moved ML files where they are actually used;
authorwenzelm
Tue, 25 May 2010 22:21:31 +0200
changeset 37120 5df087c6ce94
parent 37119 b36a5512c5fb
child 37121 8e51fc35d59f
moved ML files where they are actually used; more precise dependencies;
src/HOL/Decision_Procs/Dense_Linear_Order.thy
src/HOL/Decision_Procs/ferrante_rackoff.ML
src/HOL/Decision_Procs/ferrante_rackoff_data.ML
src/HOL/Decision_Procs/langford.ML
src/HOL/Decision_Procs/langford_data.ML
src/HOL/IsaMakefile
src/HOL/Tools/Qelim/ferrante_rackoff.ML
src/HOL/Tools/Qelim/ferrante_rackoff_data.ML
src/HOL/Tools/Qelim/langford.ML
src/HOL/Tools/Qelim/langford_data.ML
--- a/src/HOL/Decision_Procs/Dense_Linear_Order.thy	Tue May 25 22:12:26 2010 +0200
+++ b/src/HOL/Decision_Procs/Dense_Linear_Order.thy	Tue May 25 22:21:31 2010 +0200
@@ -8,10 +8,10 @@
 theory Dense_Linear_Order
 imports Main
 uses
-  "~~/src/HOL/Tools/Qelim/langford_data.ML"
-  "~~/src/HOL/Tools/Qelim/ferrante_rackoff_data.ML"
-  ("~~/src/HOL/Tools/Qelim/langford.ML")
-  ("~~/src/HOL/Tools/Qelim/ferrante_rackoff.ML")
+  "langford_data.ML"
+  "ferrante_rackoff_data.ML"
+  ("langford.ML")
+  ("ferrante_rackoff.ML")
 begin
 
 setup {* Langford_Data.setup #> Ferrante_Rackoff_Data.setup *}
@@ -293,7 +293,7 @@
 
 lemmas dnf_simps[no_atp] = weak_dnf_simps nnf_simps ex_distrib
 
-use "~~/src/HOL/Tools/Qelim/langford.ML"
+use "langford.ML"
 method_setup dlo = {*
   Scan.succeed (SIMPLE_METHOD' o LangfordQE.dlo_tac)
 *} "Langford's algorithm for quantifier elimination in dense linear orders"
@@ -543,7 +543,7 @@
 
 end
 
-use "~~/src/HOL/Tools/Qelim/ferrante_rackoff.ML"
+use "ferrante_rackoff.ML"
 
 method_setup ferrack = {*
   Scan.succeed (SIMPLE_METHOD' o FerranteRackoff.dlo_tac)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/ferrante_rackoff.ML	Tue May 25 22:21:31 2010 +0200
@@ -0,0 +1,233 @@
+(* Title:      HOL/Tools/Qelim/ferrante_rackoff.ML
+   Author:     Amine Chaieb, TU Muenchen
+
+Ferrante and Rackoff's algorithm for quantifier elimination in dense
+linear orders.  Proof-synthesis and tactic.
+*)
+
+signature FERRANTE_RACKOFF =
+sig
+  val dlo_conv: Proof.context -> conv
+  val dlo_tac: Proof.context -> int -> tactic
+end;
+
+structure FerranteRackoff: FERRANTE_RACKOFF =
+struct
+
+open Ferrante_Rackoff_Data;
+open Conv;
+
+type entry = {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,
+   ld: thm list, qe: thm, atoms : cterm list} *
+  {isolate_conv: cterm list -> cterm -> thm,
+                 whatis : cterm -> cterm -> ord,
+                 simpset : simpset};
+
+fun get_p1 th =
+  funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE)
+    (funpow 2 Thm.dest_arg (cprop_of th)) |> Thm.dest_arg
+
+fun ferrack_conv
+   (entr as ({minf = minf, pinf = pinf, nmi = nmi, npi = npi,
+              ld = ld, qe = qe, atoms = atoms},
+             {isolate_conv = icv, whatis = wi, simpset = simpset}):entry) =
+let
+ fun uset (vars as (x::vs)) p = case term_of p of
+   Const("op &", _)$ _ $ _ =>
+     let
+       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb
+       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
+     in (lS@rS, Drule.binop_cong_rule b lth rth) end
+ |  Const("op |", _)$ _ $ _ =>
+     let
+       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb
+       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
+     in (lS@rS, Drule.binop_cong_rule b lth rth) end
+ | _ =>
+    let
+      val th = icv vars p
+      val p' = Thm.rhs_of th
+      val c = wi x p'
+      val S = (if member (op =) [Lt, Le, Eq] c then single o Thm.dest_arg
+               else if member (op =) [Gt, Ge] c then single o Thm.dest_arg1
+               else if c = NEq then single o Thm.dest_arg o Thm.dest_arg
+               else K []) p'
+    in (S,th) end
+
+ val ((p1_v,p2_v),(mp1_v,mp2_v)) =
+   funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE)
+     (funpow 4 Thm.dest_arg (cprop_of (hd minf)))
+   |> Thm.dest_binop |> pairself Thm.dest_binop |> apfst (pairself Thm.dest_fun)
+
+ fun myfwd (th1, th2, th3, th4, th5) p1 p2
+      [(th_1,th_2,th_3,th_4,th_5), (th_1',th_2',th_3',th_4',th_5')] =
+  let
+   val (mp1, mp2) = (get_p1 th_1, get_p1 th_1')
+   val (pp1, pp2) = (get_p1 th_2, get_p1 th_2')
+   fun fw mi th th' th'' =
+     let
+      val th0 = if mi then
+           instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, mp1), (mp2_v, mp2)]) th
+        else instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, pp1), (mp2_v, pp2)]) th
+     in Thm.implies_elim (Thm.implies_elim th0 th') th'' end
+  in (fw true th1 th_1 th_1', fw false th2 th_2 th_2',
+      fw true th3 th_3 th_3', fw false th4 th_4 th_4', fw true th5 th_5 th_5')
+  end
+ val U_v = (Thm.dest_arg o Thm.dest_arg o Thm.dest_arg1) (cprop_of qe)
+ fun main vs p =
+  let
+   val ((xn,ce),(x,fm)) = (case term_of p of
+                   Const("Ex",_)$Abs(xn,xT,_) =>
+                        Thm.dest_comb p ||> Thm.dest_abs (SOME xn) |>> pair xn
+                 | _ => raise CTERM ("main QE only treats existential quantifiers!", [p]))
+   val cT = ctyp_of_term x
+   val (u,nth) = uset (x::vs) fm |>> distinct (op aconvc)
+   val nthx = Thm.abstract_rule xn x nth
+   val q = Thm.rhs_of nth
+   val qx = Thm.rhs_of nthx
+   val enth = Drule.arg_cong_rule ce nthx
+   val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
+   fun ins x th =
+      Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg)
+                                       (Thm.cprop_of th), SOME x] th1) th
+   val fU = fold ins u th0
+   val cU = funpow 2 Thm.dest_arg (Thm.cprop_of fU)
+   local
+     val insI1 = instantiate' [SOME cT] [] @{thm "insertI1"}
+     val insI2 = instantiate' [SOME cT] [] @{thm "insertI2"}
+   in
+    fun provein x S =
+     case term_of S of
+        Const(@{const_name Orderings.bot}, _) => raise CTERM ("provein : not a member!", [S])
+      | Const(@{const_name insert}, _) $ y $_ =>
+         let val (cy,S') = Thm.dest_binop S
+         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
+         else Thm.implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2)
