case_ss: now built upon ZF/Order/bij_inverse_ss. Deleted
own bij_inverse_ss and replaces uses by case_ss
--- a/src/ZF/Cardinal.ML Thu Dec 15 11:17:49 1994 +0100
+++ b/src/ZF/Cardinal.ML Thu Dec 15 11:50:53 1994 +0100
@@ -406,14 +406,9 @@
(*** Towards Cardinal Arithmetic ***)
(** Congruence laws for successor, cardinal addition and multiplication **)
-val case_ss = ZF_ss addsimps [Inl_iff, Inl_Inr_iff, Inr_iff, Inr_Inl_iff,
- case_Inl, case_Inr, InlI, InrI];
-
-val bij_inverse_ss =
- case_ss addsimps [bij_is_fun RS apply_type,
- bij_converse_bij RS bij_is_fun RS apply_type,
- left_inverse_bij, right_inverse_bij];
-
+val case_ss =
+ bij_inverse_ss addsimps [Inl_iff, Inl_Inr_iff, Inr_iff, Inr_Inl_iff,
+ case_Inl, case_Inr, InlI, InrI];
(*Congruence law for cons under equipollence*)
goalw Cardinal.thy [lepoll_def]
@@ -448,7 +443,7 @@
("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(fa)`y))")]
lam_bijective 1);
by (safe_tac (ZF_cs addSEs [sumE]));
-by (ALLGOALS (asm_simp_tac bij_inverse_ss));
+by (ALLGOALS (asm_simp_tac case_ss));
qed "sum_eqpoll_cong";
(*Congruence law for * under equipollence*)
@@ -460,7 +455,7 @@
("d", "split(%x y. <converse(f)`x, converse(fa)`y>)")]
lam_bijective 1);
by (safe_tac ZF_cs);
-by (ALLGOALS (asm_simp_tac bij_inverse_ss));
+by (ALLGOALS (asm_simp_tac case_ss));
qed "prod_eqpoll_cong";
goalw Cardinal.thy [eqpoll_def]