remove ancient continuity tactic
authorhuffman
Wed, 24 Mar 2010 07:50:21 -0700
changeset 35948 5e7909f0346b
parent 35947 dc36cd801694
child 35949 65d8cfff417f
child 35957 ed52ade112c0
remove ancient continuity tactic
src/HOLCF/Lift.thy
src/HOLCF/ex/Dagstuhl.thy
src/HOLCF/ex/Hoare.thy
src/HOLCF/ex/Loop.thy
--- a/src/HOLCF/Lift.thy	Wed Mar 24 15:21:42 2010 +0100
+++ b/src/HOLCF/Lift.thy	Wed Mar 24 07:50:21 2010 -0700
@@ -170,28 +170,6 @@
 lemma flift2_defined_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)"
 by (cases x, simp_all)
 
-text {*
-  \medskip Extension of @{text cont_tac} and installation of simplifier.
-*}
-
-lemmas cont_lemmas_ext =
-  cont2cont_flift1 cont2cont_lift_case cont2cont_lambda
-  cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
-
-ML {*
-local
-  val cont_lemmas2 = thms "cont_lemmas1" @ thms "cont_lemmas_ext";
-  val flift1_def = thm "flift1_def";
-in
-
-fun cont_tac  i = resolve_tac cont_lemmas2 i;
-fun cont_tacR i = REPEAT (cont_tac i);
-
-fun cont_tacRs ss i =
-  simp_tac ss i THEN
-  REPEAT (cont_tac i)
-end;
-*}
 
 subsection {* Lifted countable types are bifinite *}
 
--- a/src/HOLCF/ex/Dagstuhl.thy	Wed Mar 24 15:21:42 2010 +0100
+++ b/src/HOLCF/ex/Dagstuhl.thy	Wed Mar 24 07:50:21 2010 -0700
@@ -72,7 +72,7 @@
   apply (unfold YYS_def)
   apply (rule fix_least)
   apply (subst beta_cfun)
-  apply (tactic "cont_tacR 1")
+  apply simp
   apply (simp add: YS_def2 [symmetric])
   done
 
--- a/src/HOLCF/ex/Hoare.thy	Wed Mar 24 15:21:42 2010 +0100
+++ b/src/HOLCF/ex/Hoare.thy	Wed Mar 24 07:50:21 2010 -0700
@@ -232,12 +232,8 @@
 
 lemma fernpass_lemma: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. p$(iterate k$g$x) = UU"
 apply (rule p_def [THEN eq_reflection, THEN def_fix_ind])
-apply (rule adm_all)
-apply (rule adm_eq)
-apply (tactic "cont_tacR 1")
-apply (rule allI)
-apply (subst Rep_CFun_strict1)
-apply (rule refl)
+apply simp
+apply simp
 apply (simp (no_asm))
 apply (rule allI)
 apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
@@ -256,12 +252,8 @@
 
 lemma hoare_lemma17: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. q$(iterate k$g$x) = UU"
 apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
-apply (rule adm_all)
-apply (rule adm_eq)
-apply (tactic "cont_tacR 1")
-apply (rule allI)
-apply (subst Rep_CFun_strict1)
-apply (rule refl)
+apply simp
+apply simp
 apply (rule allI)
 apply (simp (no_asm))
 apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
@@ -285,12 +277,8 @@
 
 lemma hoare_lemma20: "(ALL y. b1$(y::'a)=TT) ==> ALL k. q$(iterate k$g$(x::'a)) = UU"
 apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
-apply (rule adm_all)
-apply (rule adm_eq)
-apply (tactic "cont_tacR 1")
-apply (rule allI)
-apply (subst Rep_CFun_strict1)
-apply (rule refl)
+apply simp
+apply simp
 apply (rule allI)
 apply (simp (no_asm))
 apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$ (x::'a))" in ssubst)
--- a/src/HOLCF/ex/Loop.thy	Wed Mar 24 15:21:42 2010 +0100
+++ b/src/HOLCF/ex/Loop.thy	Wed Mar 24 07:50:21 2010 -0700
@@ -137,10 +137,8 @@
     ALL m. while$b$g$(iterate m$(step$b$g)$x)=UU"
 apply (simplesubst while_def2)
 apply (rule fix_ind)
-apply (rule adm_all)
-apply (rule adm_eq)
-apply (tactic "cont_tacR 1")
-apply (simp (no_asm))
+apply simp
+apply simp
 apply (rule allI)
 apply (simp (no_asm))
 apply (rule_tac p = "b$ (iterate m$ (step$b$g) $x) " in trE)