+                           (provein x S')
+         end
+   end
+   val tabU = fold (fn t => fn tab => Termtab.update (term_of t, provein t cU) tab)
+                   u Termtab.empty
+   val U = the o Termtab.lookup tabU o term_of
+   val [minf_conj, minf_disj, minf_eq, minf_neq, minf_lt,
+        minf_le, minf_gt, minf_ge, minf_P] = minf
+   val [pinf_conj, pinf_disj, pinf_eq, pinf_neq, pinf_lt,
+        pinf_le, pinf_gt, pinf_ge, pinf_P] = pinf
+   val [nmi_conj, nmi_disj, nmi_eq, nmi_neq, nmi_lt,
+        nmi_le, nmi_gt, nmi_ge, nmi_P] = map (instantiate ([],[(U_v,cU)])) nmi
+   val [npi_conj, npi_disj, npi_eq, npi_neq, npi_lt,
+        npi_le, npi_gt, npi_ge, npi_P] = map (instantiate ([],[(U_v,cU)])) npi
+   val [ld_conj, ld_disj, ld_eq, ld_neq, ld_lt,
+        ld_le, ld_gt, ld_ge, ld_P] = map (instantiate ([],[(U_v,cU)])) ld
+
+   fun decomp_mpinf fm =
+     case term_of fm of
+       Const("op &",_)$_$_ =>
+        let val (p,q) = Thm.dest_binop fm
+        in ([p,q], myfwd (minf_conj,pinf_conj, nmi_conj, npi_conj,ld_conj)
+                         (Thm.cabs x p) (Thm.cabs x q))
+        end
+     | Const("op |",_)$_$_ =>
+        let val (p,q) = Thm.dest_binop fm
+        in ([p,q],myfwd (minf_disj, pinf_disj, nmi_disj, npi_disj,ld_disj)
+                         (Thm.cabs x p) (Thm.cabs x q))
+        end
+     | _ =>
+        (let val c = wi x fm
+             val t = (if c=Nox then I
+                      else if member (op =) [Lt, Le, Eq] c then Thm.dest_arg
+                      else if member (op =) [Gt, Ge] c then Thm.dest_arg1
+                      else if c = NEq then (Thm.dest_arg o Thm.dest_arg)
+                      else sys_error "decomp_mpinf: Impossible case!!") fm
+             val [mi_th, pi_th, nmi_th, npi_th, ld_th] =
+               if c = Nox then map (instantiate' [] [SOME fm])
+                                    [minf_P, pinf_P, nmi_P, npi_P, ld_P]
+               else
+                let val [mi_th,pi_th,nmi_th,npi_th,ld_th] =
+                 map (instantiate' [] [SOME t])
+                 (case c of Lt => [minf_lt, pinf_lt, nmi_lt, npi_lt, ld_lt]
+                          | Le => [minf_le, pinf_le, nmi_le, npi_le, ld_le]
+                          | Gt => [minf_gt, pinf_gt, nmi_gt, npi_gt, ld_gt]
+                          | Ge => [minf_ge, pinf_ge, nmi_ge, npi_ge, ld_ge]
+                          | Eq => [minf_eq, pinf_eq, nmi_eq, npi_eq, ld_eq]
+                          | NEq => [minf_neq, pinf_neq, nmi_neq, npi_neq, ld_neq])
+                    val tU = U t
+                    fun Ufw th = Thm.implies_elim th tU
+                 in [mi_th, pi_th, Ufw nmi_th, Ufw npi_th, Ufw ld_th]
+                 end
+         in ([], K (mi_th, pi_th, nmi_th, npi_th, ld_th)) end)
+   val (minf_th, pinf_th, nmi_th, npi_th, ld_th) = divide_and_conquer decomp_mpinf q
+   val qe_th = Drule.implies_elim_list
+                  ((fconv_rule (Thm.beta_conversion true))
+                   (instantiate' [] (map SOME [cU, qx, get_p1 minf_th, get_p1 pinf_th])
+                        qe))
+                  [fU, ld_th, nmi_th, npi_th, minf_th, pinf_th]
+    val bex_conv =
+      Simplifier.rewrite (HOL_basic_ss addsimps simp_thms@(@{thms "bex_simps" (1-5)}))
+    val result_th = fconv_rule (arg_conv bex_conv) (Thm.transitive enth qe_th)
+   in result_th
+   end
+
+in main
+end;
+
+val grab_atom_bop =
+ let
+  fun h bounds tm =
+   (case term_of tm of
+     Const ("op =", T) $ _ $ _ =>
+       if domain_type T = HOLogic.boolT then find_args bounds tm
+       else Thm.dest_fun2 tm
+   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
+   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("op &", _) $ _ $ _ => find_args bounds tm
+   | Const ("op |", _) $ _ $ _ => find_args bounds tm
+   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
+   | Const ("==>", _) $ _ $ _ => find_args bounds tm
+   | Const ("==", _) $ _ $ _ => find_args bounds tm
+   | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
+   | _ => Thm.dest_fun2 tm)
+  and find_args bounds tm =
+           (h bounds (Thm.dest_arg tm) handle CTERM _ => Thm.dest_arg1 tm)
+ and find_body bounds b =
+   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
+   in h (bounds + 1) b' end;
+in h end;
+
+fun raw_ferrack_qe_conv ctxt (thy, {isolate_conv, whatis, simpset}) tm =
+ let
+   val ss = simpset
+   val ss' =
+     merge_ss (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps)
+              @ [not_all,@{thm "all_not_ex"}, ex_disj_distrib], ss)
+     |> Simplifier.inherit_context ss
+   val pcv = Simplifier.rewrite ss'     
+   val postcv = Simplifier.rewrite ss
+   val nnf = K (nnf_conv then_conv postcv)
+   val qe_conv = Qelim.gen_qelim_conv pcv postcv pcv cons (Thm.add_cterm_frees tm [])
+                  (isolate_conv ctxt) nnf
+                  (fn vs => ferrack_conv (thy,{isolate_conv = isolate_conv ctxt,
+                                               whatis = whatis, simpset = simpset}) vs
+                   then_conv postcv)
+ in (Simplifier.rewrite ss then_conv qe_conv) tm end;
+
+fun dlo_instance ctxt tm =
+  Ferrante_Rackoff_Data.match ctxt (grab_atom_bop 0 tm);
+
+fun dlo_conv ctxt tm =
+  (case dlo_instance ctxt tm of
+    NONE => raise CTERM ("ferrackqe_conv: no corresponding instance in context!", [tm])
+  | SOME instance => raw_ferrack_qe_conv ctxt instance tm);
+
+fun dlo_tac ctxt = CSUBGOAL (fn (p, i) =>
+  (case dlo_instance ctxt p of
+    NONE => no_tac
+  | SOME instance =>
+      Object_Logic.full_atomize_tac i THEN
+      simp_tac (#simpset (snd instance)) i THEN  (* FIXME already part of raw_ferrack_qe_conv? *)
+      CONVERSION (Object_Logic.judgment_conv (raw_ferrack_qe_conv ctxt instance)) i THEN
+      simp_tac (simpset_of ctxt) i));  (* FIXME really? *)
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/ferrante_rackoff_data.ML	Tue May 25 22:21:31 2010 +0200
@@ -0,0 +1,146 @@
+(* Title:      HOL/Tools/Qelim/ferrante_rackoff_data.ML
+   Author:     Amine Chaieb, TU Muenchen
+
+Context data for Ferrante and Rackoff's algorithm for quantifier
+elimination in dense linear orders.
