--- a/doc-src/HOL/HOL.tex Thu Sep 21 14:55:46 2000 +0200
+++ b/doc-src/HOL/HOL.tex Thu Sep 21 15:58:13 2000 +0200
@@ -1767,7 +1767,7 @@
characteristic properties (see {\S}\ref{sec:HOL:record-thms}).
There is an example theory demonstrating most basic aspects of extensible
-records (see theory \texttt{HOL/ex/Points} in the Isabelle sources).
+records (see theory \texttt{HOL/ex/Records} in the Isabelle sources).
\subsection{Defining records}\label{sec:HOL:record-def}
@@ -1937,7 +1937,7 @@
\medskip
-The example theory \texttt{HOL/ex/Points} demonstrates typical proofs
+The example theory \texttt{HOL/ex/Records} demonstrates typical proofs
concerning records. The basic idea is to make \ttindex{record_split_tac}
expand quantified record variables and then simplify by the conversion rules.
By using a combination of the simplifier and classical prover together with
--- a/src/HOL/IsaMakefile Thu Sep 21 14:55:46 2000 +0200
+++ b/src/HOL/IsaMakefile Thu Sep 21 15:58:13 2000 +0200
@@ -441,7 +441,7 @@
ex/StringEx.thy ex/Tarski.ML ex/Tarski.thy \
ex/BinEx.ML ex/BinEx.thy ex/svc_test.thy ex/svc_test.ML ex/MonoidGroup.thy \
ex/PiSets.thy ex/PiSets.ML ex/LocaleGroup.thy ex/LocaleGroup.ML \
- ex/Antiquote.thy ex/Multiquote.thy ex/Points.thy ex/Tuple.thy
+ ex/Antiquote.thy ex/Multiquote.thy ex/Records.thy ex/Tuple.thy
@$(ISATOOL) usedir $(OUT)/HOL ex
--- a/src/HOL/ex/ROOT.ML Thu Sep 21 14:55:46 2000 +0200
+++ b/src/HOL/ex/ROOT.ML Thu Sep 21 15:58:13 2000 +0200
@@ -31,7 +31,7 @@
(*basic use of extensible records*)
time_use_thy "MonoidGroup";
-time_use_thy "Points";
+time_use_thy "Records";
(*groups via locales*)
time_use_thy "PiSets";
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Records.thy Thu Sep 21 15:58:13 2000 +0200
@@ -0,0 +1,210 @@
+(* Title: HOL/ex/Records.thy
+ ID: $Id$
+ Author: Wolfgang Naraschewski and Markus Wenzel, TU Muenchen
+ License: GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+header {* Using extensible records in HOL -- points and coloured points *}
+
+theory Records = Main:
+
+subsection {* Points *}
+
+record point =
+ x :: nat
+ y :: nat
+
+text {*
+ Apart many other things, above record declaration produces the
+ following theorems:
+*}
+
+thm "point.simps"
+thm "point.iffs"
+thm "point.update_defs"
+
+text {*
+ The set of theorems "point.simps" is added automatically to the
+ standard simpset, "point.iffs" is added to the claset and simpset.
+*}
+
+text {*
+ Record declarations define new type abbreviations:
+
+ point = "(| x :: nat, y :: nat |)"
+ 'a point_scheme = "(| x :: nat, y :: nat, ... :: 'a |)"
+
+ Extensions `...' must be in type class `more'!
