--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Polynomial.thy Sun Jan 11 12:05:50 2009 -0800
@@ -0,0 +1,922 @@
+(* Title: HOL/Polynomial.thy
+ Author: Brian Huffman
+ Based on an earlier development by Clemens Ballarin
+*)
+
+header {* Univariate Polynomials *}
+
+theory Polynomial
+imports Plain SetInterval
+begin
+
+subsection {* Definition of type @{text poly} *}
+
+typedef (Poly) 'a poly = "{f::nat \<Rightarrow> 'a::zero. \<exists>n. \<forall>i>n. f i = 0}"
+ morphisms coeff Abs_poly
+ by auto
+
+lemma expand_poly_eq: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
+by (simp add: coeff_inject [symmetric] expand_fun_eq)
+
+lemma poly_ext: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
+by (simp add: expand_poly_eq)
+
+
+subsection {* Degree of a polynomial *}
+
+definition
+ degree :: "'a::zero poly \<Rightarrow> nat" where
+ "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
+
+lemma coeff_eq_0: "degree p < n \<Longrightarrow> coeff p n = 0"
+proof -
+ have "coeff p \<in> Poly"
+ by (rule coeff)
+ hence "\<exists>n. \<forall>i>n. coeff p i = 0"
+ unfolding Poly_def by simp
+ hence "\<forall>i>degree p. coeff p i = 0"
+ unfolding degree_def by (rule LeastI_ex)
+ moreover assume "degree p < n"
+ ultimately show ?thesis by simp
+qed
+
+lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p"
+ by (erule contrapos_np, rule coeff_eq_0, simp)
+
+lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n"
+ unfolding degree_def by (erule Least_le)
+
+lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0"
+ unfolding degree_def by (drule not_less_Least, simp)
+
+
+subsection {* The zero polynomial *}
+
+instantiation poly :: (zero) zero
+begin
+
+definition
+ zero_poly_def: "0 = Abs_poly (\<lambda>n. 0)"
+
+instance ..
+end
+
+lemma coeff_0 [simp]: "coeff 0 n = 0"
+ unfolding zero_poly_def
+ by (simp add: Abs_poly_inverse Poly_def)
+
+lemma degree_0 [simp]: "degree 0 = 0"
+ by (rule order_antisym [OF degree_le le0]) simp
+
+lemma leading_coeff_neq_0:
+ assumes "p \<noteq> 0" shows "coeff p (degree p) \<noteq> 0"
+proof (cases "degree p")
+ case 0
+ from `p \<noteq> 0` have "\<exists>n. coeff p n \<noteq> 0"
+ by (simp add: expand_poly_eq)
+ then obtain n where "coeff p n \<noteq> 0" ..
+ hence "n \<le> degree p" by (rule le_degree)
+ with `coeff p n \<noteq> 0` and `degree p = 0`
+ show "coeff p (degree p) \<noteq> 0" by simp
+next
+ case (Suc n)
+ from `degree p = Suc n` have "n < degree p" by simp
+ hence "\<exists>i>n. coeff p i \<noteq> 0" by (rule less_degree_imp)
+ then obtain i where "n < i" and "coeff p i \<noteq> 0" by fast
+ from `degree p = Suc n` and `n < i` have "degree p \<le> i" by simp
+ also from `coeff p i \<noteq> 0` have "i \<le> degree p" by (rule le_degree)
+ finally have "degree p = i" .
