Order and lattice structures no longer based on records.
authorballarin
Mon, 16 Oct 2006 10:27:54 +0200
changeset 21041 60e418260b4d
parent 21040 983caf913a4c
child 21042 b96d37893dbb
Order and lattice structures no longer based on records.
NEWS
src/HOL/Algebra/Group.thy
src/HOL/Algebra/IntRing.thy
src/HOL/Algebra/Lattice.thy
--- a/NEWS	Sun Oct 15 12:16:20 2006 +0200
+++ b/NEWS	Mon Oct 16 10:27:54 2006 +0200
@@ -610,13 +610,15 @@
 
 *** HOL-Algebra ***
 
+* Formalisation of ideals and the quotient construction over rings, contributed
+  by Stephan Hohe.
+
+* Order and lattice theory no longer based on records.  INCOMPATIBILITY.
+
 * Method algebra is now set up via an attribute.  For examples see CRing.thy.
   INCOMPATIBILITY: the method is now weaker on combinations of algebraic
   structures.
 
-* Formalisation of ideals and the quotient construction over rings, contributed
-  by Stephan Hohe.
-
 * Renamed `CRing.thy' to `Ring.thy'.  INCOMPATIBILITY.
 
 
--- a/src/HOL/Algebra/Group.thy	Sun Oct 15 12:16:20 2006 +0200
+++ b/src/HOL/Algebra/Group.thy	Mon Oct 16 10:27:54 2006 +0200
@@ -685,7 +685,7 @@
 text_raw {* \label{sec:subgroup-lattice} *}
 
 theorem (in group) subgroups_partial_order:
-  "partial_order (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
+  "partial_order {H. subgroup H G} (op \<subseteq>)"
   by (rule partial_order.intro) simp_all
 
 lemma (in group) subgroup_self:
@@ -730,22 +730,23 @@
 qed
 
 theorem (in group) subgroups_complete_lattice:
-  "complete_lattice (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
-    (is "complete_lattice ?L")
+  "complete_lattice {H. subgroup H G} (op \<subseteq>)"
+    (is "complete_lattice ?car ?le")
 proof (rule partial_order.complete_lattice_criterion1)
-  show "partial_order ?L" by (rule subgroups_partial_order)
+  show "partial_order ?car ?le" by (rule subgroups_partial_order)
 next
-  have "greatest ?L (carrier G) (carrier ?L)"
-    by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
-  then show "\<exists>G. greatest ?L G (carrier ?L)" ..
+  have "order_syntax.greatest ?car ?le (carrier G) ?car"
+    by (unfold order_syntax.greatest_def)
+      (simp add: subgroup.subset subgroup_self)
+  then show "\<exists>G. order_syntax.greatest ?car ?le G ?car" ..
 next
   fix A
-  assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
+  assume L: "A \<subseteq> ?car" and non_empty: "A ~= {}"
   then have Int_subgroup: "subgroup (\<Inter>A) G"
     by (fastsimp intro: subgroups_Inter)
-  have "greatest ?L (\<Inter>A) (Lower ?L A)"
-    (is "greatest ?L ?Int _")
-  proof (rule greatest_LowerI)
+  have "order_syntax.greatest ?car ?le (\<Inter>A) (order_syntax.Lower ?car ?le A)"
+    (is "order_syntax.greatest _ _ ?Int _")
+  proof (rule order_syntax.greatest_LowerI)
     fix H
     assume H: "H \<in> A"
     with L have subgroupH: "subgroup H G" by auto
@@ -754,17 +755,18 @@
     from groupH have monoidH: "monoid ?H"
       by (rule group.is_monoid)
     from H have Int_subset: "?Int \<subseteq> H" by fastsimp
-    then show "le ?L ?Int H" by simp
+    then show "?le ?Int H" by simp
   next
     fix H
-    assume H: "H \<in> Lower ?L A"
-    with L Int_subgroup show "le ?L H ?Int" by (fastsimp intro: Inter_greatest)
+    assume H: "H \<in> order_syntax.Lower ?car ?le A"
+    with L Int_subgroup show "?le H ?Int"
+      by (fastsimp simp: order_syntax.Lower_def intro: Inter_greatest)
   next
-    show "A \<subseteq> carrier ?L" by (rule L)
+    show "A \<subseteq> ?car" by (rule L)
   next
-    show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
+    show "?Int \<in> ?car" by simp (rule Int_subgroup)
   qed
-  then show "\<exists>I. greatest ?L I (Lower ?L A)" ..
+  then show "\<exists>I. order_syntax.greatest ?car ?le I (order_syntax.Lower ?car ?le A)" ..
 qed
 
 end
--- a/src/HOL/Algebra/IntRing.thy	Sun Oct 15 12:16:20 2006 +0200
+++ b/src/HOL/Algebra/IntRing.thy	Mon Oct 16 10:27:54 2006 +0200
@@ -71,9 +71,6 @@
   int_ring :: "int ring" ("\<Z>")
   "int_ring \<equiv> \<lparr>carrier = UNIV, mult = op *, one = 1, zero = 0, add = op +\<rparr>"
 
-  int_order :: "int order"
-  "int_order \<equiv> \<lparr>carrier = UNIV, le = op \<le>\<rparr>"
-
 lemma int_Zcarr[simp,intro!]:
   "k \<in> carrier \<Z>"
 by (simp add: int_ring_def)
@@ -99,14 +96,13 @@
 interpretation "domain" ["\<Z>"] by (rule int_is_domain)
 
 lemma int_le_total_order:
-  "total_order int_order"
-unfolding int_order_def
+  "total_order (UNIV::int set) (op \<le>)"
 apply (rule partial_order.total_orderI)
  apply (rule partial_order.intro, simp+)
 apply clarsimp
 done
 
-interpretation total_order ["int_order"] by (rule int_le_total_order)
+interpretation total_order ["UNIV::int set" "op \<le>"] by (rule int_le_total_order)
 
 
 subsubsection {* Generated Ideals of @{text "\<Z>"} *}
--- a/src/HOL/Algebra/Lattice.thy	Sun Oct 15 12:16:20 2006 +0200
+++ b/src/HOL/Algebra/Lattice.thy	Mon Oct 16 10:27:54 2006 +0200
@@ -18,157 +18,191 @@
 
 subsection {* Partial Orders *}
 
+(*
 record 'a order = "'a partial_object" +
   le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>\<index>" 50)
+*)
 