+*)
+
+signature FERRANTE_RACKOF_DATA =
+sig
+  datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
+  type entry
+  val get: Proof.context -> (thm * entry) list
+  val del: attribute
+  val add: entry -> attribute 
+  val funs: thm -> 
+    {isolate_conv: morphism -> Proof.context -> cterm list -> cterm -> thm,
+     whatis: morphism -> cterm -> cterm -> ord,
+     simpset: morphism -> simpset} -> declaration
+  val match: Proof.context -> cterm -> entry option
+  val setup: theory -> theory
+end;
+
+structure Ferrante_Rackoff_Data: FERRANTE_RACKOF_DATA = 
+struct
+
+(* data *)
+
+datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
+
+type entry = 
+  {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
+   ld: thm list, qe: thm, atoms : cterm list} *
+   {isolate_conv: Proof.context -> cterm list -> cterm -> thm, 
+    whatis : cterm -> cterm -> ord, 
+    simpset : simpset};
+
+val eq_key = Thm.eq_thm;
+fun eq_data arg = eq_fst eq_key arg;
+
+structure Data = Generic_Data
+(
+  type T = (thm * entry) list;
+  val empty = [];
+  val extend = I;
+  fun merge data : T = AList.merge eq_key (K true) data;
+);
+
+val get = Data.get o Context.Proof;
+
+fun del_data key = remove eq_data (key, []);
+
+val del = Thm.declaration_attribute (Data.map o del_data);
+
+fun add entry = 
+    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
+      (del_data key #> cons (key, entry)));
+
+
+(* extra-logical functions *)
+
+fun funs raw_key {isolate_conv = icv, whatis = wi, simpset = ss} phi = Data.map (fn data =>
+  let
+    val key = Morphism.thm phi raw_key;
+    val _ = AList.defined eq_key data key orelse
+      raise THM ("No data entry for structure key", 0, [key]);
+    val fns = {isolate_conv = icv phi, whatis = wi phi, simpset = ss phi};
+  in AList.map_entry eq_key key (apsnd (K fns)) data end);
+
+fun match ctxt tm =
+  let
+    fun match_inst
+        ({minf, pinf, nmi, npi, ld, qe, atoms},
+         fns as {isolate_conv, whatis, simpset}) pat =
+       let
+        fun h instT =
+          let
+            val substT = Thm.instantiate (instT, []);
+            val substT_cterm = Drule.cterm_rule substT;
+
+            val minf' = map substT minf
+            val pinf' = map substT pinf
+            val nmi' = map substT nmi
+            val npi' = map substT npi
+            val ld' = map substT ld
+            val qe' = substT qe
+            val atoms' = map substT_cterm atoms
+            val result = ({minf = minf', pinf = pinf', nmi = nmi', npi = npi', 
+                           ld = ld', qe = qe', atoms = atoms'}, fns)
+          in SOME result end
+      in (case try Thm.match (pat, tm) of
+           NONE => NONE
+         | SOME (instT, _) => h instT)
+      end;
+
+    fun match_struct (_,
+        entry as ({atoms = atoms, ...}, _): entry) =
+      get_first (match_inst entry) atoms;
+  in get_first match_struct (get ctxt) end;
+
+
+(* concrete syntax *)
+
+local
+val minfN = "minf";
+val pinfN = "pinf";
+val nmiN = "nmi";
+val npiN = "npi";
+val lin_denseN = "lindense";
+val qeN = "qe"
+val atomsN = "atoms"
+val simpsN = "simps"
+fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
+val any_keyword =
+  keyword minfN || keyword pinfN || keyword nmiN 
+|| keyword npiN || keyword lin_denseN || keyword qeN 
+|| keyword atomsN || keyword simpsN;
+
+val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
+val terms = thms >> map Drule.dest_term;
+in
+
+val ferrak_setup =
+  Attrib.setup @{binding ferrack}
+    ((keyword minfN |-- thms)
+     -- (keyword pinfN |-- thms)
+     -- (keyword nmiN |-- thms)
+     -- (keyword npiN |-- thms)
+     -- (keyword lin_denseN |-- thms)
+     -- (keyword qeN |-- thms)
+     -- (keyword atomsN |-- terms) >>
+       (fn ((((((minf,pinf),nmi),npi),lin_dense),qe), atoms)=> 
+       if length qe = 1 then
+         add ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, ld = lin_dense, 
+              qe = hd qe, atoms = atoms},
+             {isolate_conv = undefined, whatis = undefined, simpset = HOL_ss})
+       else error "only one theorem for qe!"))
+    "Ferrante Rackoff data";
+
+end;
+
+
+(* theory setup *)
+
+val setup = ferrak_setup;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/langford.ML	Tue May 25 22:21:31 2010 +0200
@@ -0,0 +1,244 @@
+(*  Title:      HOL/Tools/Qelim/langford.ML
+    Author:     Amine Chaieb, TU Muenchen
+*)
+
+signature LANGFORD_QE = 
+sig
+  val dlo_tac : Proof.context -> int -> tactic
+  val dlo_conv : Proof.context -> cterm -> thm
+end
+
+structure LangfordQE :LANGFORD_QE = 
+struct
+
+val dest_set =
+ let 
+  fun h acc ct = 
+   case term_of ct of
+     Const (@{const_name Orderings.bot}, _) => acc
+   | Const (@{const_name insert}, _) $ _ $ t => h (Thm.dest_arg1 ct :: acc) (Thm.dest_arg ct)
+in h [] end;
+
+fun prove_finite cT u = 
+let val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
+    fun ins x th =
+     Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg)
+                                     (Thm.cprop_of th), SOME x] th1) th
+in fold ins u th0 end;
+
+val simp_rule = Conv.fconv_rule (Conv.arg_conv (Simplifier.rewrite (HOL_basic_ss addsimps (@{thms "ball_simps"} @ simp_thms))));
+
+fun basic_dloqe ctxt stupid dlo_qeth dlo_qeth_nolb dlo_qeth_noub gather ep = 
+ case term_of ep of 
+  Const("Ex",_)$_ => 
+   let 
+     val p = Thm.dest_arg ep
+     val ths = simplify (HOL_basic_ss addsimps gather) (instantiate' [] [SOME p] stupid)
+     val (L,U) = 
+       let 
+         val (x,q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths))
+       in (Thm.dest_arg1 q |> Thm.dest_arg1, Thm.dest_arg q |> Thm.dest_arg1)
+       end
+     fun proveneF S =         
+       let val (a,A) = Thm.dest_comb S |>> Thm.dest_arg
+           val cT = ctyp_of_term a
+           val ne = instantiate' [SOME cT] [SOME a, SOME A] 
+                    @{thm insert_not_empty}
+           val f = prove_finite cT (dest_set S)
+       in (ne, f) end
+
+     val qe = case (term_of L, term_of U) of 
+      (Const (@{const_name Orderings.bot}, _),_) =>  
+        let
+          val (neU,fU) = proveneF U 
+        in simp_rule (Thm.transitive ths (dlo_qeth_nolb OF [neU, fU])) end
+    | (_,Const (@{const_name Orderings.bot}, _)) =>  
+        let
+          val (neL,fL) = proveneF L
+        in simp_rule (Thm.transitive ths (dlo_qeth_noub OF [neL, fL])) end
+
+    | (_,_) =>  
+      let 
+       val (neL,fL) = proveneF L
+       val (neU,fU) = proveneF U
+      in simp_rule (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU])) 
+      end
+   in qe end 
+ | _ => error "dlo_qe : Not an existential formula";
+
+val all_conjuncts = 
+ let fun h acc ct = 
+  case term_of ct of
+   @{term "op &"}$_$_ => h (h acc (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
+  | _ => ct::acc
+in h [] end;
+
+fun conjuncts ct =
+ case term_of ct of
+  @{term "op &"}$_$_ => (Thm.dest_arg1 ct)::(conjuncts (Thm.dest_arg ct))
+| _ => [ct];
+
+fun fold1 f = foldr1 (uncurry f);
+
+val list_conj = fold1 (fn c => fn c' => Thm.capply (Thm.capply @{cterm "op &"} c) c') ;
+
+fun mk_conj_tab th = 
+ let fun h acc th = 
+   case prop_of th of
+   @{term "Trueprop"}$(@{term "op &"}$p$q) => 
+     h (h acc (th RS conjunct2)) (th RS conjunct1)
+  | @{term "Trueprop"}$p => (p,th)::acc
+in fold (Termtab.insert Thm.eq_thm) (h [] th) Termtab.empty end;
+
+fun is_conj (@{term "op &"}$_$_) = true
+  | is_conj _ = false;
+
+fun prove_conj tab cjs = 
+ case cjs of 
+   [c] => if is_conj (term_of c) then prove_conj tab (conjuncts c) else tab c
+ | c::cs => conjI OF [prove_conj tab [c], prove_conj tab cs];
+
+fun conj_aci_rule eq = 
+ let 
+  val (l,r) = Thm.dest_equals eq
+  fun tabl c = the (Termtab.lookup (mk_conj_tab (Thm.assume l)) (term_of c))
+  fun tabr c = the (Termtab.lookup (mk_conj_tab (Thm.assume r)) (term_of c))
+  val ll = Thm.dest_arg l
+  val rr = Thm.dest_arg r
+  
+  val thl  = prove_conj tabl (conjuncts rr) 
+                |> Drule.implies_intr_hyps
+  val thr  = prove_conj tabr (conjuncts ll) 
+                |> Drule.implies_intr_hyps
