--- a/src/HOL/Isar_examples/Summation.thy Sat Apr 01 20:22:46 2000 +0200
+++ b/src/HOL/Isar_examples/Summation.thy Sat Apr 01 20:26:20 2000 +0200
@@ -47,8 +47,8 @@
"SUM i < k. b" == "sum (\\<lambda>i. b) k";
-subsection {* Summation laws *}; (*<*)
-
+subsection {* Summation laws *};
+(*<*)
(* FIXME binary arithmetic does not yet work here *)
syntax
@@ -62,7 +62,6 @@
"6" == "Suc (Suc 4)";
theorems [simp] = add_mult_distrib add_mult_distrib2 mult_ac;
-
(*>*)
text {*
--- a/src/HOL/Real/HahnBanach/Bounds.thy Sat Apr 01 20:22:46 2000 +0200
+++ b/src/HOL/Real/HahnBanach/Bounds.thy Sat Apr 01 20:26:20 2000 +0200
@@ -5,8 +5,8 @@
header {* Bounds *};
-theory Bounds = Main + Real:; (*<*)
-
+theory Bounds = Main + Real:;
+(*<*)
subsection {* The sets of lower and upper bounds *};
constdefs
@@ -66,7 +66,6 @@
subsection {* Infimum and Supremum *};
-
(*>*)
text {*
A supremum\footnote{The definition of the supremum is based on one in
@@ -83,8 +82,8 @@
"is_Sup A B x == isLub A B x"
Sup :: "('a::order) set => 'a set => 'a"
- "Sup A B == Eps (is_Sup A B)"; (*<*)
-
+ "Sup A B == Eps (is_Sup A B)";
+(*<*)
constdefs
is_Inf :: "('a::order) set => 'a set => 'a => bool"
"is_Inf A B x == x:A & is_Greatest (LowerBounds A B) x"
@@ -107,7 +106,6 @@
"SUP x. P" == "SUP x:UNIV. P"
"INF x:A. P" == "Inf A (Collect (\<lambda>x. P))"
"INF x. P" == "INF x:UNIV. P";
-
(*>*)
text{* The supremum of $B$ is less than any upper bound
of $B$.*};