-locale partial_order =
-  fixes L (structure)
+text {* Locale @{text order_syntax} is required since we want to refer
+  to definitions (and their derived theorems) outside of @{text partial_order}.
+  *}
+
+locale order_syntax =
+  fixes carrier :: "'a set" and le :: "['a, 'a] => bool" (infix "\<sqsubseteq>" 50)
+
+text {* Note that the type constraints above are necessary, because the
+  definition command cannot specialise the types. *}
+
+definition (in order_syntax)
+  less (infixl "\<sqsubset>" 50) "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
+
+text {* Upper and lower bounds of a set. *}
+
+definition (in order_syntax)
+  Upper where
+  "Upper A == {u. (ALL x. x \<in> A \<inter> carrier --> x \<sqsubseteq> u)} \<inter>
+              carrier"
+
+definition (in order_syntax)
+  Lower :: "'a set => 'a set"
+  "Lower A == {l. (ALL x. x \<in> A \<inter> carrier --> l \<sqsubseteq> x)} \<inter>
+              carrier"
+
+text {* Least and greatest, as predicate. *}
+
+definition (in order_syntax)
+  least :: "['a, 'a set] => bool"
+  "least l A == A \<subseteq> carrier & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
+
+definition (in order_syntax)
+  greatest :: "['a, 'a set] => bool"
+  "greatest g A == A \<subseteq> carrier & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
+
+text {* Supremum and infimum *}
+
+definition (in order_syntax)
+  sup :: "'a set => 'a" ("\<Squnion>")  (* FIXME precedence [90] 90 *)
+  "\<Squnion>A == THE x. least x (Upper A)"
+
+definition (in order_syntax)
+  inf :: "'a set => 'a" ("\<Sqinter>") (* FIXME precedence *)
+  "\<Sqinter>A == THE x. greatest x (Lower A)"
+
+definition (in order_syntax)
+  join :: "['a, 'a] => 'a" (infixl "\<squnion>" 65)
+  "x \<squnion> y == sup {x, y}"
+
+definition (in order_syntax)
+  meet :: "['a, 'a] => 'a" (infixl "\<sqinter>" 70)
+  "x \<sqinter> y == inf {x, y}"
+
+locale partial_order = order_syntax +
   assumes refl [intro, simp]:
-                  "x \<in> carrier L ==> x \<sqsubseteq> x"
+                  "x \<in> carrier ==> x \<sqsubseteq> x"
     and anti_sym [intro]:
-                  "[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
+                  "[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier; y \<in> carrier |] ==> x = y"
     and trans [trans]:
                   "[| x \<sqsubseteq> y; y \<sqsubseteq> z;
-                   x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
-
-constdefs (structure L)
-  lless :: "[_, 'a, 'a] => bool" (infixl "\<sqsubset>\<index>" 50)
-  "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
-
-  -- {* Upper and lower bounds of a set. *}
-  Upper :: "[_, 'a set] => 'a set"
-  "Upper L A == {u. (ALL x. x \<in> A \<inter> carrier L --> x \<sqsubseteq> u)} \<inter>
-                carrier L"
-
-  Lower :: "[_, 'a set] => 'a set"
-  "Lower L A == {l. (ALL x. x \<in> A \<inter> carrier L --> l \<sqsubseteq> x)} \<inter>
-                carrier L"
+                   x \<in> carrier; y \<in> carrier; z \<in> carrier |] ==> x \<sqsubseteq> z"
 
-  -- {* Least and greatest, as predicate. *}
-  least :: "[_, 'a, 'a set] => bool"
-  "least L l A == A \<subseteq> carrier L & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
-
-  greatest :: "[_, 'a, 'a set] => bool"
-  "greatest L g A == A \<subseteq> carrier L & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
-
-  -- {* Supremum and infimum *}
-  sup :: "[_, 'a set] => 'a" ("\<Squnion>\<index>_" [90] 90)
-  "\<Squnion>A == THE x. least L x (Upper L A)"
-
-  inf :: "[_, 'a set] => 'a" ("\<Sqinter>\<index>_" [90] 90)
-  "\<Sqinter>A == THE x. greatest L x (Lower L A)"
-
-  join :: "[_, 'a, 'a] => 'a" (infixl "\<squnion>\<index>" 65)
-  "x \<squnion> y == sup L {x, y}"
-
-  meet :: "[_, 'a, 'a] => 'a" (infixl "\<sqinter>\<index>" 70)
-  "x \<sqinter> y == inf L {x, y}"
+abbreviation (in partial_order)
+  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+abbreviation (in partial_order)
+  Upper where "Upper == order_syntax.Upper carrier le"
+abbreviation (in partial_order)
+  Lower where "Lower == order_syntax.Lower carrier le"
+abbreviation (in partial_order)
+  least where "least == order_syntax.least carrier le"
+abbreviation (in partial_order)
+  greatest where "greatest == order_syntax.greatest carrier le"
+abbreviation (in partial_order)
+  sup ("\<Squnion>") (* FIXME precedence *) "sup == order_syntax.sup carrier le"
+abbreviation (in partial_order)
+  inf ("\<Sqinter>") (* FIXME precedence *) "inf == order_syntax.inf carrier le"
+abbreviation (in partial_order)
+  join (infixl "\<squnion>" 65) "join == order_syntax.join carrier le"
+abbreviation (in partial_order)
+  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet carrier le"
 
 
 subsubsection {* Upper *}
 
-lemma Upper_closed [intro, simp]:
-  "Upper L A \<subseteq> carrier L"
+lemma (in order_syntax) Upper_closed [intro, simp]:
+  "Upper A \<subseteq> carrier"
   by (unfold Upper_def) clarify
 
-lemma UpperD [dest]:
+lemma (in order_syntax) UpperD [dest]:
   fixes L (structure)
-  shows "[| u \<in> Upper L A; x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> u"
+  shows "[| u \<in> Upper A; x \<in> A; A \<subseteq> carrier |] ==> x \<sqsubseteq> u"
   by (unfold Upper_def) blast
 
-lemma Upper_memI:
+lemma (in order_syntax) Upper_memI:
   fixes L (structure)
-  shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier L |] ==> x \<in> Upper L A"
+  shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier |] ==> x \<in> Upper A"
   by (unfold Upper_def) blast
 
-lemma Upper_antimono:
-  "A \<subseteq> B ==> Upper L B \<subseteq> Upper L A"
+lemma (in order_syntax) Upper_antimono:
+  "A \<subseteq> B ==> Upper B \<subseteq> Upper A"
   by (unfold Upper_def) blast
 
 
 subsubsection {* Lower *}
 
-lemma Lower_closed [intro, simp]:
-  "Lower L A \<subseteq> carrier L"
+lemma (in order_syntax) Lower_closed [intro, simp]:
+  "Lower A \<subseteq> carrier"
   by (unfold Lower_def) clarify
 
-lemma LowerD [dest]:
-  fixes L (structure)
-  shows "[| l \<in> Lower L A; x \<in> A; A \<subseteq> carrier L |] ==> l \<sqsubseteq> x"
+lemma (in order_syntax) LowerD [dest]:
+  "[| l \<in> Lower A; x \<in> A; A \<subseteq> carrier |] ==> l \<sqsubseteq> x"
   by (unfold Lower_def) blast
 