+  val eqI = instantiate' [] [SOME ll, SOME rr] @{thm iffI}
+ in Thm.implies_elim (Thm.implies_elim eqI thl) thr |> mk_meta_eq end;
+
+fun contains x ct = member (op aconv) (OldTerm.term_frees (term_of ct)) (term_of x);
+
+fun is_eqx x eq = case term_of eq of
+   Const("op =",_)$l$r => l aconv term_of x orelse r aconv term_of x
+ | _ => false ;
+
+local 
+fun proc ct = 
+ case term_of ct of
+  Const("Ex",_)$Abs (xn,_,_) => 
+   let 
+    val e = Thm.dest_fun ct
+    val (x,p) = Thm.dest_abs (SOME xn) (Thm.dest_arg ct)
+    val Pp = Thm.capply @{cterm "Trueprop"} p 
+    val (eqs,neqs) = List.partition (is_eqx x) (all_conjuncts p)
+   in case eqs of
+      [] => 
+        let 
+         val (dx,ndx) = List.partition (contains x) neqs
+         in case ndx of [] => NONE
+                      | _ =>
+            conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
+                 (Thm.capply @{cterm Trueprop} (list_conj (ndx @dx))))
+           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
+           |> Conv.fconv_rule (Conv.arg_conv 
+                   (Simplifier.rewrite 
+                      (HOL_basic_ss addsimps (simp_thms @ ex_simps))))
+           |> SOME
+          end
+    | _ => conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
+                 (Thm.capply @{cterm Trueprop} (list_conj (eqs@neqs))))
+           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
+           |> Conv.fconv_rule (Conv.arg_conv 
+                   (Simplifier.rewrite 
+                (HOL_basic_ss addsimps (simp_thms @ ex_simps)))) 
+           |> SOME
+   end
+ | _ => NONE;
+in val reduce_ex_simproc = 
+  Simplifier.make_simproc 
+  {lhss = [@{cpat "EX x. ?P x"}] , name = "reduce_ex_simproc",
+   proc = K (K proc) , identifier = []}
+end;
+
+fun raw_dlo_conv dlo_ss 
+          ({qe_bnds, qe_nolb, qe_noub, gst, gs, atoms}:Langford_Data.entry) = 
+ let 
+  val ss = dlo_ss addsimps @{thms "dnf_simps"} addsimprocs [reduce_ex_simproc]
+  val dnfex_conv = Simplifier.rewrite ss
+   val pcv = Simplifier.rewrite
+               (dlo_ss addsimps (simp_thms @ ex_simps @ all_simps)
+                @ [@{thm "all_not_ex"}, not_all, ex_disj_distrib])
+ in fn p => 
+   Qelim.gen_qelim_conv pcv pcv dnfex_conv cons 
+                  (Thm.add_cterm_frees p [])  (K Thm.reflexive) (K Thm.reflexive)
+                  (K (basic_dloqe () gst qe_bnds qe_nolb qe_noub gs)) p
+ end;
+
+
+val grab_atom_bop =
+ let
+  fun h bounds tm =
+   (case term_of tm of
+     Const ("op =", T) $ _ $ _ =>
+       if domain_type T = HOLogic.boolT then find_args bounds tm
+       else Thm.dest_fun2 tm
+   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
+   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("op &", _) $ _ $ _ => find_args bounds tm
+   | Const ("op |", _) $ _ $ _ => find_args bounds tm
+   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
+   | Const ("==>", _) $ _ $ _ => find_args bounds tm
+   | Const ("==", _) $ _ $ _ => find_args bounds tm
+   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
+   | _ => Thm.dest_fun2 tm)
+  and find_args bounds tm =
+    (h bounds (Thm.dest_arg tm) handle CTERM _ => h bounds (Thm.dest_arg1 tm))
+ and find_body bounds b =
+   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
+   in h (bounds + 1) b' end;
+in h end;
+
+fun dlo_instance ctxt tm =
+  (fst (Langford_Data.get ctxt), 
+   Langford_Data.match ctxt (grab_atom_bop 0 tm));
+
+fun dlo_conv ctxt tm =
+  (case dlo_instance ctxt tm of
+    (_, NONE) => raise CTERM ("dlo_conv (langford): no corresponding instance in context!", [tm])
+  | (ss, SOME instance) => raw_dlo_conv ss instance tm);
+
+fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st =>
+ let 
+   fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"}
+   fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t)
+   val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p)
+   val p' = fold_rev gen ts p
+ in Thm.implies_intr p' (Thm.implies_elim st (fold Thm.forall_elim ts (Thm.assume p'))) end));
+
+
+fun cfrees ats ct =
+ let 
+  val ins = insert (op aconvc)
+  fun h acc t = 
+   case (term_of t) of
+    b$_$_ => if member (op aconvc) ats (Thm.dest_fun2 t) 
+                then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc) 
+                else h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
+  | _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
+  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
+  | Free _ => if member (op aconvc) ats t then acc else ins t acc
+  | Var _ => if member (op aconvc) ats t then acc else ins t acc
+  | _ => acc
+ in h [] ct end
+
+fun dlo_tac ctxt = CSUBGOAL (fn (p, i) =>
+  (case dlo_instance ctxt p of
+    (ss, NONE) => simp_tac ss i
+  | (ss,  SOME instance) =>
+      Object_Logic.full_atomize_tac i THEN
+      simp_tac ss i
+      THEN (CONVERSION Thm.eta_long_conversion) i
+      THEN (TRY o generalize_tac (cfrees (#atoms instance))) i
+      THEN Object_Logic.full_atomize_tac i
+      THEN CONVERSION (Object_Logic.judgment_conv (raw_dlo_conv ss instance)) i
+      THEN (simp_tac ss i)));  
+end;
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/langford_data.ML	Tue May 25 22:21:31 2010 +0200
@@ -0,0 +1,113 @@
+signature LANGFORD_DATA =
+sig
+  type entry
+  val get: Proof.context -> simpset * (thm * entry) list
+  val add: entry -> attribute 
+  val del: attribute
+  val setup: theory -> theory
+  val match: Proof.context -> cterm -> entry option
+end;
+
+structure Langford_Data: LANGFORD_DATA = 
+struct
+
+(* data *)
+type entry = {qe_bnds: thm, qe_nolb : thm , qe_noub: thm, 
+              gs : thm list, gst : thm, atoms: cterm list};
+val eq_key = Thm.eq_thm;
+fun eq_data arg = eq_fst eq_key arg;
+
+structure Data = Generic_Data
+(
+  type T = simpset * (thm * entry) list;
+  val empty = (HOL_basic_ss, []);
+  val extend = I;
+  fun merge ((ss1, es1), (ss2, es2)) : T =
+    (merge_ss (ss1, ss2), AList.merge eq_key (K true) (es1, es2));
+);
+
+val get = Data.get o Context.Proof;
+
+fun del_data key = apsnd (remove eq_data (key, []));
+
+val del = Thm.declaration_attribute (Data.map o del_data);
+
+fun add entry = 
+    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
+      (del_data key #> apsnd (cons (key, entry))));
+
+val add_simp = Thm.declaration_attribute (fn th => fn context => 
+  context |> Data.map (fn (ss,ts') => (ss addsimps [th], ts'))) 
+
+val del_simp = Thm.declaration_attribute (fn th => fn context => 
+  context |> Data.map (fn (ss,ts') => (ss delsimps [th], ts'))) 
+
+fun match ctxt tm =
+  let
+    fun match_inst
+        {qe_bnds, qe_nolb, qe_noub, gs, gst, atoms} pat =
+       let
+        fun h instT =
+          let
+            val substT = Thm.instantiate (instT, []);
+            val substT_cterm = Drule.cterm_rule substT;
+
+            val qe_bnds' = substT qe_bnds
+            val qe_nolb' = substT qe_nolb
+            val qe_noub' = substT qe_noub
+            val gs' = map substT gs
+            val gst' = substT gst
+            val atoms' = map substT_cterm atoms
+            val result = {qe_bnds = qe_bnds', qe_nolb = qe_nolb', 
+                          qe_noub = qe_noub', gs = gs', gst = gst', 
+                          atoms = atoms'}
+          in SOME result end
+      in (case try Thm.match (pat, tm) of
+           NONE => NONE
+         | SOME (instT, _) => h instT)
+      end;
+
+    fun match_struct (_,
+        entry as ({atoms = atoms, ...}): entry) =
+      get_first (match_inst entry) atoms;
+  in get_first match_struct (snd (get ctxt)) end;
+
+(* concrete syntax *)
+
+local
+val qeN = "qe";
+val gatherN = "gather";
+val atomsN = "atoms"
+fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
+val any_keyword =
+  keyword qeN || keyword gatherN || keyword atomsN;
+
+val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
+val terms = thms >> map Drule.dest_term;
+in
+
+val langford_setup =
+  Attrib.setup @{binding langford}
+    ((keyword qeN |-- thms)
+     -- (keyword gatherN |-- thms)
+     -- (keyword atomsN |-- terms) >>
