m dvd t where m is non numeral is now catched!
authorchaieb
Mon, 30 Aug 2004 12:01:52 +0200
changeset 15164 5d7c96e0f9dc
parent 15163 73386e0319a2
child 15165 a1e84e86c583
m dvd t where m is non numeral is now catched!
src/HOL/Integ/cooper_dec.ML
src/HOL/Integ/cooper_proof.ML
src/HOL/Tools/Presburger/cooper_dec.ML
src/HOL/Tools/Presburger/cooper_proof.ML
--- a/src/HOL/Integ/cooper_dec.ML	Sun Aug 29 17:42:11 2004 +0200
+++ b/src/HOL/Integ/cooper_dec.ML	Mon Aug 30 12:01:52 2004 +0200
@@ -14,6 +14,7 @@
   val is_arith_rel : term -> bool
   val mk_numeral : int -> term
   val dest_numeral : term -> int
+  val is_numeral : term -> bool
   val zero : term
   val one : term
   val linear_cmul : int -> term -> term
@@ -208,10 +209,13 @@
  
 fun mkatom vars p t = Const(p,HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ zero $ (lint vars t); 
  
-fun linform vars (Const ("Divides.op dvd",_) $ c $ t) =  
+fun linform vars (Const ("Divides.op dvd",_) $ c $ t) =
+    if is_numeral c then   
       let val c' = (mk_numeral(abs(dest_numeral c)))  
       in (HOLogic.mk_binrel "Divides.op dvd" (c,lint vars t)) 
       end 
+    else (warning "Nonlinear term --- Non numeral leftside at dvd"
+      ;raise COOPER)
   |linform vars  (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ s $ t ) = (mkatom vars "op =" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s) ) 
   |linform vars  (Const("op <",_)$ s $t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s))
   |linform vars  (Const("op >",_) $ s $ t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ s $ t)) 
--- a/src/HOL/Integ/cooper_proof.ML	Sun Aug 29 17:42:11 2004 +0200
+++ b/src/HOL/Integ/cooper_proof.ML	Mon Aug 30 12:01:52 2004 +0200
@@ -24,6 +24,12 @@
   val proof_of_adjustcoeffeq : Sign.sg -> term -> int -> term -> thm
   val prove_elementar : Sign.sg -> string -> term -> thm
   val thm_of : Sign.sg -> (term -> (term list * (thm list -> thm))) -> term -> thm
+  val timef : (unit->thm) -> thm
+  val prtime : unit -> unit
+  val time_reset  : unit -> unit
+  val timef2 : (unit->thm) -> thm
+  val prtime2 : unit -> unit
+  val time_reset2  : unit -> unit
 end;
 
 structure CooperProof : COOPER_PROOF =
@@ -827,7 +833,10 @@
    |(Const("op -->",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_impI)
    |(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_eqI)
    |(Const("Not",_)$p) => ([p],fn [th] => th RS qe_Not)
-   |(Const("Divides.op dvd",_)$d$r) => ([], fn [] => (prove_elementar sg "lf" (HOLogic.mk_eq (r, lint vars r))) RS (instantiate' [] [None , None, Some (cterm_of sg d)](linearize_dvd)))
+   |(Const("Divides.op dvd",_)$d$r) => 
+     if is_numeral d then ([], fn [] => (prove_elementar sg "lf" (HOLogic.mk_eq (r, lint vars r))) RS (instantiate' [] [None , None, Some (cterm_of sg d)](linearize_dvd)))
+     else (warning "Nonlinear Term --- Non numeral leftside at dvd";
+       raise COOPER)
    |_ => ([], fn [] => prove_elementar sg "lf" (HOLogic.mk_eq (t, linform vars t)));
 
 fun proof_of_linform sg vars f = thm_of sg (decomp_linform sg vars) f;
@@ -870,6 +879,9 @@
 (* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*)
 (* ------------------------------------------------------------------------- *)
 
+val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer();
+val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer();
+
 fun cooper_prv sg (x as Free(xn,xT)) efm = let 
    (* lfm_thm : efm = linearized form of efm*)
    val lfm_thm = proof_of_linform sg [xn] efm
@@ -901,12 +913,16 @@
    val dlcm = mk_numeral (divlcm x cfm)
    (* Which set is smaller to generate the (hoepfully) shorter proof*)
    val cms = if ((length A) < (length B )) then "pi" else "mi"
+   val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity"
    (* synthesize the proof of cooper's theorem*)
     (* cp_thm: EX x. cfm = Q*)
-   val cp_thm = cooper_thm sg cms x cfm dlcm A B
+   val cp_thm = timef ( fn () => cooper_thm sg cms x cfm dlcm A B)
    (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*)
    (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*)
-   val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans)))
+   val _ = prth cp_thm
+   val _ = writeln "Expanding the bounded EX..."
+   val exp_cp_thm = timef2 (fn () => refl RS (simplify ss (cp_thm RSN (2,trans))))
+   val _ = writeln "Expanded"
    (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*)
    val (lsuth,rsuth) = qe_get_terms (uth)
    (* lseacth = EX x. efm; rseacth = EX x. fm*)
--- a/src/HOL/Tools/Presburger/cooper_dec.ML	Sun Aug 29 17:42:11 2004 +0200
+++ b/src/HOL/Tools/Presburger/cooper_dec.ML	Mon Aug 30 12:01:52 2004 +0200
@@ -14,6 +14,7 @@
   val is_arith_rel : term -> bool
   val mk_numeral : int -> term
   val dest_numeral : term -> int
+  val is_numeral : term -> bool
   val zero : term
   val one : term
   val linear_cmul : int -> term -> term
@@ -208,10 +209,13 @@
  