+ with `coeff p i \<noteq> 0` show "coeff p (degree p) \<noteq> 0" by simp
+qed
+
+lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \<longleftrightarrow> p = 0"
+ by (cases "p = 0", simp, simp add: leading_coeff_neq_0)
+
+
+subsection {* List-style constructor for polynomials *}
+
+definition
+ pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
+where
+ [code del]: "pCons a p = Abs_poly (nat_case a (coeff p))"
+
+lemma Poly_nat_case: "f \<in> Poly \<Longrightarrow> nat_case a f \<in> Poly"
+ unfolding Poly_def by (auto split: nat.split)
+
+lemma coeff_pCons:
+ "coeff (pCons a p) = nat_case a (coeff p)"
+ unfolding pCons_def
+ by (simp add: Abs_poly_inverse Poly_nat_case coeff)
+
+lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a"
+ by (simp add: coeff_pCons)
+
+lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n"
+ by (simp add: coeff_pCons)
+
+lemma degree_pCons_le: "degree (pCons a p) \<le> Suc (degree p)"
+by (rule degree_le, simp add: coeff_eq_0 coeff_pCons split: nat.split)
+
+lemma degree_pCons_eq:
+ "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)"
+apply (rule order_antisym [OF degree_pCons_le])
+apply (rule le_degree, simp)
+done
+
+lemma degree_pCons_0: "degree (pCons a 0) = 0"
+apply (rule order_antisym [OF _ le0])
+apply (rule degree_le, simp add: coeff_pCons split: nat.split)
+done
+
+lemma degree_pCons_eq_if:
+ "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))"
+apply (cases "p = 0", simp_all)
+apply (rule order_antisym [OF _ le0])
+apply (rule degree_le, simp add: coeff_pCons split: nat.split)
+apply (rule order_antisym [OF degree_pCons_le])
+apply (rule le_degree, simp)
+done
+
+lemma pCons_0_0 [simp]: "pCons 0 0 = 0"
+by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma pCons_eq_iff [simp]:
+ "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q"
+proof (safe)
+ assume "pCons a p = pCons b q"
+ then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp
+ then show "a = b" by simp
+next
+ assume "pCons a p = pCons b q"
+ then have "\<forall>n. coeff (pCons a p) (Suc n) =
+ coeff (pCons b q) (Suc n)" by simp
+ then show "p = q" by (simp add: expand_poly_eq)
+qed
+
+lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0"
+ using pCons_eq_iff [of a p 0 0] by simp
+
+lemma Poly_Suc: "f \<in> Poly \<Longrightarrow> (\<lambda>n. f (Suc n)) \<in> Poly"
+ unfolding Poly_def
+ by (clarify, rule_tac x=n in exI, simp)
+
+lemma pCons_cases [cases type: poly]:
+ obtains (pCons) a q where "p = pCons a q"
+proof
+ show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))"
+ by (rule poly_ext)
+ (simp add: Abs_poly_inverse Poly_Suc coeff coeff_pCons
+ split: nat.split)
+qed
+
+lemma pCons_induct [case_names 0 pCons, induct type: poly]:
+ assumes zero: "P 0"
+ assumes pCons: "\<And>a p. P p \<Longrightarrow> P (pCons a p)"
+ shows "P p"
+proof (induct p rule: measure_induct_rule [where f=degree])
+ case (less p)
+ obtain a q where "p = pCons a q" by (rule pCons_cases)
+ have "P q"
+ proof (cases "q = 0")
+ case True
+ then show "P q" by (simp add: zero)
+ next
+ case False
+ then have "degree (pCons a q) = Suc (degree q)"
+ by (rule degree_pCons_eq)
+ then have "degree q < degree p"
+ using `p = pCons a q` by simp
+ then show "P q"
+ by (rule less.hyps)
+ qed
+ then have "P (pCons a q)"
+ by (rule pCons)
+ then show ?case
+ using `p = pCons a q` by simp
+qed
+
+
+subsection {* Monomials *}
+
+definition
+ monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly" where
+ "monom a m = Abs_poly (\<lambda>n. if m = n then a else 0)"
+
+lemma coeff_monom [simp]: "coeff (monom a m) n = (if m=n then a else 0)"
+ unfolding monom_def
+ by (subst Abs_poly_inverse, auto simp add: Poly_def)
+
+lemma monom_0: "monom a 0 = pCons a 0"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma monom_eq_0 [simp]: "monom 0 n = 0"
+ by (rule poly_ext) simp
+
+lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0"
+ by (simp add: expand_poly_eq)
+
+lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b"
+ by (simp add: expand_poly_eq)
+
+lemma degree_monom_le: "degree (monom a n) \<le> n"