+       (fn ((qes,gs), atoms) => 
+       if length qes = 3 andalso length gs > 1 then
+         let 
+           val [q1,q2,q3] = qes
+           val gst::gss = gs
+           val entry = {qe_bnds = q1, qe_nolb = q2,
+                        qe_noub = q3, gs = gss, gst = gst, atoms = atoms}
+         in add entry end
+       else error "Need 3 theorems for qe and at least one for gs"))
+    "Langford data";
+
+end;
+
+(* theory setup *)
+
+val setup =
+  langford_setup #>
+  Attrib.setup @{binding langfordsimp} (Attrib.add_del add_simp del_simp) "Langford simpset";
+
+end;
--- a/src/HOL/IsaMakefile	Tue May 25 22:12:26 2010 +0200
+++ b/src/HOL/IsaMakefile	Tue May 25 22:21:31 2010 +0200
@@ -378,10 +378,6 @@
   Taylor.thy \
   Transcendental.thy \
   Tools/float_syntax.ML \
-  Tools/Qelim/ferrante_rackoff_data.ML \
-  Tools/Qelim/ferrante_rackoff.ML \
-  Tools/Qelim/langford_data.ML \
-  Tools/Qelim/langford.ML \
   Tools/SMT/smt_real.ML
 
 $(OUT)/HOL: ROOT.ML $(HOL_DEPENDENCIES)
@@ -826,6 +822,7 @@
   Decision_Procs/MIR.thy \
   Decision_Procs/Parametric_Ferrante_Rackoff.thy \
   Decision_Procs/Polynomial_List.thy \
+  Decision_Procs/ROOT.ML \
   Decision_Procs/Reflected_Multivariate_Polynomial.thy \
   Decision_Procs/commutative_ring_tac.ML \
   Decision_Procs/cooper_tac.ML \
@@ -833,8 +830,11 @@
   Decision_Procs/ex/Commutative_Ring_Ex.thy \
   Decision_Procs/ex/Dense_Linear_Order_Ex.thy \
   Decision_Procs/ferrack_tac.ML \
-  Decision_Procs/mir_tac.ML \
-  Decision_Procs/ROOT.ML
+  Decision_Procs/ferrante_rackoff.ML \
+  Decision_Procs/ferrante_rackoff_data.ML \
+  Decision_Procs/langford.ML \
+  Decision_Procs/langford_data.ML \
+  Decision_Procs/mir_tac.ML
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Decision_Procs
 
 
--- a/src/HOL/Tools/Qelim/ferrante_rackoff.ML	Tue May 25 22:12:26 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,233 +0,0 @@
-(* Title:      HOL/Tools/Qelim/ferrante_rackoff.ML
-   Author:     Amine Chaieb, TU Muenchen
-
-Ferrante and Rackoff's algorithm for quantifier elimination in dense
-linear orders.  Proof-synthesis and tactic.
-*)
-
-signature FERRANTE_RACKOFF =
-sig
-  val dlo_conv: Proof.context -> conv
-  val dlo_tac: Proof.context -> int -> tactic
-end;
-
-structure FerranteRackoff: FERRANTE_RACKOFF =
-struct
-
-open Ferrante_Rackoff_Data;
-open Conv;
-
-type entry = {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,
-   ld: thm list, qe: thm, atoms : cterm list} *
-  {isolate_conv: cterm list -> cterm -> thm,
-                 whatis : cterm -> cterm -> ord,
-                 simpset : simpset};
-
-fun get_p1 th =
-  funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE)
-    (funpow 2 Thm.dest_arg (cprop_of th)) |> Thm.dest_arg
-
-fun ferrack_conv
-   (entr as ({minf = minf, pinf = pinf, nmi = nmi, npi = npi,
-              ld = ld, qe = qe, atoms = atoms},
-             {isolate_conv = icv, whatis = wi, simpset = simpset}):entry) =
-let
- fun uset (vars as (x::vs)) p = case term_of p of
-   Const("op &", _)$ _ $ _ =>
-     let
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, Drule.binop_cong_rule b lth rth) end
- |  Const("op |", _)$ _ $ _ =>
-     let
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, Drule.binop_cong_rule b lth rth) end
- | _ =>
-    let
-      val th = icv vars p
-      val p' = Thm.rhs_of th
-      val c = wi x p'
-      val S = (if member (op =) [Lt, Le, Eq] c then single o Thm.dest_arg
-               else if member (op =) [Gt, Ge] c then single o Thm.dest_arg1
-               else if c = NEq then single o Thm.dest_arg o Thm.dest_arg
-               else K []) p'
-    in (S,th) end
-
- val ((p1_v,p2_v),(mp1_v,mp2_v)) =
-   funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE)
-     (funpow 4 Thm.dest_arg (cprop_of (hd minf)))
-   |> Thm.dest_binop |> pairself Thm.dest_binop |> apfst (pairself Thm.dest_fun)
-
- fun myfwd (th1, th2, th3, th4, th5) p1 p2
-      [(th_1,th_2,th_3,th_4,th_5), (th_1',th_2',th_3',th_4',th_5')] =
-  let
-   val (mp1, mp2) = (get_p1 th_1, get_p1 th_1')
-   val (pp1, pp2) = (get_p1 th_2, get_p1 th_2')
-   fun fw mi th th' th'' =
-     let
-      val th0 = if mi then
-           instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, mp1), (mp2_v, mp2)]) th
-        else instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, pp1), (mp2_v, pp2)]) th
-     in Thm.implies_elim (Thm.implies_elim th0 th') th'' end
-  in (fw true th1 th_1 th_1', fw false th2 th_2 th_2',
-      fw true th3 th_3 th_3', fw false th4 th_4 th_4', fw true th5 th_5 th_5')
-  end
- val U_v = (Thm.dest_arg o Thm.dest_arg o Thm.dest_arg1) (cprop_of qe)
- fun main vs p =
-  let
-   val ((xn,ce),(x,fm)) = (case term_of p of
-                   Const("Ex",_)$Abs(xn,xT,_) =>
-                        Thm.dest_comb p ||> Thm.dest_abs (SOME xn) |>> pair xn
-                 | _ => raise CTERM ("main QE only treats existential quantifiers!", [p]))
-   val cT = ctyp_of_term x
-   val (u,nth) = uset (x::vs) fm |>> distinct (op aconvc)
-   val nthx = Thm.abstract_rule xn x nth
-   val q = Thm.rhs_of nth
-   val qx = Thm.rhs_of nthx
-   val enth = Drule.arg_cong_rule ce nthx
-   val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
-   fun ins x th =
-      Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg)
-                                       (Thm.cprop_of th), SOME x] th1) th
-   val fU = fold ins u th0
-   val cU = funpow 2 Thm.dest_arg (Thm.cprop_of fU)
-   local
-     val insI1 = instantiate' [SOME cT] [] @{thm "insertI1"}
-     val insI2 = instantiate' [SOME cT] [] @{thm "insertI2"}
-   in
-    fun provein x S =
-     case term_of S of
-        Const(@{const_name Orderings.bot}, _) => raise CTERM ("provein : not a member!", [S])
-      | Const(@{const_name insert}, _) $ y $_ =>
-         let val (cy,S') = Thm.dest_binop S
-         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
-         else Thm.implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2)
-                           (provein x S')
-         end
-   end
-   val tabU = fold (fn t => fn tab => Termtab.update (term_of t, provein t cU) tab)
-                   u Termtab.empty
-   val U = the o Termtab.lookup tabU o term_of
-   val [minf_conj, minf_disj, minf_eq, minf_neq, minf_lt,
-        minf_le, minf_gt, minf_ge, minf_P] = minf
-   val [pinf_conj, pinf_disj, pinf_eq, pinf_neq, pinf_lt,
-        pinf_le, pinf_gt, pinf_ge, pinf_P] = pinf
-   val [nmi_conj, nmi_disj, nmi_eq, nmi_neq, nmi_lt,
-        nmi_le, nmi_gt, nmi_ge, nmi_P] = map (instantiate ([],[(U_v,cU)])) nmi
-   val [npi_conj, npi_disj, npi_eq, npi_neq, npi_lt,
-        npi_le, npi_gt, npi_ge, npi_P] = map (instantiate ([],[(U_v,cU)])) npi
-   val [ld_conj, ld_disj, ld_eq, ld_neq, ld_lt,
-        ld_le, ld_gt, ld_ge, ld_P] = map (instantiate ([],[(U_v,cU)])) ld
-
-   fun decomp_mpinf fm =
-     case term_of fm of
-       Const("op &",_)$_$_ =>
-        let val (p,q) = Thm.dest_binop fm
-        in ([p,q], myfwd (minf_conj,pinf_conj, nmi_conj, npi_conj,ld_conj)
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | Const("op |",_)$_$_ =>
-        let val (p,q) = Thm.dest_binop fm
-        in ([p,q],myfwd (minf_disj, pinf_disj, nmi_disj, npi_disj,ld_disj)
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | _ =>
-        (let val c = wi x fm
-             val t = (if c=Nox then I
-                      else if member (op =) [Lt, Le, Eq] c then Thm.dest_arg
-                      else if member (op =) [Gt, Ge] c then Thm.dest_arg1
-                      else if c = NEq then (Thm.dest_arg o Thm.dest_arg)
-                      else sys_error "decomp_mpinf: Impossible case!!") fm
-             val [mi_th, pi_th, nmi_th, npi_th, ld_th] =
-               if c = Nox then map (instantiate' [] [SOME fm])
-                                    [minf_P, pinf_P, nmi_P, npi_P, ld_P]
-               else
-                let val [mi_th,pi_th,nmi_th,npi_th,ld_th] =
-                 map (instantiate' [] [SOME t])
-                 (case c of Lt => [minf_lt, pinf_lt, nmi_lt, npi_lt, ld_lt]