 fun mkatom vars p t = Const(p,HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ zero $ (lint vars t); 
  
-fun linform vars (Const ("Divides.op dvd",_) $ c $ t) =  
+fun linform vars (Const ("Divides.op dvd",_) $ c $ t) =
+    if is_numeral c then   
       let val c' = (mk_numeral(abs(dest_numeral c)))  
       in (HOLogic.mk_binrel "Divides.op dvd" (c,lint vars t)) 
       end 
+    else (warning "Nonlinear term --- Non numeral leftside at dvd"
+      ;raise COOPER)
   |linform vars  (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ s $ t ) = (mkatom vars "op =" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s) ) 
   |linform vars  (Const("op <",_)$ s $t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s))
   |linform vars  (Const("op >",_) $ s $ t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ s $ t)) 
--- a/src/HOL/Tools/Presburger/cooper_proof.ML	Sun Aug 29 17:42:11 2004 +0200
+++ b/src/HOL/Tools/Presburger/cooper_proof.ML	Mon Aug 30 12:01:52 2004 +0200
@@ -24,6 +24,12 @@
   val proof_of_adjustcoeffeq : Sign.sg -> term -> int -> term -> thm
   val prove_elementar : Sign.sg -> string -> term -> thm
   val thm_of : Sign.sg -> (term -> (term list * (thm list -> thm))) -> term -> thm
+  val timef : (unit->thm) -> thm
+  val prtime : unit -> unit
+  val time_reset  : unit -> unit
+  val timef2 : (unit->thm) -> thm
+  val prtime2 : unit -> unit
+  val time_reset2  : unit -> unit
 end;
 
 structure CooperProof : COOPER_PROOF =
@@ -827,7 +833,10 @@
    |(Const("op -->",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_impI)
    |(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_eqI)
    |(Const("Not",_)$p) => ([p],fn [th] => th RS qe_Not)
-   |(Const("Divides.op dvd",_)$d$r) => ([], fn [] => (prove_elementar sg "lf" (HOLogic.mk_eq (r, lint vars r))) RS (instantiate' [] [None , None, Some (cterm_of sg d)](linearize_dvd)))
+   |(Const("Divides.op dvd",_)$d$r) => 
+     if is_numeral d then ([], fn [] => (prove_elementar sg "lf" (HOLogic.mk_eq (r, lint vars r))) RS (instantiate' [] [None , None, Some (cterm_of sg d)](linearize_dvd)))
+     else (warning "Nonlinear Term --- Non numeral leftside at dvd";
+       raise COOPER)
    |_ => ([], fn [] => prove_elementar sg "lf" (HOLogic.mk_eq (t, linform vars t)));
 
 fun proof_of_linform sg vars f = thm_of sg (decomp_linform sg vars) f;
@@ -870,6 +879,9 @@
 (* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*)
 (* ------------------------------------------------------------------------- *)
 
+val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer();
+val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer();
+
 fun cooper_prv sg (x as Free(xn,xT)) efm = let 
    (* lfm_thm : efm = linearized form of efm*)
    val lfm_thm = proof_of_linform sg [xn] efm
@@ -901,12 +913,16 @@
    val dlcm = mk_numeral (divlcm x cfm)
    (* Which set is smaller to generate the (hoepfully) shorter proof*)
    val cms = if ((length A) < (length B )) then "pi" else "mi"
+   val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity"
    (* synthesize the proof of cooper's theorem*)
     (* cp_thm: EX x. cfm = Q*)
-   val cp_thm = cooper_thm sg cms x cfm dlcm A B
+   val cp_thm = timef ( fn () => cooper_thm sg cms x cfm dlcm A B)
    (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*)
    (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*)
-   val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans)))
+   val _ = prth cp_thm
+   val _ = writeln "Expanding the bounded EX..."
+   val exp_cp_thm = timef2 (fn () => refl RS (simplify ss (cp_thm RSN (2,trans))))
+   val _ = writeln "Expanded"
    (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*)
    val (lsuth,rsuth) = qe_get_terms (uth)
    (* lseacth = EX x. efm; rseacth = EX x. fm*)