-lemma Lower_memI:
-  fixes L (structure)
-  shows "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier L |] ==> x \<in> Lower L A"
+lemma (in order_syntax) Lower_memI:
+  "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier |] ==> x \<in> Lower A"
   by (unfold Lower_def) blast
 
-lemma Lower_antimono:
-  "A \<subseteq> B ==> Lower L B \<subseteq> Lower L A"
+lemma (in order_syntax) Lower_antimono:
+  "A \<subseteq> B ==> Lower B \<subseteq> Lower A"
   by (unfold Lower_def) blast
 
 
 subsubsection {* least *}
 
-lemma least_carrier [intro, simp]:
-  shows "least L l A ==> l \<in> carrier L"
+lemma (in order_syntax) least_carrier [intro, simp]:
+  "least l A ==> l \<in> carrier"
   by (unfold least_def) fast
 
-lemma least_mem:
-  "least L l A ==> l \<in> A"
+lemma (in order_syntax) least_mem:
+  "least l A ==> l \<in> A"
   by (unfold least_def) fast
 
 lemma (in partial_order) least_unique:
-  "[| least L x A; least L y A |] ==> x = y"
+  "[| least x A; least y A |] ==> x = y"
   by (unfold least_def) blast
 
-lemma least_le:
-  fixes L (structure)
-  shows "[| least L x A; a \<in> A |] ==> x \<sqsubseteq> a"
+lemma (in order_syntax) least_le:
+  "[| least x A; a \<in> A |] ==> x \<sqsubseteq> a"
   by (unfold least_def) fast
 
-lemma least_UpperI:
-  fixes L (structure)
+lemma (in order_syntax) least_UpperI:
   assumes above: "!! x. x \<in> A ==> x \<sqsubseteq> s"
-    and below: "!! y. y \<in> Upper L A ==> s \<sqsubseteq> y"
-    and L: "A \<subseteq> carrier L"  "s \<in> carrier L"
-  shows "least L s (Upper L A)"
+    and below: "!! y. y \<in> Upper A ==> s \<sqsubseteq> y"
+    and L: "A \<subseteq> carrier"  "s \<in> carrier"
+  shows "least s (Upper A)"
 proof -
-  have "Upper L A \<subseteq> carrier L" by simp
-  moreover from above L have "s \<in> Upper L A" by (simp add: Upper_def)
-  moreover from below have "ALL x : Upper L A. s \<sqsubseteq> x" by fast
+  have "Upper A \<subseteq> carrier" by simp
+  moreover from above L have "s \<in> Upper A" by (simp add: Upper_def)
+  moreover from below have "ALL x : Upper A. s \<sqsubseteq> x" by fast
   ultimately show ?thesis by (simp add: least_def)
 qed
 
 
 subsubsection {* greatest *}
 
-lemma greatest_carrier [intro, simp]:
-  shows "greatest L l A ==> l \<in> carrier L"
+lemma (in order_syntax) greatest_carrier [intro, simp]:
+  "greatest l A ==> l \<in> carrier"
   by (unfold greatest_def) fast
 
-lemma greatest_mem:
-  "greatest L l A ==> l \<in> A"
+lemma (in order_syntax) greatest_mem:
+  "greatest l A ==> l \<in> A"
   by (unfold greatest_def) fast
 
 lemma (in partial_order) greatest_unique:
-  "[| greatest L x A; greatest L y A |] ==> x = y"
+  "[| greatest x A; greatest y A |] ==> x = y"
   by (unfold greatest_def) blast
 
-lemma greatest_le:
-  fixes L (structure)
-  shows "[| greatest L x A; a \<in> A |] ==> a \<sqsubseteq> x"
+lemma (in order_syntax) greatest_le:
+  "[| greatest x A; a \<in> A |] ==> a \<sqsubseteq> x"
   by (unfold greatest_def) fast
 
-lemma greatest_LowerI:
-  fixes L (structure)
+lemma (in order_syntax) greatest_LowerI:
   assumes below: "!! x. x \<in> A ==> i \<sqsubseteq> x"
-    and above: "!! y. y \<in> Lower L A ==> y \<sqsubseteq> i"
-    and L: "A \<subseteq> carrier L"  "i \<in> carrier L"
-  shows "greatest L i (Lower L A)"
+    and above: "!! y. y \<in> Lower A ==> y \<sqsubseteq> i"
+    and L: "A \<subseteq> carrier"  "i \<in> carrier"
+  shows "greatest i (Lower A)"
 proof -
-  have "Lower L A \<subseteq> carrier L" by simp
-  moreover from below L have "i \<in> Lower L A" by (simp add: Lower_def)
-  moreover from above have "ALL x : Lower L A. x \<sqsubseteq> i" by fast
+  have "Lower A \<subseteq> carrier" by simp
+  moreover from below L have "i \<in> Lower A" by (simp add: Lower_def)
+  moreover from above have "ALL x : Lower A. x \<sqsubseteq> i" by fast
   ultimately show ?thesis by (simp add: greatest_def)
 qed
 
@@ -177,63 +211,80 @@
 
 locale lattice = partial_order +
   assumes sup_of_two_exists:
-    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
+    "[| x \<in> carrier; y \<in> carrier |] ==> EX s. order_syntax.least carrier le s (order_syntax.Upper carrier le {x, y})"
     and inf_of_two_exists:
-    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
+    "[| x \<in> carrier; y \<in> carrier |] ==> EX s. order_syntax.greatest carrier le s (order_syntax.Lower carrier le {x, y})"
 
-lemma least_Upper_above:
-  fixes L (structure)
-  shows "[| least L s (Upper L A); x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> s"
+abbreviation (in lattice)
+  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+abbreviation (in lattice)
+  Upper where "Upper == order_syntax.Upper carrier le"
+abbreviation (in lattice)
+  Lower where "Lower == order_syntax.Lower carrier le"
+abbreviation (in lattice)
+  least where "least == order_syntax.least carrier le"
+abbreviation (in lattice)
+  greatest where "greatest == order_syntax.greatest carrier le"
+abbreviation (in lattice)
+  sup ("\<Squnion>") (* FIXME precedence *) "sup == order_syntax.sup carrier le"
+abbreviation (in lattice)
+  inf ("\<Sqinter>") (* FIXME precedence *) "inf == order_syntax.inf carrier le"
+abbreviation (in lattice)
+  join (infixl "\<squnion>" 65) "join == order_syntax.join carrier le"
+abbreviation (in lattice)
+  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet carrier le"
+
+lemma (in order_syntax) least_Upper_above:
+  "[| least s (Upper A); x \<in> A; A \<subseteq> carrier |] ==> x \<sqsubseteq> s"
   by (unfold least_def) blast
 
