p : T ==> p = tt : T"
-end
+  TF: "T type"
+  TI: "tt : T"
+  TE: "[| p : T;  c : C(tt) |] ==> c : C(p)"
+  TEL: "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
+  TC: "p : T ==> p = tt : T"
 
-
-ML
+ML {* use_legacy_bindings (the_context ()) *}
 
-val print_translation =
-  [("Prod", dependent_tr' ("@PROD", "@-->")),
-   ("Sum", dependent_tr' ("@SUM", "@*"))];
-
+end
--- a/src/CTT/Main.thy	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/Main.thy	Fri Sep 16 23:01:29 2005 +0200
@@ -1,6 +1,9 @@
 
-(*theory Main includes everything*)
+(* $Id$ *)
+
+header {* Main includes everything *}
 
-theory Main imports CTT Arith Bool begin
-
+theory Main
+imports CTT Arith Bool
+begin
 end
--- a/src/CTT/ROOT.ML	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/ROOT.ML	Fri Sep 16 23:01:29 2005 +0200
@@ -10,13 +10,6 @@
 val banner = "Constructive Type Theory";
 writeln banner;
 
-print_depth 1;  
-
-use_thy "CTT";
-use "~~/src/Provers/typedsimp.ML";
-use "rew.ML";
 use_thy "Main";
 
-print_depth 8;
-
 Goal "tt : T";  (*leave subgoal package empty*)
--- a/src/CTT/ex/synth.ML	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/ex/synth.ML	Fri Sep 16 23:01:29 2005 +0200
@@ -6,7 +6,7 @@
 
 writeln"Synthesis examples, using a crude form of narrowing";
 
-context Arith.thy;
+context (theory "Arith");
 
 writeln"discovery of predecessor function";
 Goal