--- a/src/HOL/Library/Multiset.thy Thu Sep 13 06:37:41 2018 +0200
+++ b/src/HOL/Library/Multiset.thy Thu Sep 13 08:36:51 2018 +0200
@@ -1887,7 +1887,7 @@
apply simp
done
-lemma mset_compl_union [simp]: "mset [x\<leftarrow>xs. P x] + mset [x\<leftarrow>xs. \<not>P x] = mset xs"
+lemma mset_compl_union: "mset [x\<leftarrow>xs. P x] + mset [x\<leftarrow>xs. \<not>P x] = mset xs"
by (induct xs) auto
lemma nth_mem_mset: "i < length ls \<Longrightarrow> (ls ! i) \<in># mset ls"
--- a/src/HOL/ex/Quicksort.thy Thu Sep 13 06:37:41 2018 +0200
+++ b/src/HOL/ex/Quicksort.thy Thu Sep 13 08:36:51 2018 +0200
@@ -22,7 +22,7 @@
lemma quicksort_permutes [simp]:
"mset (quicksort xs) = mset xs"
- by (induct xs rule: quicksort.induct) (simp_all add: ac_simps)
+ by (induct xs rule: quicksort.induct) (simp_all add: mset_compl_union ac_simps)
lemma set_quicksort [simp]: "set (quicksort xs) = set xs"
proof -