+ by (rule degree_le, simp)
+
+lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n"
+ apply (rule order_antisym [OF degree_monom_le])
+ apply (rule le_degree, simp)
+ done
+
+
+subsection {* Addition and subtraction *}
+
+instantiation poly :: (comm_monoid_add) comm_monoid_add
+begin
+
+definition
+ plus_poly_def [code del]:
+ "p + q = Abs_poly (\<lambda>n. coeff p n + coeff q n)"
+
+lemma Poly_add:
+ fixes f g :: "nat \<Rightarrow> 'a"
+ shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n + g n) \<in> Poly"
+ unfolding Poly_def
+ apply (clarify, rename_tac m n)
+ apply (rule_tac x="max m n" in exI, simp)
+ done
+
+lemma coeff_add [simp]:
+ "coeff (p + q) n = coeff p n + coeff q n"
+ unfolding plus_poly_def
+ by (simp add: Abs_poly_inverse coeff Poly_add)
+
+instance proof
+ fix p q r :: "'a poly"
+ show "(p + q) + r = p + (q + r)"
+ by (simp add: expand_poly_eq add_assoc)
+ show "p + q = q + p"
+ by (simp add: expand_poly_eq add_commute)
+ show "0 + p = p"
+ by (simp add: expand_poly_eq)
+qed
+
+end
+
+instantiation poly :: (ab_group_add) ab_group_add
+begin
+
+definition
+ uminus_poly_def [code del]:
+ "- p = Abs_poly (\<lambda>n. - coeff p n)"
+
+definition
+ minus_poly_def [code del]:
+ "p - q = Abs_poly (\<lambda>n. coeff p n - coeff q n)"
+
+lemma Poly_minus:
+ fixes f :: "nat \<Rightarrow> 'a"
+ shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. - f n) \<in> Poly"
+ unfolding Poly_def by simp
+
+lemma Poly_diff:
+ fixes f g :: "nat \<Rightarrow> 'a"
+ shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n - g n) \<in> Poly"
+ unfolding diff_minus by (simp add: Poly_add Poly_minus)
+
+lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n"
+ unfolding uminus_poly_def
+ by (simp add: Abs_poly_inverse coeff Poly_minus)
+
+lemma coeff_diff [simp]:
+ "coeff (p - q) n = coeff p n - coeff q n"
+ unfolding minus_poly_def
+ by (simp add: Abs_poly_inverse coeff Poly_diff)
+
+instance proof
+ fix p q :: "'a poly"
+ show "- p + p = 0"
+ by (simp add: expand_poly_eq)
+ show "p - q = p + - q"
+ by (simp add: expand_poly_eq diff_minus)
+qed
+
+end
+
+lemma add_pCons [simp]:
+ "pCons a p + pCons b q = pCons (a + b) (p + q)"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma minus_pCons [simp]:
+ "- pCons a p = pCons (- a) (- p)"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma diff_pCons [simp]:
+ "pCons a p - pCons b q = pCons (a - b) (p - q)"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma degree_add_le: "degree (p + q) \<le> max (degree p) (degree q)"
+ by (rule degree_le, auto simp add: coeff_eq_0)
+
+lemma degree_add_eq_right:
+ "degree p < degree q \<Longrightarrow> degree (p + q) = degree q"
+ apply (cases "q = 0", simp)
+ apply (rule order_antisym)
+ apply (rule ord_le_eq_trans [OF degree_add_le])
+ apply simp
+ apply (rule le_degree)
+ apply (simp add: coeff_eq_0)
+ done
+
+lemma degree_add_eq_left:
+ "degree q < degree p \<Longrightarrow> degree (p + q) = degree p"
+ using degree_add_eq_right [of q p]
+ by (simp add: add_commute)
+
+lemma degree_minus [simp]: "degree (- p) = degree p"
+ unfolding degree_def by simp
+
+lemma degree_diff_le: "degree (p - q) \<le> max (degree p) (degree q)"
+ using degree_add_le [where p=p and q="-q"]
+ by (simp add: diff_minus)
+
+lemma add_monom: "monom a n + monom b n = monom (a + b) n"
+ by (rule poly_ext) simp
+
+lemma diff_monom: "monom a n - monom b n = monom (a - b) n"
+ by (rule poly_ext) simp
+
+lemma minus_monom: "- monom a n = monom (-a) n"
+ by (rule poly_ext) simp
+
+lemma coeff_setsum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)"
+ by (cases "finite A", induct set: finite, simp_all)
+
+lemma monom_setsum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)"
+ by (rule poly_ext) (simp add: coeff_setsum)
+
+
+subsection {* Multiplication by a constant *}
+
+definition
+ smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
+ "smult a p = Abs_poly (\<lambda>n. a * coeff p n)"
+
+lemma Poly_smult:
+ fixes f :: "nat \<Rightarrow> 'a::comm_semiring_0"
+ shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. a * f n) \<in> Poly"
+ unfolding Poly_def
+ by (clarify, rule_tac x=n in exI, simp)
+
+lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n"
+ unfolding smult_def
+ by (simp add: Abs_poly_inverse Poly_smult coeff)
+
+lemma degree_smult_le: "degree (smult a p) \<le> degree p"
+ by (rule degree_le, simp add: coeff_eq_0)
+
+lemma smult_smult: "smult a (smult b p) = smult (a * b) p"
+ by (rule poly_ext, simp add: mult_assoc)
+
+lemma smult_0_right [simp]: "smult a 0 = 0"
+ by (rule poly_ext, simp)
+
+lemma smult_0_left [simp]: "smult 0 p = 0"
+ by (rule poly_ext, simp)
+
+lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p"
+ by (rule poly_ext, simp)
+
+lemma smult_add_right:
+ "smult a (p + q) = smult a p + smult a q"
+ by (rule poly_ext, simp add: ring_simps)
+
+lemma smult_add_left:
+ "smult (a + b) p = smult a p + smult b p"
+ by (rule poly_ext, simp add: ring_simps)
+
+lemma smult_minus_right:
+ "smult (a::'a::comm_ring) (- p) = - smult a p"
+ by (rule poly_ext, simp)
+
+lemma smult_minus_left:
+ "smult (- a::'a::comm_ring) p = - smult a p"
+ by (rule poly_ext, simp)
+
+lemma smult_diff_right:
+ "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q"
+ by (rule poly_ext, simp add: ring_simps)
+
+lemma smult_diff_left:
+ "smult (a - b::'a::comm_ring) p = smult a p - smult b p"
+ by (rule poly_ext, simp add: ring_simps)
+
+lemma smult_pCons [simp]:
+ "smult a (pCons b p) = pCons (a * b) (smult a p)"
+ by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma smult_monom: "smult a (monom b n) = monom (a * b) n"
+ by (induct n, simp add: monom_0, simp add: monom_Suc)
+
+
+subsection {* Multiplication of polynomials *}
+
+lemma Poly_mult_lemma:
+ fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0" and m n :: nat
+ assumes "\<forall>i>m. f i = 0"
+ assumes "\<forall>j>n. g j = 0"
+ shows "\<forall>k>m+n. (\<Sum>i\<le>k. f i * g (k-i)) = 0"
+proof (clarify)
+ fix k :: nat
+ assume "m + n < k"
+ show "(\<Sum>i\<le>k. f i * g (k - i)) = 0"
+ proof (rule setsum_0' [rule_format])
+ fix i :: nat
+ assume "i \<in> {..k}" hence "i \<le> k" by simp
+ with `m + n < k` have "m < i \<or> n < k - i" by arith
+ thus "f i * g (k - i) = 0"
+ using prems by auto
+ qed
+qed
+
+lemma Poly_mult:
+ fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0"
+ shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i * g (n-i)) \<in> Poly"
+ unfolding Poly_def
+ by (safe, rule exI, rule Poly_mult_lemma)
+
+lemma poly_mult_assoc_lemma:
+ fixes k :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
+ shows "(\<Sum>j\<le>k. \<Sum>i\<le>j. f i (j - i) (n - j)) =
+ (\<Sum>j\<le>k. \<Sum>i\<le>k - j. f j i (n - j - i))"
+proof (induct k)
+ case 0 show ?case by simp
+next
+ case (Suc k) thus ?case
+ by (simp add: Suc_diff_le setsum_addf add_assoc
+ cong: strong_setsum_cong)
+qed
+
+lemma poly_mult_commute_lemma:
+ fixes n :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
+ shows "(\<Sum>i\<le>n. f i (n - i)) = (\<Sum>i\<le>n. f (n - i) i)"
+proof (rule setsum_reindex_cong)
+ show "inj_on (\<lambda>i. n - i) {..n}"
+ by (rule inj_onI) simp
+ show "{..n} = (\<lambda>i. n - i) ` {..n}"
+ by (auto, rule_tac x="n - x" in image_eqI, simp_all)
+next
+ fix i assume "i \<in> {..n}"
+ hence "n - (n - i) = i" by simp
+ thus "f (n - i) i = f (n - i) (n - (n - i))" by simp
+qed
+
+text {* TODO: move to appropriate theory *}
+lemma setsum_atMost_Suc_shift:
+ fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
+ shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
+proof (induct n)
+ case 0 show ?case by simp
+next
+ case (Suc n) note IH = this
+ have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))"
+ by (rule setsum_atMost_Suc)
+ also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
+ by (rule IH)
+ also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) =
+ f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))"
+ by (rule add_assoc)
+ also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))"
+ by (rule setsum_atMost_Suc [symmetric])
+ finally show ?case .