+*}
+
+consts foo1 :: point
+consts foo2 :: "(| x :: nat, y :: nat |)"
+consts foo3 :: "'a => ('a::more) point_scheme"
+consts foo4 :: "'a => (| x :: nat, y :: nat, ... :: 'a |)"
+
+
+subsubsection {* Introducing concrete records and record schemes *}
+
+defs
+ foo1_def: "foo1 == (| x = 1, y = 0 |)"
+ foo3_def: "foo3 ext == (| x = 1, y = 0, ... = ext |)"
+
+
+subsubsection {* Record selection and record update *}
+
+constdefs
+ getX :: "('a::more) point_scheme => nat"
+ "getX r == x r"
+ setX :: "('a::more) point_scheme => nat => 'a point_scheme"
+ "setX r n == r (| x := n |)"
+
+
+subsubsection {* Some lemmas about records *}
+
+text {* Basic simplifications *}
+
+lemma "point.make n p = (| x = n, y = p |)"
+ by simp
+
+lemma "x (| x = m, y = n, ... = p |) = m"
+ by simp
+
+lemma "(| x = m, y = n, ... = p |) (| x:= 0 |) = (| x = 0, y = n, ... = p |)"
+ by simp
+
+
+text {* Equality of records *}
+
+lemma "n = n' ==> p = p' ==> (| x = n, y = p |) = (| x = n', y = p' |)"
+ -- "introduction of concrete record equality"
+ by simp
+
+lemma "(| x = n, y = p |) = (| x = n', y = p' |) ==> n = n'"
+ -- "elimination of concrete record equality"
+ by simp
+
+lemma "r (| x := n |) (| y := m |) = r (| y := m |) (| x := n |)"
+ -- "introduction of abstract record equality"
+ by simp
+
+lemma "r (| x := n |) = r (| x := n' |) ==> n = n'"
+ -- "elimination of abstract record equality (manual proof)"
+proof -
+ assume "r (| x := n |) = r (| x := n' |)" (is "?lhs = ?rhs")
+ hence "x ?lhs = x ?rhs" by simp
+ thus ?thesis by simp
+qed
+
+
+text {* Surjective pairing *}
+
+lemma "r = (| x = x r, y = y r |)"
+ by simp
+
+lemma "r = (| x = x r, y = y r, ... = more r |)"
+ by simp
+
+
+text {* Splitting quantifiers: the !!r is NECESSARY here *}
+
+lemma "!!r. r (| x := n |) (| y := m |) = r (| y := m |) (| x := n |)"
+proof record_split
+ fix x y more
+ show "(| x = x, y = y, ... = more |)(| x := n, y := m |) =
+ (| x = x, y = y, ... = more |)(| y := m, x := n |)"
+ by simp
+qed
+
+lemma "!!r. r (| x := n |) (| x := m |) = r (| x := m |)"
+proof record_split
+ fix x y more
+ show "(| x = x, y = y, ... = more |)(| x := n, x := m |) =
+ (| x = x, y = y, ... = more |)(| x := m |)"
+ by simp
+qed
+
+
+
+text {* Concrete records are type instances of record schemes *}
+
+constdefs
+ foo5 :: nat
+ "foo5 == getX (| x = 1, y = 0 |)"
+
+
+text {* Manipulating the `...' (more) part *}
+
+constdefs
+ incX :: "('a::more) point_scheme => 'a point_scheme"
+ "incX r == (| x = Suc (x r), y = y r, ... = point.more r |)"
+
+lemma "!!r n. incX r = setX r (Suc (getX r))"
+proof (unfold getX_def setX_def incX_def)
+ show "!!r n. (| x = Suc (x r), y = y r, ... = more r |) = r(| x := Suc (x r) |)"
+ by record_split simp
+qed
+
+
+text {* alternative definition *}
+
+constdefs
+ incX' :: "('a::more) point_scheme => 'a point_scheme"
+ "incX' r == r (| x := Suc (x r) |)"
+
+
+subsection {* Coloured points: record extension *}
+
+datatype colour = Red | Green | Blue
+
+record cpoint = point +
+ colour :: colour
+
+
+text {*
+ The record declaration defines new type constructors:
+
+ cpoint = (| x :: nat, y :: nat, colour :: colour |)
+ 'a cpoint_scheme = (| x :: nat, y :: nat, colour :: colour, ... :: 'a |)
+*}
+
+consts foo6 :: cpoint
+consts foo7 :: "(| x :: nat, y :: nat, colour :: colour |)"
+consts foo8 :: "('a::more) cpoint_scheme"
+consts foo9 :: "(| x :: nat, y :: nat, colour :: colour, ... :: 'a |)"
+
+
+text {* Functions on point schemes work for cpoints as well *}
+
+constdefs
+ foo10 :: nat
+ "foo10 == getX (| x = 2, y = 0, colour = Blue |)"
+
+
+subsubsection {* Non-coercive structural subtyping *}
+
+text {* foo11 has type cpoint, not type point --- Great! *}
+
+constdefs
+ foo11 :: cpoint
+ "foo11 == setX (| x = 2, y = 0, colour = Blue |) 0"
+
+
+subsection {* Other features *}
+
+text {* field names contribute to record identity *}
+
+record point' =
+ x' :: nat
+ y' :: nat
+
+text {* May not apply @{term getX} to @{term "(| x' = 2, y' = 0 |)"} *}
+
+
+text {* Polymorphic records *}
+
+record 'a point'' = point +
+ content :: 'a
+
+types cpoint'' = "colour point''"
+
+end