-                          | Le => [minf_le, pinf_le, nmi_le, npi_le, ld_le]
-                          | Gt => [minf_gt, pinf_gt, nmi_gt, npi_gt, ld_gt]
-                          | Ge => [minf_ge, pinf_ge, nmi_ge, npi_ge, ld_ge]
-                          | Eq => [minf_eq, pinf_eq, nmi_eq, npi_eq, ld_eq]
-                          | NEq => [minf_neq, pinf_neq, nmi_neq, npi_neq, ld_neq])
-                    val tU = U t
-                    fun Ufw th = Thm.implies_elim th tU
-                 in [mi_th, pi_th, Ufw nmi_th, Ufw npi_th, Ufw ld_th]
-                 end
-         in ([], K (mi_th, pi_th, nmi_th, npi_th, ld_th)) end)
-   val (minf_th, pinf_th, nmi_th, npi_th, ld_th) = divide_and_conquer decomp_mpinf q
-   val qe_th = Drule.implies_elim_list
-                  ((fconv_rule (Thm.beta_conversion true))
-                   (instantiate' [] (map SOME [cU, qx, get_p1 minf_th, get_p1 pinf_th])
-                        qe))
-                  [fU, ld_th, nmi_th, npi_th, minf_th, pinf_th]
-    val bex_conv =
-      Simplifier.rewrite (HOL_basic_ss addsimps simp_thms@(@{thms "bex_simps" (1-5)}))
-    val result_th = fconv_rule (arg_conv bex_conv) (Thm.transitive enth qe_th)
-   in result_th
-   end
-
-in main
-end;
-
-val grab_atom_bop =
- let
-  fun h bounds tm =
-   (case term_of tm of
-     Const ("op =", T) $ _ $ _ =>
-       if domain_type T = HOLogic.boolT then find_args bounds tm
-       else Thm.dest_fun2 tm
-   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
-   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("op &", _) $ _ $ _ => find_args bounds tm
-   | Const ("op |", _) $ _ $ _ => find_args bounds tm
-   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
-   | Const ("==>", _) $ _ $ _ => find_args bounds tm
-   | Const ("==", _) $ _ $ _ => find_args bounds tm
-   | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
-   | _ => Thm.dest_fun2 tm)
-  and find_args bounds tm =
-           (h bounds (Thm.dest_arg tm) handle CTERM _ => Thm.dest_arg1 tm)
- and find_body bounds b =
-   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
-   in h (bounds + 1) b' end;
-in h end;
-
-fun raw_ferrack_qe_conv ctxt (thy, {isolate_conv, whatis, simpset}) tm =
- let
-   val ss = simpset
-   val ss' =
-     merge_ss (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps)
-              @ [not_all,@{thm "all_not_ex"}, ex_disj_distrib], ss)
-     |> Simplifier.inherit_context ss
-   val pcv = Simplifier.rewrite ss'     
-   val postcv = Simplifier.rewrite ss
-   val nnf = K (nnf_conv then_conv postcv)
-   val qe_conv = Qelim.gen_qelim_conv pcv postcv pcv cons (Thm.add_cterm_frees tm [])
-                  (isolate_conv ctxt) nnf
-                  (fn vs => ferrack_conv (thy,{isolate_conv = isolate_conv ctxt,
-                                               whatis = whatis, simpset = simpset}) vs
-                   then_conv postcv)
- in (Simplifier.rewrite ss then_conv qe_conv) tm end;
-
-fun dlo_instance ctxt tm =
-  Ferrante_Rackoff_Data.match ctxt (grab_atom_bop 0 tm);
-
-fun dlo_conv ctxt tm =
-  (case dlo_instance ctxt tm of
-    NONE => raise CTERM ("ferrackqe_conv: no corresponding instance in context!", [tm])
-  | SOME instance => raw_ferrack_qe_conv ctxt instance tm);
-
-fun dlo_tac ctxt = CSUBGOAL (fn (p, i) =>
-  (case dlo_instance ctxt p of
-    NONE => no_tac
-  | SOME instance =>
-      Object_Logic.full_atomize_tac i THEN
-      simp_tac (#simpset (snd instance)) i THEN  (* FIXME already part of raw_ferrack_qe_conv? *)
-      CONVERSION (Object_Logic.judgment_conv (raw_ferrack_qe_conv ctxt instance)) i THEN
-      simp_tac (simpset_of ctxt) i));  (* FIXME really? *)
-
-end;
--- a/src/HOL/Tools/Qelim/ferrante_rackoff_data.ML	Tue May 25 22:12:26 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,146 +0,0 @@
-(* Title:      HOL/Tools/Qelim/ferrante_rackoff_data.ML
-   Author:     Amine Chaieb, TU Muenchen
-
-Context data for Ferrante and Rackoff's algorithm for quantifier
-elimination in dense linear orders.
-*)
-
-signature FERRANTE_RACKOF_DATA =
-sig
-  datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
-  type entry
-  val get: Proof.context -> (thm * entry) list
-  val del: attribute
-  val add: entry -> attribute 
-  val funs: thm -> 
-    {isolate_conv: morphism -> Proof.context -> cterm list -> cterm -> thm,
-     whatis: morphism -> cterm -> cterm -> ord,
-     simpset: morphism -> simpset} -> declaration
-  val match: Proof.context -> cterm -> entry option
-  val setup: theory -> theory
-end;
-
-structure Ferrante_Rackoff_Data: FERRANTE_RACKOF_DATA = 
-struct
-
-(* data *)
-
-datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
-
-type entry = 
-  {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
-   ld: thm list, qe: thm, atoms : cterm list} *
-   {isolate_conv: Proof.context -> cterm list -> cterm -> thm, 
-    whatis : cterm -> cterm -> ord, 
-    simpset : simpset};
-
-val eq_key = Thm.eq_thm;
-fun eq_data arg = eq_fst eq_key arg;
-
-structure Data = Generic_Data
-(
-  type T = (thm * entry) list;
-  val empty = [];
-  val extend = I;
-  fun merge data : T = AList.merge eq_key (K true) data;
-);
-
-val get = Data.get o Context.Proof;
-
-fun del_data key = remove eq_data (key, []);
-
-val del = Thm.declaration_attribute (Data.map o del_data);
-
-fun add entry = 
-    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
-      (del_data key #> cons (key, entry)));
-
-
-(* extra-logical functions *)
-
-fun funs raw_key {isolate_conv = icv, whatis = wi, simpset = ss} phi = Data.map (fn data =>
-  let
-    val key = Morphism.thm phi raw_key;
-    val _ = AList.defined eq_key data key orelse
-      raise THM ("No data entry for structure key", 0, [key]);
-    val fns = {isolate_conv = icv phi, whatis = wi phi, simpset = ss phi};
-  in AList.map_entry eq_key key (apsnd (K fns)) data end);
-
-fun match ctxt tm =
-  let
-    fun match_inst
-        ({minf, pinf, nmi, npi, ld, qe, atoms},
-         fns as {isolate_conv, whatis, simpset}) pat =
-       let
-        fun h instT =
-          let
-            val substT = Thm.instantiate (instT, []);
-            val substT_cterm = Drule.cterm_rule substT;
-
-            val minf' = map substT minf
-            val pinf' = map substT pinf
-            val nmi' = map substT nmi
-            val npi' = map substT npi
-            val ld' = map substT ld
-            val qe' = substT qe
-            val atoms' = map substT_cterm atoms
-            val result = ({minf = minf', pinf = pinf', nmi = nmi', npi = npi', 
-                           ld = ld', qe = qe', atoms = atoms'}, fns)
-          in SOME result end
-      in (case try Thm.match (pat, tm) of
-           NONE => NONE
-         | SOME (instT, _) => h instT)
-      end;
-
-    fun match_struct (_,
-        entry as ({atoms = atoms, ...}, _): entry) =
-      get_first (match_inst entry) atoms;
-  in get_first match_struct (get ctxt) end;
-
-
-(* concrete syntax *)
-
-local
-val minfN = "minf";
-val pinfN = "pinf";
-val nmiN = "nmi";
-val npiN = "npi";
-val lin_denseN = "lindense";
-val qeN = "qe"
-val atomsN = "atoms"
-val simpsN = "simps"
-fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
-val any_keyword =
-  keyword minfN || keyword pinfN || keyword nmiN 
-|| keyword npiN || keyword lin_denseN || keyword qeN 
-|| keyword atomsN || keyword simpsN;
-
-val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
-val terms = thms >> map Drule.dest_term;
-in
-
-val ferrak_setup =
-  Attrib.setup @{binding ferrack}
-    ((keyword minfN |-- thms)
-     -- (keyword pinfN |-- thms)
-     -- (keyword nmiN |-- thms)
-     -- (keyword npiN |-- thms)
-     -- (keyword lin_denseN |-- thms)
-     -- (keyword qeN |-- thms)
-     -- (keyword atomsN |-- terms) >>
-       (fn ((((((minf,pinf),nmi),npi),lin_dense),qe), atoms)=> 
-       if length qe = 1 then
-         add ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, ld = lin_dense, 
-              qe = hd qe, atoms = atoms},
-             {isolate_conv = undefined, whatis = undefined, simpset = HOL_ss})
-       else error "only one theorem for qe!"))