+qed
+
+instantiation poly :: (comm_semiring_0) comm_semiring_0
+begin
+
+definition
+ times_poly_def:
+ "p * q = Abs_poly (\<lambda>n. \<Sum>i\<le>n. coeff p i * coeff q (n-i))"
+
+lemma coeff_mult:
+ "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
+ unfolding times_poly_def
+ by (simp add: Abs_poly_inverse coeff Poly_mult)
+
+instance proof
+ fix p q r :: "'a poly"
+ show 0: "0 * p = 0"
+ by (simp add: expand_poly_eq coeff_mult)
+ show "p * 0 = 0"
+ by (simp add: expand_poly_eq coeff_mult)
+ show "(p + q) * r = p * r + q * r"
+ by (simp add: expand_poly_eq coeff_mult left_distrib setsum_addf)
+ show "(p * q) * r = p * (q * r)"
+ proof (rule poly_ext)
+ fix n :: nat
+ have "(\<Sum>j\<le>n. \<Sum>i\<le>j. coeff p i * coeff q (j - i) * coeff r (n - j)) =
+ (\<Sum>j\<le>n. \<Sum>i\<le>n - j. coeff p j * coeff q i * coeff r (n - j - i))"
+ by (rule poly_mult_assoc_lemma)
+ thus "coeff ((p * q) * r) n = coeff (p * (q * r)) n"
+ by (simp add: coeff_mult setsum_right_distrib
+ setsum_left_distrib mult_assoc)
+ qed
+ show "p * q = q * p"
+ proof (rule poly_ext)
+ fix n :: nat
+ have "(\<Sum>i\<le>n. coeff p i * coeff q (n - i)) =
+ (\<Sum>i\<le>n. coeff p (n - i) * coeff q i)"
+ by (rule poly_mult_commute_lemma)
+ thus "coeff (p * q) n = coeff (q * p) n"
+ by (simp add: coeff_mult mult_commute)
+ qed
+qed
+
+end
+
+lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
+apply (rule degree_le, simp add: coeff_mult)
+apply (rule Poly_mult_lemma)
+apply (simp_all add: coeff_eq_0)
+done
+
+lemma mult_pCons_left [simp]:
+ "pCons a p * q = smult a q + pCons 0 (p * q)"
+apply (rule poly_ext)
+apply (case_tac n)
+apply (simp add: coeff_mult)
+apply (simp add: coeff_mult setsum_atMost_Suc_shift
+ del: setsum_atMost_Suc)
+done
+
+lemma mult_pCons_right [simp]:
+ "p * pCons a q = smult a p + pCons 0 (p * q)"
+ using mult_pCons_left [of a q p] by (simp add: mult_commute)
+
+lemma mult_smult_left: "smult a p * q = smult a (p * q)"
+ by (induct p, simp, simp add: smult_add_right smult_smult)
+
+lemma mult_smult_right: "p * smult a q = smult a (p * q)"
+ using mult_smult_left [of a q p] by (simp add: mult_commute)
+
+lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
+ by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
+
+
+subsection {* The unit polynomial and exponentiation *}
+
+instantiation poly :: (comm_semiring_1) comm_semiring_1
+begin
+
+definition
+ one_poly_def:
+ "1 = pCons 1 0"
+
+instance proof
+ fix p :: "'a poly" show "1 * p = p"
+ unfolding one_poly_def
+ by simp
+next
+ show "0 \<noteq> (1::'a poly)"
+ unfolding one_poly_def by simp
+qed
+
+end
+
+lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)"
+ unfolding one_poly_def
+ by (simp add: coeff_pCons split: nat.split)
+
+lemma degree_1 [simp]: "degree 1 = 0"
+ unfolding one_poly_def
+ by (rule degree_pCons_0)
+
+instantiation poly :: (comm_semiring_1) recpower
+begin
+
+primrec power_poly where
+ power_poly_0: "(p::'a poly) ^ 0 = 1"
+| power_poly_Suc: "(p::'a poly) ^ (Suc n) = p * p ^ n"
+
+instance
+ by default simp_all
+
+end
+
+instance poly :: (comm_ring) comm_ring ..