-lemma greatest_Lower_above:
-  fixes L (structure)
-  shows "[| greatest L i (Lower L A); x \<in> A; A \<subseteq> carrier L |] ==> i \<sqsubseteq> x"
+lemma (in order_syntax) greatest_Lower_above:
+  "[| greatest i (Lower A); x \<in> A; A \<subseteq> carrier |] ==> i \<sqsubseteq> x"
   by (unfold greatest_def) blast
 
 
 subsubsection {* Supremum *}
 
 lemma (in lattice) joinI:
-  "[| !!l. least L l (Upper L {x, y}) ==> P l; x \<in> carrier L; y \<in> carrier L |]
+  "[| !!l. least l (Upper {x, y}) ==> P l; x \<in> carrier; y \<in> carrier |]
   ==> P (x \<squnion> y)"
 proof (unfold join_def sup_def)
-  assume L: "x \<in> carrier L"  "y \<in> carrier L"
-    and P: "!!l. least L l (Upper L {x, y}) ==> P l"
-  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
-  with L show "P (THE l. least L l (Upper L {x, y}))"
+  assume L: "x \<in> carrier"  "y \<in> carrier"
+    and P: "!!l. least l (Upper {x, y}) ==> P l"
+  with sup_of_two_exists obtain s where "least s (Upper {x, y})" by fast
+  with L show "P (THE l. least l (Upper {x, y}))"
     by (fast intro: theI2 least_unique P)
 qed
 
 lemma (in lattice) join_closed [simp]:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<squnion> y \<in> carrier L"
+  "[| x \<in> carrier; y \<in> carrier |] ==> x \<squnion> y \<in> carrier"
   by (rule joinI) (rule least_carrier)
 
-lemma (in partial_order) sup_of_singletonI:      (* only reflexivity needed ? *)
-  "x \<in> carrier L ==> least L x (Upper L {x})"
+lemma (in partial_order) sup_of_singletonI:     (* only reflexivity needed ? *)
+  "x \<in> carrier ==> least x (Upper {x})"
   by (rule least_UpperI) fast+
 
 lemma (in partial_order) sup_of_singleton [simp]:
-  "x \<in> carrier L ==> \<Squnion>{x} = x"
+  "x \<in> carrier ==> \<Squnion>{x} = x"
   by (unfold sup_def) (blast intro: least_unique least_UpperI sup_of_singletonI)
 
 
 text {* Condition on @{text A}: supremum exists. *}
 
 lemma (in lattice) sup_insertI:
-  "[| !!s. least L s (Upper L (insert x A)) ==> P s;
-  least L a (Upper L A); x \<in> carrier L; A \<subseteq> carrier L |]
+  "[| !!s. least s (Upper (insert x A)) ==> P s;
+  least a (Upper A); x \<in> carrier; A \<subseteq> carrier |]
   ==> P (\<Squnion>(insert x A))"
 proof (unfold sup_def)
-  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
-    and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
-    and least_a: "least L a (Upper L A)"
-  from L least_a have La: "a \<in> carrier L" by simp
+  assume L: "x \<in> carrier"  "A \<subseteq> carrier"
+    and P: "!!l. least l (Upper (insert x A)) ==> P l"
+    and least_a: "least a (Upper A)"
+  from least_a have La: "a \<in> carrier" by simp
   from L sup_of_two_exists least_a
-  obtain s where least_s: "least L s (Upper L {a, x})" by blast
-  show "P (THE l. least L l (Upper L (insert x A)))"
+  obtain s where least_s: "least s (Upper {a, x})" by blast
+  show "P (THE l. least l (Upper (insert x A)))"
   proof (rule theI2)
-    show "least L s (Upper L (insert x A))"
+    show "least s (Upper (insert x A))"
     proof (rule least_UpperI)
       fix z
       assume "z \<in> insert x A"
@@ -248,15 +299,15 @@
       qed
     next
       fix y
-      assume y: "y \<in> Upper L (insert x A)"
+      assume y: "y \<in> Upper (insert x A)"
       show "s \<sqsubseteq> y"
       proof (rule least_le [OF least_s], rule Upper_memI)
 	fix z
 	assume z: "z \<in> {a, x}"
 	then show "z \<sqsubseteq> y"
 	proof
-          have y': "y \<in> Upper L A"
-            apply (rule subsetD [where A = "Upper L (insert x A)"])
+          have y': "y \<in> Upper A"
+            apply (rule subsetD [where A = "Upper (insert x A)"])
             apply (rule Upper_antimono) apply clarify apply assumption
             done
           assume "z = a"
@@ -267,15 +318,15 @@
 	qed
       qed (rule Upper_closed [THEN subsetD])
     next
-      from L show "insert x A \<subseteq> carrier L" by simp
-      from least_s show "s \<in> carrier L" by simp
+      from L show "insert x A \<subseteq> carrier" by simp
+      from least_s show "s \<in> carrier" by simp
     qed
   next
     fix l
-    assume least_l: "least L l (Upper L (insert x A))"
+    assume least_l: "least l (Upper (insert x A))"
     show "l = s"
     proof (rule least_unique)
-      show "least L s (Upper L (insert x A))"
+      show "least s (Upper (insert x A))"
       proof (rule least_UpperI)
         fix z
         assume "z \<in> insert x A"
@@ -290,15 +341,15 @@
 	qed
       next
         fix y
-        assume y: "y \<in> Upper L (insert x A)"
+        assume y: "y \<in> Upper (insert x A)"
         show "s \<sqsubseteq> y"
         proof (rule least_le [OF least_s], rule Upper_memI)
           fix z
           assume z: "z \<in> {a, x}"
           then show "z \<sqsubseteq> y"
           proof
-            have y': "y \<in> Upper L A"
-	      apply (rule subsetD [where A = "Upper L (insert x A)"])
+            have y': "y \<in> Upper A"
+	      apply (rule subsetD [where A = "Upper (insert x A)"])
 	      apply (rule Upper_antimono) apply clarify apply assumption
 	      done
             assume "z = a"
@@ -309,15 +360,15 @@
           qed
         qed (rule Upper_closed [THEN subsetD])
       next
-        from L show "insert x A \<subseteq> carrier L" by simp
-        from least_s show "s \<in> carrier L" by simp
+        from L show "insert x A \<subseteq> carrier" by simp
+        from least_s show "s \<in> carrier" by simp
       qed
     qed
   qed
 qed
 
 lemma (in lattice) finite_sup_least:
-  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion>A) (Upper L A)"
+  "[| finite A; A \<subseteq> carrier; A ~= {} |] ==> least (\<Squnion>A) (Upper A)"
 proof (induct set: Finites)
   case empty
   then show ?case by simp
@@ -329,15 +380,15 @@
     with insert show ?thesis by (simp add: sup_of_singletonI)
   next
     case False
-    with insert have "least L (\<Squnion>A) (Upper L A)" by simp
+    with insert have "least (\<Squnion>A) (Upper A)" by simp
     with _ show ?thesis
       by (rule sup_insertI) (simp_all add: insert [simplified])
   qed
 qed
 