-    "Ferrante Rackoff data";
-
-end;
-
-
-(* theory setup *)
-
-val setup = ferrak_setup;
-
-end;
--- a/src/HOL/Tools/Qelim/langford.ML	Tue May 25 22:12:26 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,244 +0,0 @@
-(*  Title:      HOL/Tools/Qelim/langford.ML
-    Author:     Amine Chaieb, TU Muenchen
-*)
-
-signature LANGFORD_QE = 
-sig
-  val dlo_tac : Proof.context -> int -> tactic
-  val dlo_conv : Proof.context -> cterm -> thm
-end
-
-structure LangfordQE :LANGFORD_QE = 
-struct
-
-val dest_set =
- let 
-  fun h acc ct = 
-   case term_of ct of
-     Const (@{const_name Orderings.bot}, _) => acc
-   | Const (@{const_name insert}, _) $ _ $ t => h (Thm.dest_arg1 ct :: acc) (Thm.dest_arg ct)
-in h [] end;
-
-fun prove_finite cT u = 
-let val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
-    fun ins x th =
-     Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg)
-                                     (Thm.cprop_of th), SOME x] th1) th
-in fold ins u th0 end;
-
-val simp_rule = Conv.fconv_rule (Conv.arg_conv (Simplifier.rewrite (HOL_basic_ss addsimps (@{thms "ball_simps"} @ simp_thms))));
-
-fun basic_dloqe ctxt stupid dlo_qeth dlo_qeth_nolb dlo_qeth_noub gather ep = 
- case term_of ep of 
-  Const("Ex",_)$_ => 
-   let 
-     val p = Thm.dest_arg ep
-     val ths = simplify (HOL_basic_ss addsimps gather) (instantiate' [] [SOME p] stupid)
-     val (L,U) = 
-       let 
-         val (x,q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths))
-       in (Thm.dest_arg1 q |> Thm.dest_arg1, Thm.dest_arg q |> Thm.dest_arg1)
-       end
-     fun proveneF S =         
-       let val (a,A) = Thm.dest_comb S |>> Thm.dest_arg
-           val cT = ctyp_of_term a
-           val ne = instantiate' [SOME cT] [SOME a, SOME A] 
-                    @{thm insert_not_empty}
-           val f = prove_finite cT (dest_set S)
-       in (ne, f) end
-
-     val qe = case (term_of L, term_of U) of 
-      (Const (@{const_name Orderings.bot}, _),_) =>  
-        let
-          val (neU,fU) = proveneF U 
-        in simp_rule (Thm.transitive ths (dlo_qeth_nolb OF [neU, fU])) end
-    | (_,Const (@{const_name Orderings.bot}, _)) =>  
-        let
-          val (neL,fL) = proveneF L
-        in simp_rule (Thm.transitive ths (dlo_qeth_noub OF [neL, fL])) end
-
-    | (_,_) =>  
-      let 
-       val (neL,fL) = proveneF L
-       val (neU,fU) = proveneF U
-      in simp_rule (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU])) 
-      end
-   in qe end 
- | _ => error "dlo_qe : Not an existential formula";
-
-val all_conjuncts = 
- let fun h acc ct = 
-  case term_of ct of
-   @{term "op &"}$_$_ => h (h acc (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
-  | _ => ct::acc
-in h [] end;
-
-fun conjuncts ct =
- case term_of ct of
-  @{term "op &"}$_$_ => (Thm.dest_arg1 ct)::(conjuncts (Thm.dest_arg ct))
-| _ => [ct];
-
-fun fold1 f = foldr1 (uncurry f);
-
-val list_conj = fold1 (fn c => fn c' => Thm.capply (Thm.capply @{cterm "op &"} c) c') ;
-
-fun mk_conj_tab th = 
- let fun h acc th = 
-   case prop_of th of
-   @{term "Trueprop"}$(@{term "op &"}$p$q) => 
-     h (h acc (th RS conjunct2)) (th RS conjunct1)
-  | @{term "Trueprop"}$p => (p,th)::acc
-in fold (Termtab.insert Thm.eq_thm) (h [] th) Termtab.empty end;
-
-fun is_conj (@{term "op &"}$_$_) = true
-  | is_conj _ = false;
-
-fun prove_conj tab cjs = 
- case cjs of 
-   [c] => if is_conj (term_of c) then prove_conj tab (conjuncts c) else tab c
- | c::cs => conjI OF [prove_conj tab [c], prove_conj tab cs];
-
-fun conj_aci_rule eq = 
- let 
-  val (l,r) = Thm.dest_equals eq
-  fun tabl c = the (Termtab.lookup (mk_conj_tab (Thm.assume l)) (term_of c))
-  fun tabr c = the (Termtab.lookup (mk_conj_tab (Thm.assume r)) (term_of c))
-  val ll = Thm.dest_arg l
-  val rr = Thm.dest_arg r
-  
-  val thl  = prove_conj tabl (conjuncts rr) 
-                |> Drule.implies_intr_hyps
-  val thr  = prove_conj tabr (conjuncts ll) 
-                |> Drule.implies_intr_hyps
-  val eqI = instantiate' [] [SOME ll, SOME rr] @{thm iffI}
- in Thm.implies_elim (Thm.implies_elim eqI thl) thr |> mk_meta_eq end;
-
-fun contains x ct = member (op aconv) (OldTerm.term_frees (term_of ct)) (term_of x);
-
-fun is_eqx x eq = case term_of eq of
-   Const("op =",_)$l$r => l aconv term_of x orelse r aconv term_of x
- | _ => false ;
-
-local 
-fun proc ct = 
- case term_of ct of
-  Const("Ex",_)$Abs (xn,_,_) => 
-   let 
-    val e = Thm.dest_fun ct
-    val (x,p) = Thm.dest_abs (SOME xn) (Thm.dest_arg ct)
-    val Pp = Thm.capply @{cterm "Trueprop"} p 
-    val (eqs,neqs) = List.partition (is_eqx x) (all_conjuncts p)
-   in case eqs of
-      [] => 
-        let 
-         val (dx,ndx) = List.partition (contains x) neqs
-         in case ndx of [] => NONE
-                      | _ =>
-            conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
-                 (Thm.capply @{cterm Trueprop} (list_conj (ndx @dx))))
-           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
-           |> Conv.fconv_rule (Conv.arg_conv 
-                   (Simplifier.rewrite 
-                      (HOL_basic_ss addsimps (simp_thms @ ex_simps))))
-           |> SOME
-          end
-    | _ => conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
-                 (Thm.capply @{cterm Trueprop} (list_conj (eqs@neqs))))
-           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
-           |> Conv.fconv_rule (Conv.arg_conv 
-                   (Simplifier.rewrite 
-                (HOL_basic_ss addsimps (simp_thms @ ex_simps)))) 
-           |> SOME
-   end
- | _ => NONE;
-in val reduce_ex_simproc = 
-  Simplifier.make_simproc 
-  {lhss = [@{cpat "EX x. ?P x"}] , name = "reduce_ex_simproc",
-   proc = K (K proc) , identifier = []}
-end;
-
-fun raw_dlo_conv dlo_ss 
-          ({qe_bnds, qe_nolb, qe_noub, gst, gs, atoms}:Langford_Data.entry) = 
- let 
-  val ss = dlo_ss addsimps @{thms "dnf_simps"} addsimprocs [reduce_ex_simproc]
-  val dnfex_conv = Simplifier.rewrite ss
-   val pcv = Simplifier.rewrite
-               (dlo_ss addsimps (simp_thms @ ex_simps @ all_simps)
-                @ [@{thm "all_not_ex"}, not_all, ex_disj_distrib])
- in fn p => 
-   Qelim.gen_qelim_conv pcv pcv dnfex_conv cons 