+
+instance poly :: (comm_ring_1) comm_ring_1 ..
+
+instantiation poly :: (comm_ring_1) number_ring
+begin
+
+definition
+ "number_of k = (of_int k :: 'a poly)"
+
+instance
+ by default (rule number_of_poly_def)
+
+end
+
+
+subsection {* Polynomials form an integral domain *}
+
+lemma coeff_mult_degree_sum:
+ "coeff (p * q) (degree p + degree q) =
+ coeff p (degree p) * coeff q (degree q)"
+ apply (simp add: coeff_mult)
+ apply (subst setsum_diff1' [where a="degree p"])
+ apply simp
+ apply simp
+ apply (subst setsum_0' [rule_format])
+ apply clarsimp
+ apply (subgoal_tac "degree p < a \<or> degree q < degree p + degree q - a")
+ apply (force simp add: coeff_eq_0)
+ apply arith
+ apply simp
+done
+
+instance poly :: (idom) idom
+proof
+ fix p q :: "'a poly"
+ assume "p \<noteq> 0" and "q \<noteq> 0"
+ have "coeff (p * q) (degree p + degree q) =
+ coeff p (degree p) * coeff q (degree q)"
+ by (rule coeff_mult_degree_sum)
+ also have "coeff p (degree p) * coeff q (degree q) \<noteq> 0"
+ using `p \<noteq> 0` and `q \<noteq> 0` by simp
+ finally have "\<exists>n. coeff (p * q) n \<noteq> 0" ..
+ thus "p * q \<noteq> 0" by (simp add: expand_poly_eq)
+qed
+
+lemma degree_mult_eq:
+ fixes p q :: "'a::idom poly"
+ shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q"
+apply (rule order_antisym [OF degree_mult_le le_degree])
+apply (simp add: coeff_mult_degree_sum)
+done
+
+lemma dvd_imp_degree_le:
+ fixes p q :: "'a::idom poly"
+ shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q"
+ by (erule dvdE, simp add: degree_mult_eq)
+
+
+subsection {* Long division of polynomials *}
+
+definition
+ divmod_poly_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
+where
+ "divmod_poly_rel x y q r \<longleftrightarrow>
+ x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
+
+lemma divmod_poly_rel_0:
+ "divmod_poly_rel 0 y 0 0"
+ unfolding divmod_poly_rel_def by simp
+
+lemma divmod_poly_rel_by_0:
+ "divmod_poly_rel x 0 0 x"
+ unfolding divmod_poly_rel_def by simp
+
+lemma eq_zero_or_degree_less:
+ assumes "degree p \<le> n" and "coeff p n = 0"
+ shows "p = 0 \<or> degree p < n"
+proof (cases n)
+ case 0
+ with `degree p \<le> n` and `coeff p n = 0`
+ have "coeff p (degree p) = 0" by simp
+ then have "p = 0" by simp
+ then show ?thesis ..
+next
+ case (Suc m)
+ have "\<forall>i>n. coeff p i = 0"
+ using `degree p \<le> n` by (simp add: coeff_eq_0)
+ then have "\<forall>i\<ge>n. coeff p i = 0"
+ using `coeff p n = 0` by (simp add: le_less)
+ then have "\<forall>i>m. coeff p i = 0"
+ using `n = Suc m` by (simp add: less_eq_Suc_le)
+ then have "degree p \<le> m"
+ by (rule degree_le)
+ then have "degree p < n"
+ using `n = Suc m` by (simp add: less_Suc_eq_le)
+ then show ?thesis ..