 lemma (in lattice) finite_sup_insertI:
-  assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
-    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
+  assumes P: "!!l. least l (Upper (insert x A)) ==> P l"
+    and xA: "finite A"  "x \<in> carrier"  "A \<subseteq> carrier"
   shows "P (\<Squnion> (insert x A))"
 proof (cases "A = {}")
   case True with P and xA show ?thesis
@@ -348,7 +399,7 @@
 qed
 
 lemma (in lattice) finite_sup_closed:
-  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion>A \<in> carrier L"
+  "[| finite A; A \<subseteq> carrier; A ~= {} |] ==> \<Squnion>A \<in> carrier"
 proof (induct set: Finites)
   case empty then show ?case by simp
 next
@@ -357,39 +408,39 @@
 qed
 
 lemma (in lattice) join_left:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> x \<squnion> y"
+  "[| x \<in> carrier; y \<in> carrier |] ==> x \<sqsubseteq> x \<squnion> y"
   by (rule joinI [folded join_def]) (blast dest: least_mem)
 
 lemma (in lattice) join_right:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> y \<sqsubseteq> x \<squnion> y"
+  "[| x \<in> carrier; y \<in> carrier |] ==> y \<sqsubseteq> x \<squnion> y"
   by (rule joinI [folded join_def]) (blast dest: least_mem)
 
 lemma (in lattice) sup_of_two_least:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> least L (\<Squnion>{x, y}) (Upper L {x, y})"
+  "[| x \<in> carrier; y \<in> carrier |] ==> least (\<Squnion>{x, y}) (Upper {x, y})"
 proof (unfold sup_def)
-  assume L: "x \<in> carrier L"  "y \<in> carrier L"
-  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
-  with L show "least L (THE xa. least L xa (Upper L {x, y})) (Upper L {x, y})"
+  assume L: "x \<in> carrier"  "y \<in> carrier"
+  with sup_of_two_exists obtain s where "least s (Upper {x, y})" by fast
+  with L show "least (THE xa. least xa (Upper {x, y})) (Upper {x, y})"
   by (fast intro: theI2 least_unique)  (* blast fails *)
 qed
 
 lemma (in lattice) join_le:
   assumes sub: "x \<sqsubseteq> z"  "y \<sqsubseteq> z"
-    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+    and L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "x \<squnion> y \<sqsubseteq> z"
 proof (rule joinI)
   fix s
-  assume "least L s (Upper L {x, y})"
+  assume "least s (Upper {x, y})"
   with sub L show "s \<sqsubseteq> z" by (fast elim: least_le intro: Upper_memI)
 qed
 
 lemma (in lattice) join_assoc_lemma:
-  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  assumes L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "x \<squnion> (y \<squnion> z) = \<Squnion>{x, y, z}"
 proof (rule finite_sup_insertI)
   -- {* The textbook argument in Jacobson I, p 457 *}
   fix s
-  assume sup: "least L s (Upper L {x, y, z})"
+  assume sup: "least s (Upper {x, y, z})"
   show "x \<squnion> (y \<squnion> z) = s"
   proof (rule anti_sym)
     from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
@@ -401,13 +452,12 @@
   qed (simp_all add: L least_carrier [OF sup])
 qed (simp_all add: L)
 
-lemma join_comm:
-  fixes L (structure)
-  shows "x \<squnion> y = y \<squnion> x"
+lemma (in order_syntax) join_comm:
+  "x \<squnion> y = y \<squnion> x"
   by (unfold join_def) (simp add: insert_commute)
 
 lemma (in lattice) join_assoc:
-  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  assumes L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
 proof -
   have "(x \<squnion> y) \<squnion> z = z \<squnion> (x \<squnion> y)" by (simp only: join_comm)
@@ -421,45 +471,45 @@
 subsubsection {* Infimum *}
 
 lemma (in lattice) meetI:
-  "[| !!i. greatest L i (Lower L {x, y}) ==> P i;
-  x \<in> carrier L; y \<in> carrier L |]
+  "[| !!i. greatest i (Lower {x, y}) ==> P i;
+  x \<in> carrier; y \<in> carrier |]
   ==> P (x \<sqinter> y)"
 proof (unfold meet_def inf_def)
-  assume L: "x \<in> carrier L"  "y \<in> carrier L"
-    and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
-  with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})" by fast
-  with L show "P (THE g. greatest L g (Lower L {x, y}))"
+  assume L: "x \<in> carrier"  "y \<in> carrier"
+    and P: "!!g. greatest g (Lower {x, y}) ==> P g"
+  with inf_of_two_exists obtain i where "greatest i (Lower {x, y})" by fast
+  with L show "P (THE g. greatest g (Lower {x, y}))"
   by (fast intro: theI2 greatest_unique P)
 qed
 
 lemma (in lattice) meet_closed [simp]:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<in> carrier L"
+  "[| x \<in> carrier; y \<in> carrier |] ==> x \<sqinter> y \<in> carrier"
   by (rule meetI) (rule greatest_carrier)
 
 lemma (in partial_order) inf_of_singletonI:      (* only reflexivity needed ? *)
-  "x \<in> carrier L ==> greatest L x (Lower L {x})"
+  "x \<in> carrier ==> greatest x (Lower {x})"
   by (rule greatest_LowerI) fast+
 
 lemma (in partial_order) inf_of_singleton [simp]:
-  "x \<in> carrier L ==> \<Sqinter> {x} = x"
+  "x \<in> carrier ==> \<Sqinter> {x} = x"
   by (unfold inf_def) (blast intro: greatest_unique greatest_LowerI inf_of_singletonI)
 