-                  (Thm.add_cterm_frees p [])  (K Thm.reflexive) (K Thm.reflexive)
-                  (K (basic_dloqe () gst qe_bnds qe_nolb qe_noub gs)) p
- end;
-
-
-val grab_atom_bop =
- let
-  fun h bounds tm =
-   (case term_of tm of
-     Const ("op =", T) $ _ $ _ =>
-       if domain_type T = HOLogic.boolT then find_args bounds tm
-       else Thm.dest_fun2 tm
-   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
-   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("op &", _) $ _ $ _ => find_args bounds tm
-   | Const ("op |", _) $ _ $ _ => find_args bounds tm
-   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
-   | Const ("==>", _) $ _ $ _ => find_args bounds tm
-   | Const ("==", _) $ _ $ _ => find_args bounds tm
-   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
-   | _ => Thm.dest_fun2 tm)
-  and find_args bounds tm =
-    (h bounds (Thm.dest_arg tm) handle CTERM _ => h bounds (Thm.dest_arg1 tm))
- and find_body bounds b =
-   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
-   in h (bounds + 1) b' end;
-in h end;
-
-fun dlo_instance ctxt tm =
-  (fst (Langford_Data.get ctxt), 
-   Langford_Data.match ctxt (grab_atom_bop 0 tm));
-
-fun dlo_conv ctxt tm =
-  (case dlo_instance ctxt tm of
-    (_, NONE) => raise CTERM ("dlo_conv (langford): no corresponding instance in context!", [tm])
-  | (ss, SOME instance) => raw_dlo_conv ss instance tm);
-
-fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st =>
- let 
-   fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"}
-   fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t)
-   val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p)
-   val p' = fold_rev gen ts p
- in Thm.implies_intr p' (Thm.implies_elim st (fold Thm.forall_elim ts (Thm.assume p'))) end));
-
-
-fun cfrees ats ct =
- let 
-  val ins = insert (op aconvc)
-  fun h acc t = 
-   case (term_of t) of
-    b$_$_ => if member (op aconvc) ats (Thm.dest_fun2 t) 
-                then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc) 
-                else h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | Free _ => if member (op aconvc) ats t then acc else ins t acc
-  | Var _ => if member (op aconvc) ats t then acc else ins t acc
-  | _ => acc
- in h [] ct end
-
-fun dlo_tac ctxt = CSUBGOAL (fn (p, i) =>
-  (case dlo_instance ctxt p of
-    (ss, NONE) => simp_tac ss i
-  | (ss,  SOME instance) =>
-      Object_Logic.full_atomize_tac i THEN
-      simp_tac ss i
-      THEN (CONVERSION Thm.eta_long_conversion) i
-      THEN (TRY o generalize_tac (cfrees (#atoms instance))) i
-      THEN Object_Logic.full_atomize_tac i
-      THEN CONVERSION (Object_Logic.judgment_conv (raw_dlo_conv ss instance)) i
-      THEN (simp_tac ss i)));  
-end;
\ No newline at end of file
--- a/src/HOL/Tools/Qelim/langford_data.ML	Tue May 25 22:12:26 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,113 +0,0 @@
-signature LANGFORD_DATA =
-sig
-  type entry
-  val get: Proof.context -> simpset * (thm * entry) list
-  val add: entry -> attribute 
-  val del: attribute
-  val setup: theory -> theory
-  val match: Proof.context -> cterm -> entry option
-end;
-
-structure Langford_Data: LANGFORD_DATA = 
-struct
-
-(* data *)
-type entry = {qe_bnds: thm, qe_nolb : thm , qe_noub: thm, 
-              gs : thm list, gst : thm, atoms: cterm list};
-val eq_key = Thm.eq_thm;
-fun eq_data arg = eq_fst eq_key arg;
-
-structure Data = Generic_Data
-(
-  type T = simpset * (thm * entry) list;
-  val empty = (HOL_basic_ss, []);
-  val extend = I;
-  fun merge ((ss1, es1), (ss2, es2)) : T =
-    (merge_ss (ss1, ss2), AList.merge eq_key (K true) (es1, es2));
-);
-
-val get = Data.get o Context.Proof;
-
-fun del_data key = apsnd (remove eq_data (key, []));
-
-val del = Thm.declaration_attribute (Data.map o del_data);
-
-fun add entry = 
-    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
-      (del_data key #> apsnd (cons (key, entry))));
-
-val add_simp = Thm.declaration_attribute (fn th => fn context => 
-  context |> Data.map (fn (ss,ts') => (ss addsimps [th], ts'))) 
-
-val del_simp = Thm.declaration_attribute (fn th => fn context => 
-  context |> Data.map (fn (ss,ts') => (ss delsimps [th], ts'))) 
-
-fun match ctxt tm =
-  let
-    fun match_inst
-        {qe_bnds, qe_nolb, qe_noub, gs, gst, atoms} pat =
-       let
-        fun h instT =
-          let
-            val substT = Thm.instantiate (instT, []);
-            val substT_cterm = Drule.cterm_rule substT;
-
-            val qe_bnds' = substT qe_bnds
-            val qe_nolb' = substT qe_nolb
-            val qe_noub' = substT qe_noub
-            val gs' = map substT gs
-            val gst' = substT gst
-            val atoms' = map substT_cterm atoms
-            val result = {qe_bnds = qe_bnds', qe_nolb = qe_nolb', 
-                          qe_noub = qe_noub', gs = gs', gst = gst', 
-                          atoms = atoms'}
-          in SOME result end
-      in (case try Thm.match (pat, tm) of
-           NONE => NONE
-         | SOME (instT, _) => h instT)
-      end;
-
-    fun match_struct (_,
-        entry as ({atoms = atoms, ...}): entry) =
-      get_first (match_inst entry) atoms;
-  in get_first match_struct (snd (get ctxt)) end;
-
-(* concrete syntax *)
-
-local
-val qeN = "qe";
-val gatherN = "gather";
-val atomsN = "atoms"
-fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
-val any_keyword =
-  keyword qeN || keyword gatherN || keyword atomsN;
-
-val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
-val terms = thms >> map Drule.dest_term;
-in
-
-val langford_setup =
-  Attrib.setup @{binding langford}
-    ((keyword qeN |-- thms)
-     -- (keyword gatherN |-- thms)
-     -- (keyword atomsN |-- terms) >>
-       (fn ((qes,gs), atoms) => 
-       if length qes = 3 andalso length gs > 1 then
-         let 
-           val [q1,q2,q3] = qes
-           val gst::gss = gs
-           val entry = {qe_bnds = q1, qe_nolb = q2,
-                        qe_noub = q3, gs = gss, gst = gst, atoms = atoms}
-         in add entry end
-       else error "Need 3 theorems for qe and at least one for gs"))
-    "Langford data";
-
-end;
-
-(* theory setup *)
-
-val setup =
-  langford_setup #>
-  Attrib.setup @{binding langfordsimp} (Attrib.add_del add_simp del_simp) "Langford simpset";
-
-end;