+qed
+
+lemma divmod_poly_rel_pCons:
+ assumes rel: "divmod_poly_rel x y q r"
+ assumes y: "y \<noteq> 0"
+ assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)"
+ shows "divmod_poly_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)"
+ (is "divmod_poly_rel ?x y ?q ?r")
+proof -
+ have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y"
+ using assms unfolding divmod_poly_rel_def by simp_all
+
+ have 1: "?x = ?q * y + ?r"
+ using b x by simp
+
+ have 2: "?r = 0 \<or> degree ?r < degree y"
+ proof (rule eq_zero_or_degree_less)
+ have "degree ?r \<le> max (degree (pCons a r)) (degree (smult b y))"
+ by (rule degree_diff_le)
+ also have "\<dots> \<le> degree y"
+ proof (rule min_max.le_supI)
+ show "degree (pCons a r) \<le> degree y"
+ using r by (auto simp add: degree_pCons_eq_if)
+ show "degree (smult b y) \<le> degree y"
+ by (rule degree_smult_le)
+ qed
+ finally show "degree ?r \<le> degree y" .
+ next
+ show "coeff ?r (degree y) = 0"
+ using `y \<noteq> 0` unfolding b by simp
+ qed
+
+ from 1 2 show ?thesis
+ unfolding divmod_poly_rel_def
+ using `y \<noteq> 0` by simp
+qed
+
+lemma divmod_poly_rel_exists: "\<exists>q r. divmod_poly_rel x y q r"
+apply (cases "y = 0")
+apply (fast intro!: divmod_poly_rel_by_0)
+apply (induct x)
+apply (fast intro!: divmod_poly_rel_0)
+apply (fast intro!: divmod_poly_rel_pCons)
+done
+
+lemma divmod_poly_rel_unique:
+ assumes 1: "divmod_poly_rel x y q1 r1"
+ assumes 2: "divmod_poly_rel x y q2 r2"
+ shows "q1 = q2 \<and> r1 = r2"
+proof (cases "y = 0")
+ assume "y = 0" with assms show ?thesis
+ by (simp add: divmod_poly_rel_def)
+next
+ assume [simp]: "y \<noteq> 0"
+ from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y"
+ unfolding divmod_poly_rel_def by simp_all
+ from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y"
+ unfolding divmod_poly_rel_def by simp_all
+ from q1 q2 have q3: "(q1 - q2) * y = r2 - r1"
+ by (simp add: ring_simps)
+ from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y"
+ by (auto intro: le_less_trans [OF degree_diff_le])
+
+ show "q1 = q2 \<and> r1 = r2"
+ proof (rule ccontr)
+ assume "\<not> (q1 = q2 \<and> r1 = r2)"
+ with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto
+ with r3 have "degree (r2 - r1) < degree y" by simp
+ also have "degree y \<le> degree (q1 - q2) + degree y" by simp
+ also have "\<dots> = degree ((q1 - q2) * y)"
+ using `q1 \<noteq> q2` by (simp add: degree_mult_eq)
+ also have "\<dots> = degree (r2 - r1)"
+ using q3 by simp
+ finally have "degree (r2 - r1) < degree (r2 - r1)" .