 text {* Condition on A: infimum exists. *}
 
 lemma (in lattice) inf_insertI:
-  "[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
-  greatest L a (Lower L A); x \<in> carrier L; A \<subseteq> carrier L |]
+  "[| !!i. greatest i (Lower (insert x A)) ==> P i;
+  greatest a (Lower A); x \<in> carrier; A \<subseteq> carrier |]
   ==> P (\<Sqinter>(insert x A))"
 proof (unfold inf_def)
-  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
-    and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
-    and greatest_a: "greatest L a (Lower L A)"
-  from L greatest_a have La: "a \<in> carrier L" by simp
+  assume L: "x \<in> carrier"  "A \<subseteq> carrier"
+    and P: "!!g. greatest g (Lower (insert x A)) ==> P g"
+    and greatest_a: "greatest a (Lower A)"
+  from greatest_a have La: "a \<in> carrier" by simp
   from L inf_of_two_exists greatest_a
-  obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
-  show "P (THE g. greatest L g (Lower L (insert x A)))"
+  obtain i where greatest_i: "greatest i (Lower {a, x})" by blast
+  show "P (THE g. greatest g (Lower (insert x A)))"
   proof (rule theI2)
-    show "greatest L i (Lower L (insert x A))"
+    show "greatest i (Lower (insert x A))"
     proof (rule greatest_LowerI)
       fix z
       assume "z \<in> insert x A"
@@ -474,15 +524,15 @@
       qed
     next
       fix y
-      assume y: "y \<in> Lower L (insert x A)"
+      assume y: "y \<in> Lower (insert x A)"
       show "y \<sqsubseteq> i"
       proof (rule greatest_le [OF greatest_i], rule Lower_memI)
 	fix z
 	assume z: "z \<in> {a, x}"
 	then show "y \<sqsubseteq> z"
 	proof
-          have y': "y \<in> Lower L A"
-            apply (rule subsetD [where A = "Lower L (insert x A)"])
+          have y': "y \<in> Lower A"
+            apply (rule subsetD [where A = "Lower (insert x A)"])
             apply (rule Lower_antimono) apply clarify apply assumption
             done
           assume "z = a"
@@ -493,15 +543,15 @@
 	qed
       qed (rule Lower_closed [THEN subsetD])
     next
-      from L show "insert x A \<subseteq> carrier L" by simp
-      from greatest_i show "i \<in> carrier L" by simp
+      from L show "insert x A \<subseteq> carrier" by simp
+      from greatest_i show "i \<in> carrier" by simp
     qed
   next
     fix g
-    assume greatest_g: "greatest L g (Lower L (insert x A))"
+    assume greatest_g: "greatest g (Lower (insert x A))"
     show "g = i"
     proof (rule greatest_unique)
-      show "greatest L i (Lower L (insert x A))"
+      show "greatest i (Lower (insert x A))"
       proof (rule greatest_LowerI)
         fix z
         assume "z \<in> insert x A"
@@ -516,15 +566,15 @@
         qed
       next
         fix y
-        assume y: "y \<in> Lower L (insert x A)"
+        assume y: "y \<in> Lower (insert x A)"
         show "y \<sqsubseteq> i"
         proof (rule greatest_le [OF greatest_i], rule Lower_memI)
           fix z
           assume z: "z \<in> {a, x}"
           then show "y \<sqsubseteq> z"
           proof
-            have y': "y \<in> Lower L A"
-	      apply (rule subsetD [where A = "Lower L (insert x A)"])
+            have y': "y \<in> Lower A"
+	      apply (rule subsetD [where A = "Lower (insert x A)"])
 	      apply (rule Lower_antimono) apply clarify apply assumption
 	      done
             assume "z = a"
@@ -535,15 +585,15 @@
 	  qed
         qed (rule Lower_closed [THEN subsetD])
       next
-        from L show "insert x A \<subseteq> carrier L" by simp
-        from greatest_i show "i \<in> carrier L" by simp
+        from L show "insert x A \<subseteq> carrier" by simp
+        from greatest_i show "i \<in> carrier" by simp
       qed
     qed
   qed
 qed
 
 lemma (in lattice) finite_inf_greatest:
-  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
+  "[| finite A; A \<subseteq> carrier; A ~= {} |] ==> greatest (\<Sqinter>A) (Lower A)"
 proof (induct set: Finites)
   case empty then show ?case by simp
 next
@@ -556,14 +606,14 @@
     case False
     from insert show ?thesis
     proof (rule_tac inf_insertI)
-      from False insert show "greatest L (\<Sqinter>A) (Lower L A)" by simp
+      from False insert show "greatest (\<Sqinter>A) (Lower A)" by simp
     qed simp_all
   qed
 qed
 
 lemma (in lattice) finite_inf_insertI:
-  assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
-    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
+  assumes P: "!!i. greatest i (Lower (insert x A)) ==> P i"
+    and xA: "finite A"  "x \<in> carrier"  "A \<subseteq> carrier"
   shows "P (\<Sqinter> (insert x A))"
 proof (cases "A = {}")
   case True with P and xA show ?thesis
@@ -574,7 +624,7 @@
 qed
 
 lemma (in lattice) finite_inf_closed:
-  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter>A \<in> carrier L"
+  "[| finite A; A \<subseteq> carrier; A ~= {} |] ==> \<Sqinter>A \<in> carrier"
 proof (induct set: Finites)
   case empty then show ?case by simp
 next
@@ -583,41 +633,41 @@
 qed
 
 lemma (in lattice) meet_left:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> x"
+  "[| x \<in> carrier; y \<in> carrier |] ==> x \<sqinter> y \<sqsubseteq> x"
   by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
 
 lemma (in lattice) meet_right:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> y"
+  "[| x \<in> carrier; y \<in> carrier |] ==> x \<sqinter> y \<sqsubseteq> y"
   by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
 
 lemma (in lattice) inf_of_two_greatest:
-  "[| x \<in> carrier L; y \<in> carrier L |] ==>
-  greatest L (\<Sqinter> {x, y}) (Lower L {x, y})"
+  "[| x \<in> carrier; y \<in> carrier |] ==>
+  greatest (\<Sqinter> {x, y}) (Lower {x, y})"
 proof (unfold inf_def)
-  assume L: "x \<in> carrier L"  "y \<in> carrier L"
-  with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast
+  assume L: "x \<in> carrier"  "y \<in> carrier"
+  with inf_of_two_exists obtain s where "greatest s (Lower {x, y})" by fast
   with L
-  show "greatest L (THE xa. greatest L xa (Lower L {x, y})) (Lower L {x, y})"
+  show "greatest (THE xa. greatest xa (Lower {x, y})) (Lower {x, y})"
   by (fast intro: theI2 greatest_unique)  (* blast fails *)
 qed
 
 lemma (in lattice) meet_le:
   assumes sub: "z \<sqsubseteq> x"  "z \<sqsubseteq> y"
-    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+    and L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "z \<sqsubseteq> x \<sqinter> y"
 proof (rule meetI)
   fix i
-  assume "greatest L i (Lower L {x, y})"
+  assume "greatest i (Lower {x, y})"
   with sub L show "z \<sqsubseteq> i" by (fast elim: greatest_le intro: Lower_memI)
 qed
 
 lemma (in lattice) meet_assoc_lemma:
-  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  assumes L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter>{x, y, z}"
 proof (rule finite_inf_insertI)
   txt {* The textbook argument in Jacobson I, p 457 *}
   fix i
-  assume inf: "greatest L i (Lower L {x, y, z})"
+  assume inf: "greatest i (Lower {x, y, z})"
   show "x \<sqinter> (y \<sqinter> z) = i"
   proof (rule anti_sym)
     from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
@@ -629,13 +679,12 @@
   qed (simp_all add: L greatest_carrier [OF inf])
 qed (simp_all add: L)
 
-lemma meet_comm:
-  fixes L (structure)
-  shows "x \<sqinter> y = y \<sqinter> x"
+lemma (in order_syntax) meet_comm:
+  "x \<sqinter> y = y \<sqinter> x"
   by (unfold meet_def) (simp add: insert_commute)
 
 lemma (in lattice) meet_assoc:
-  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  assumes L: "x \<in> carrier"  "y \<in> carrier"  "z \<in> carrier"
   shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
 proof -
   have "(x \<sqinter> y) \<sqinter> z = z \<sqinter> (x \<sqinter> y)" by (simp only: meet_comm)
@@ -649,51 +698,70 @@
 subsection {* Total Orders *}
 
 locale total_order = lattice +
-  assumes total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
+  assumes total: "[| x \<in> carrier; y \<in> carrier |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
+
+abbreviation (in total_order)
+  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+abbreviation (in total_order)
+  Upper where "Upper == order_syntax.Upper carrier le"
+abbreviation (in total_order)
+  Lower where "Lower == order_syntax.Lower carrier le"
+abbreviation (in total_order)
+  least where "least == order_syntax.least carrier le"
+abbreviation (in total_order)
+  greatest where "greatest == order_syntax.greatest carrier le"
+abbreviation (in total_order)
+  sup ("\<Squnion>") (* FIXME precedence *) "sup == order_syntax.sup carrier le"
+abbreviation (in total_order)
+  inf ("\<Sqinter>") (* FIXME precedence *) "inf == order_syntax.inf carrier le"
+abbreviation (in total_order)
+  join (infixl "\<squnion>" 65) "join == order_syntax.join carrier le"
+abbreviation (in total_order)
+  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet carrier le"
 
 text {* Introduction rule: the usual definition of total order *}
 
 lemma (in partial_order) total_orderI:
-  assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
-  shows "total_order L"
+  assumes total: "!!x y. [| x \<in> carrier; y \<in> carrier |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
+  shows "total_order carrier le"
 proof intro_locales
-  show "lattice_axioms L"
+  show "lattice_axioms carrier le"
   proof (rule lattice_axioms.intro)
     fix x y
-    assume L: "x \<in> carrier L"  "y \<in> carrier L"
-    show "EX s. least L s (Upper L {x, y})"
+    assume L: "x \<in> carrier"  "y \<in> carrier"
+    show "EX s. least s (Upper {x, y})"
     proof -
       note total L
       moreover
       {
         assume "x \<sqsubseteq> y"
-        with L have "least L y (Upper L {x, y})"
+        with L have "least y (Upper {x, y})"
           by (rule_tac least_UpperI) auto
       }
       moreover
       {
         assume "y \<sqsubseteq> x"
-        with L have "least L x (Upper L {x, y})"
+        with L have "least x (Upper {x, y})"
           by (rule_tac least_UpperI) auto
       }
       ultimately show ?thesis by blast
     qed
   next
     fix x y
-    assume L: "x \<in> carrier L"  "y \<in> carrier L"
-    show "EX i. greatest L i (Lower L {x, y})"
+    assume L: "x \<in> carrier"  "y \<in> carrier"
+    show "EX i. greatest i (Lower {x, y})"
     proof -
       note total L
       moreover
       {
         assume "y \<sqsubseteq> x"
-        with L have "greatest L y (Lower L {x, y})"
+        with L have "greatest y (Lower {x, y})"
           by (rule_tac greatest_LowerI) auto
       }
       moreover
       {
         assume "x \<sqsubseteq> y"
-        with L have "greatest L x (Lower L {x, y})"
+        with L have "greatest x (Lower {x, y})"
           by (rule_tac greatest_LowerI) auto
       }
       ultimately show ?thesis by blast
@@ -706,97 +774,134 @@
 
 locale complete_lattice = lattice +
   assumes sup_exists:
-    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    "[| A \<subseteq> carrier |] ==> EX s. order_syntax.least carrier le s (order_syntax.Upper carrier le A)"
     and inf_exists:
-    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
+    "[| A \<subseteq> carrier |] ==> EX i. order_syntax.greatest carrier le i (order_syntax.Lower carrier le A)"
+
+abbreviation (in complete_lattice)
+  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+abbreviation (in complete_lattice)
+  Upper where "Upper == order_syntax.Upper carrier le"
+abbreviation (in complete_lattice)
+  Lower where "Lower == order_syntax.Lower carrier le"
+abbreviation (in complete_lattice)
+  least where "least == order_syntax.least carrier le"
+abbreviation (in complete_lattice)
+  greatest where "greatest == order_syntax.greatest carrier le"
+abbreviation (in complete_lattice)
+  sup ("\<Squnion>") (* FIXME precedence *) "sup == order_syntax.sup carrier le"
+abbreviation (in complete_lattice)
+  inf ("\<Sqinter>") (* FIXME precedence *) "inf == order_syntax.inf carrier le"
+abbreviation (in complete_lattice)
+  join (infixl "\<squnion>" 65) "join == order_syntax.join carrier le"
+abbreviation (in complete_lattice)
+  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet carrier le"
 
 text {* Introduction rule: the usual definition of complete lattice *}
 
 lemma (in partial_order) complete_latticeI:
   assumes sup_exists:
-    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    "!!A. [| A \<subseteq> carrier |] ==> EX s. least s (Upper A)"
     and inf_exists:
-    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
-  shows "complete_lattice L"
+    "!!A. [| A \<subseteq> carrier |] ==> EX i. greatest i (Lower A)"
+  shows "complete_lattice carrier le"
 proof intro_locales
-  show "lattice_axioms L"
+  show "lattice_axioms carrier le"
     by (rule lattice_axioms.intro) (blast intro: sup_exists inf_exists)+
 qed (assumption | rule complete_lattice_axioms.intro)+
 
-constdefs (structure L)
-  top :: "_ => 'a" ("\<top>\<index>")
-  "\<top> == sup L (carrier L)"
+definition (in order_syntax)
+  top ("\<top>")
+  "\<top> == sup carrier"
+
+definition (in order_syntax)
+  bottom ("\<bottom>")
+  "\<bottom> == inf carrier"
 
-  bottom :: "_ => 'a" ("\<bottom>\<index>")
-  "\<bottom> == inf L (carrier L)"
+abbreviation (in partial_order)
+  top ("\<top>") "top == order_syntax.top carrier le"
+abbreviation (in partial_order)
+  bottom ("\<bottom>") "bottom == order_syntax.bottom carrier le"
+abbreviation (in lattice)
+  top ("\<top>") "top == order_syntax.top carrier le"
+abbreviation (in lattice)
+  bottom ("\<bottom>") "bottom == order_syntax.bottom carrier le"
+abbreviation (in total_order)
+  top ("\<top>") "top == order_syntax.top carrier le"
+abbreviation (in total_order)
+  bottom ("\<bottom>") "bottom == order_syntax.bottom carrier le"
+abbreviation (in complete_lattice)
+  top ("\<top>") "top == order_syntax.top carrier le"
+abbreviation (in complete_lattice)
+  bottom ("\<bottom>") "bottom == order_syntax.bottom carrier le"
 