+ then show "False" by simp
+ qed
+qed
+
+lemmas divmod_poly_rel_unique_div =
+ divmod_poly_rel_unique [THEN conjunct1, standard]
+
+lemmas divmod_poly_rel_unique_mod =
+ divmod_poly_rel_unique [THEN conjunct2, standard]
+
+instantiation poly :: (field) ring_div
+begin
+
+definition div_poly where
+ [code del]: "x div y = (THE q. \<exists>r. divmod_poly_rel x y q r)"
+
+definition mod_poly where
+ [code del]: "x mod y = (THE r. \<exists>q. divmod_poly_rel x y q r)"
+
+lemma div_poly_eq:
+ "divmod_poly_rel x y q r \<Longrightarrow> x div y = q"
+unfolding div_poly_def
+by (fast elim: divmod_poly_rel_unique_div)
+
+lemma mod_poly_eq:
+ "divmod_poly_rel x y q r \<Longrightarrow> x mod y = r"
+unfolding mod_poly_def
+by (fast elim: divmod_poly_rel_unique_mod)
+
+lemma divmod_poly_rel:
+ "divmod_poly_rel x y (x div y) (x mod y)"
+proof -
+ from divmod_poly_rel_exists
+ obtain q r where "divmod_poly_rel x y q r" by fast
+ thus ?thesis
+ by (simp add: div_poly_eq mod_poly_eq)
+qed
+
+instance proof
+ fix x y :: "'a poly"
+ show "x div y * y + x mod y = x"
+ using divmod_poly_rel [of x y]
+ by (simp add: divmod_poly_rel_def)
+next
+ fix x :: "'a poly"
+ have "divmod_poly_rel x 0 0 x"
+ by (rule divmod_poly_rel_by_0)
+ thus "x div 0 = 0"
+ by (rule div_poly_eq)
+next
+ fix y :: "'a poly"
+ have "divmod_poly_rel 0 y 0 0"
+ by (rule divmod_poly_rel_0)
+ thus "0 div y = 0"
+ by (rule div_poly_eq)
+next
+ fix x y z :: "'a poly"
+ assume "y \<noteq> 0"
+ hence "divmod_poly_rel (x + z * y) y (z + x div y) (x mod y)"
+ using divmod_poly_rel [of x y]
+ by (simp add: divmod_poly_rel_def left_distrib)
+ thus "(x + z * y) div y = z + x div y"
+ by (rule div_poly_eq)
+qed
+
+end
+
+lemma degree_mod_less:
+ "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y"
+ using divmod_poly_rel [of x y]
+ unfolding divmod_poly_rel_def by simp
+
+lemma div_poly_less: "degree x < degree y \<Longrightarrow> x div y = 0"
+proof -
+ assume "degree x < degree y"
+ hence "divmod_poly_rel x y 0 x"
+ by (simp add: divmod_poly_rel_def)
+ thus "x div y = 0" by (rule div_poly_eq)
+qed
+
+lemma mod_poly_less: "degree x < degree y \<Longrightarrow> x mod y = x"
+proof -
+ assume "degree x < degree y"
+ hence "divmod_poly_rel x y 0 x"
+ by (simp add: divmod_poly_rel_def)
+ thus "x mod y = x" by (rule mod_poly_eq)
+qed
+
+lemma mod_pCons:
+ fixes a and x
+ assumes y: "y \<noteq> 0"
+ defines b: "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)"
+ shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)"
+unfolding b
+apply (rule mod_poly_eq)
+apply (rule divmod_poly_rel_pCons [OF divmod_poly_rel y refl])
+done
+
+
+subsection {* Evaluation of polynomials *}
+
+definition
+ poly :: "'a::{comm_semiring_1,recpower} poly \<Rightarrow> 'a \<Rightarrow> 'a" where
+ "poly p = (\<lambda>x. \<Sum>n\<le>degree p. coeff p n * x ^ n)"
+
+lemma poly_0 [simp]: "poly 0 x = 0"
+ unfolding poly_def by simp
+
+lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x"
+ unfolding poly_def
+ by (simp add: degree_pCons_eq_if setsum_atMost_Suc_shift power_Suc
+ setsum_left_distrib setsum_right_distrib mult_ac
+ del: setsum_atMost_Suc)
+
+lemma poly_1 [simp]: "poly 1 x = 1"
+ unfolding one_poly_def by simp
+
+lemma poly_monom: "poly (monom a n) x = a * x ^ n"
+ by (induct n, simp add: monom_0, simp add: monom_Suc power_Suc mult_ac)
+
+lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x"
+ apply (induct p arbitrary: q, simp)
+ apply (case_tac q, simp, simp add: ring_simps)
+ done
+
+lemma poly_minus [simp]:
+ fixes x :: "'a::{comm_ring_1,recpower}"
+ shows "poly (- p) x = - poly p x"
+ by (induct p, simp_all)
+
+lemma poly_diff [simp]:
+ fixes x :: "'a::{comm_ring_1,recpower}"
+ shows "poly (p - q) x = poly p x - poly q x"
+ by (simp add: diff_minus)
+
+lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
+ by (cases "finite A", induct set: finite, simp_all)
+
+lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x"
+ by (induct p, simp, simp add: ring_simps)
+
+lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x"
+ by (induct p, simp_all, simp add: ring_simps)
+
+end