 
 lemma (in complete_lattice) supI:
-  "[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
+  "[| !!l. least l (Upper A) ==> P l; A \<subseteq> carrier |]
   ==> P (\<Squnion>A)"
 proof (unfold sup_def)
-  assume L: "A \<subseteq> carrier L"
-    and P: "!!l. least L l (Upper L A) ==> P l"
-  with sup_exists obtain s where "least L s (Upper L A)" by blast
-  with L show "P (THE l. least L l (Upper L A))"
+  assume L: "A \<subseteq> carrier"
+    and P: "!!l. least l (Upper A) ==> P l"
+  with sup_exists obtain s where "least s (Upper A)" by blast
+  with L show "P (THE l. least l (Upper A))"
   by (fast intro: theI2 least_unique P)
 qed
 
 lemma (in complete_lattice) sup_closed [simp]:
-  "A \<subseteq> carrier L ==> \<Squnion>A \<in> carrier L"
+  "A \<subseteq> carrier ==> \<Squnion>A \<in> carrier"
   by (rule supI) simp_all
 
 lemma (in complete_lattice) top_closed [simp, intro]:
-  "\<top> \<in> carrier L"
+  "\<top> \<in> carrier"
   by (unfold top_def) simp
 
 lemma (in complete_lattice) infI:
-  "[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
+  "[| !!i. greatest i (Lower A) ==> P i; A \<subseteq> carrier |]
   ==> P (\<Sqinter>A)"
 proof (unfold inf_def)
-  assume L: "A \<subseteq> carrier L"
-    and P: "!!l. greatest L l (Lower L A) ==> P l"
-  with inf_exists obtain s where "greatest L s (Lower L A)" by blast
-  with L show "P (THE l. greatest L l (Lower L A))"
+  assume L: "A \<subseteq> carrier"
+    and P: "!!l. greatest l (Lower A) ==> P l"
+  with inf_exists obtain s where "greatest s (Lower A)" by blast
+  with L show "P (THE l. greatest l (Lower A))"
   by (fast intro: theI2 greatest_unique P)
 qed
 
 lemma (in complete_lattice) inf_closed [simp]:
-  "A \<subseteq> carrier L ==> \<Sqinter>A \<in> carrier L"
+  "A \<subseteq> carrier ==> \<Sqinter>A \<in> carrier"
   by (rule infI) simp_all
 
 lemma (in complete_lattice) bottom_closed [simp, intro]:
-  "\<bottom> \<in> carrier L"
+  "\<bottom> \<in> carrier"
   by (unfold bottom_def) simp
 
 text {* Jacobson: Theorem 8.1 *}
 
-lemma Lower_empty [simp]:
-  "Lower L {} = carrier L"
+lemma (in order_syntax) Lower_empty [simp]:
+  "Lower {} = carrier"
   by (unfold Lower_def) simp
 
-lemma Upper_empty [simp]:
-  "Upper L {} = carrier L"
+lemma (in order_syntax) Upper_empty [simp]:
+  "Upper {} = carrier"
   by (unfold Upper_def) simp
 
 theorem (in partial_order) complete_lattice_criterion1:
-  assumes top_exists: "EX g. greatest L g (carrier L)"
+  assumes top_exists: "EX g. greatest g (carrier)"
     and inf_exists:
-      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
-  shows "complete_lattice L"
+      "!!A. [| A \<subseteq> carrier; A ~= {} |] ==> EX i. greatest i (Lower A)"
+  shows "complete_lattice carrier le"
 proof (rule complete_latticeI)
-  from top_exists obtain top where top: "greatest L top (carrier L)" ..
+  from top_exists obtain top where top: "greatest top (carrier)" ..
   fix A
-  assume L: "A \<subseteq> carrier L"
-  let ?B = "Upper L A"
+  assume L: "A \<subseteq> carrier"
+  let ?B = "Upper A"
   from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
   then have B_non_empty: "?B ~= {}" by fast
-  have B_L: "?B \<subseteq> carrier L" by simp
+  have B_L: "?B \<subseteq> carrier" by simp
   from inf_exists [OF B_L B_non_empty]
-  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
-  have "least L b (Upper L A)"
+  obtain b where b_inf_B: "greatest b (Lower ?B)" ..
+  have "least b (Upper A)"
 apply (rule least_UpperI)
-   apply (rule greatest_le [where A = "Lower L ?B"])
+   apply (rule greatest_le [where A = "Lower ?B"])
     apply (rule b_inf_B)
    apply (rule Lower_memI)
     apply (erule UpperD)
@@ -808,11 +913,11 @@
  apply (rule L)
 apply (rule greatest_carrier [OF b_inf_B]) (* rename rule: _closed *)
 done
-  then show "EX s. least L s (Upper L A)" ..
+  then show "EX s. least s (Upper A)" ..
 next
   fix A
-  assume L: "A \<subseteq> carrier L"
-  show "EX i. greatest L i (Lower L A)"
+  assume L: "A \<subseteq> carrier"
+  show "EX i. greatest i (Lower A)"
   proof (cases "A = {}")
     case True then show ?thesis
       by (simp add: top_exists)
@@ -830,25 +935,25 @@
 subsubsection {* Powerset of a Set is a Complete Lattice *}
 
 theorem powerset_is_complete_lattice:
-  "complete_lattice (| carrier = Pow A, le = op \<subseteq> |)"
-  (is "complete_lattice ?L")
+  "complete_lattice (Pow A) (op \<subseteq>)"
+  (is "complete_lattice ?car ?le")
 proof (rule partial_order.complete_latticeI)
-  show "partial_order ?L"
+  show "partial_order ?car ?le"
     by (rule partial_order.intro) auto
 next
   fix B
-  assume "B \<subseteq> carrier ?L"
-  then have "least ?L (\<Union> B) (Upper ?L B)"
-    by (fastsimp intro!: least_UpperI simp: Upper_def)
-  then show "EX s. least ?L s (Upper ?L B)" ..
+  assume "B \<subseteq> ?car"
+  then have "order_syntax.least ?car ?le (\<Union> B) (order_syntax.Upper ?car ?le B)"
+    by (fastsimp intro!: order_syntax.least_UpperI simp: order_syntax.Upper_def)
+  then show "EX s. order_syntax.least ?car ?le s (order_syntax.Upper ?car ?le B)" ..
 next
   fix B
-  assume "B \<subseteq> carrier ?L"
-  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
+  assume "B \<subseteq> ?car"
+  then have "order_syntax.greatest ?car ?le (\<Inter> B \<inter> A) (order_syntax.Lower ?car ?le B)"
     txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
       @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
-    by (fastsimp intro!: greatest_LowerI simp: Lower_def)
-  then show "EX i. greatest ?L i (Lower ?L B)" ..
+    by (fastsimp intro!: order_syntax.greatest_LowerI simp: order_syntax.Lower_def)
+  then show "EX i. order_syntax.greatest ?car ?le i (order_syntax.Lower ?car ?le B)" ..
 qed
 
 text {* An other example, that of the lattice of subgroups of a group,