merged
authorwenzelm
Tue, 05 Mar 2024 18:42:09 +0100
changeset 79784 a79280c7e8d5
parent 79774 1f94d92b0dc2 (diff)
parent 79783 60e985e2a12f (current diff)
child 79785 5e7a594b53b1
merged
NEWS
--- a/NEWS	Tue Mar 05 18:41:56 2024 +0100
+++ b/NEWS	Tue Mar 05 18:42:09 2024 +0100
@@ -76,6 +76,8 @@
       relpowp_left_unique
       relpowp_right_unique
       relpowp_trans[trans]
+      rtranclp_ident_if_reflp_and_transp
+      tranclp_ident_if_and_transp
 
 * Theory "HOL-Library.Multiset":
   - Added lemmas.
--- a/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -4,7 +4,7 @@
     Author:     Brian Huffman, Portland State University
 *)
 
-section \<open>Elementary Metric Spaces\<close>
+chapter \<open>Elementary Metric Spaces\<close>
 
 theory Elementary_Metric_Spaces
   imports
@@ -12,7 +12,7 @@
     Metric_Arith
 begin
 
-subsection \<open>Open and closed balls\<close>
+section \<open>Open and closed balls\<close>
 
 definition\<^marker>\<open>tag important\<close> ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
   where "ball x e = {y. dist x y < e}"
@@ -316,7 +316,7 @@
     by blast
 qed
 
-subsection \<open>Limit Points\<close>
+section \<open>Limit Points\<close>
 
 lemma islimpt_approachable:
   fixes x :: "'a::metric_space"
@@ -349,7 +349,7 @@
   by (metis open_ball ball_subset_cball centre_in_ball finite_Int inf.absorb_iff2 inf_assoc open_contains_cball_eq)
 
 
-subsection \<open>Perfect Metric Spaces\<close>
+section \<open>Perfect Metric Spaces\<close>
 
 lemma perfect_choose_dist: "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r"
   for x :: "'a::{perfect_space,metric_space}"
@@ -362,7 +362,7 @@
       not_open_singleton subset_singleton_iff)
 
 
-subsection \<open>Finite and discrete\<close>
+section \<open>Finite and discrete\<close>
 
 lemma finite_ball_include:
   fixes a :: "'a::metric_space"
@@ -427,7 +427,7 @@
 qed
   
 
-subsection \<open>Interior\<close>
+section \<open>Interior\<close>
 
 lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
   using open_contains_ball_eq [where S="interior S"]
@@ -441,7 +441,7 @@
   by (meson mem_interior mem_interior_cball)
 
 
-subsection \<open>Frontier\<close>
+section \<open>Frontier\<close>
 
 lemma frontier_straddle:
   fixes a :: "'a::metric_space"
@@ -450,7 +450,7 @@
   by (auto simp: mem_interior subset_eq ball_def)
 
 
-subsection \<open>Limits\<close>
+section \<open>Limits\<close>
 
 proposition Lim: "(f \<longlongrightarrow> l) net \<longleftrightarrow> trivial_limit net \<or> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
   by (auto simp: tendsto_iff trivial_limit_eq)
@@ -553,7 +553,7 @@
   using assms by (fast intro: tendsto_le tendsto_intros)
 
 
-subsection \<open>Continuity\<close>
+section \<open>Continuity\<close>
 
 text\<open>Derive the epsilon-delta forms, which we often use as "definitions"\<close>
 
@@ -656,7 +656,7 @@
   unfolding continuous_within by (force intro: Lim_transform_within)
 
 
-subsection \<open>Closure and Limit Characterization\<close>
+section \<open>Closure and Limit Characterization\<close>
 
 lemma closure_approachable:
   fixes S :: "'a::metric_space set"
@@ -751,7 +751,7 @@
 qed
 
 
-subsection \<open>Boundedness\<close>
+section \<open>Boundedness\<close>
 
   (* FIXME: This has to be unified with BSEQ!! *)
 definition\<^marker>\<open>tag important\<close> (in metric_space) bounded :: "'a set \<Rightarrow> bool"
@@ -882,7 +882,7 @@
 qed
 
 
-subsection \<open>Compactness\<close>
+section \<open>Compactness\<close>
 
 lemma compact_imp_bounded:
   assumes "compact U"
@@ -1097,7 +1097,7 @@
   using compact_imp_bounded unfolding compact_eq_Bolzano_Weierstrass by metis
 
 
-subsection \<open>Banach fixed point theorem\<close>
+section \<open>Banach fixed point theorem\<close>
   
 theorem banach_fix:\<comment> \<open>TODO: rename to \<open>Banach_fix\<close>\<close>
   assumes s: "complete s" "s \<noteq> {}"
@@ -1245,7 +1245,7 @@
 qed
 
 
-subsection \<open>Edelstein fixed point theorem\<close>
+section \<open>Edelstein fixed point theorem\<close>
 
 theorem Edelstein_fix:
   fixes S :: "'a::metric_space set"
@@ -1286,7 +1286,7 @@
     using \<open>a \<in> S\<close> by blast
 qed
 
-subsection \<open>The diameter of a set\<close>
+section \<open>The diameter of a set\<close>
 
 definition\<^marker>\<open>tag important\<close> diameter :: "'a::metric_space set \<Rightarrow> real" where
   "diameter S = (if S = {} then 0 else SUP (x,y)\<in>S\<times>S. dist x y)"
@@ -1485,7 +1485,7 @@
 qed
 
 
-subsection \<open>Metric spaces with the Heine-Borel property\<close>
+section \<open>Metric spaces with the Heine-Borel property\<close>
 
 text \<open>
   A metric space (or topological vector space) is said to have the
@@ -1643,7 +1643,7 @@
 qed
 
 
-subsection \<open>Completeness\<close>
+section \<open>Completeness\<close>
 
 proposition (in metric_space) completeI:
   assumes "\<And>f. \<forall>n. f n \<in> s \<Longrightarrow> Cauchy f \<Longrightarrow> \<exists>l\<in>s. f \<longlonglongrightarrow> l"
@@ -1869,7 +1869,7 @@
   using assms banach_fix[OF complete_UNIV UNIV_not_empty assms(1,2) subset_UNIV, of f]
   by auto
 
-subsection \<open>Cauchy continuity\<close>
+section \<open>Cauchy continuity\<close>
 
 definition Cauchy_continuous_on where
   "Cauchy_continuous_on \<equiv> \<lambda>S f. \<forall>\<sigma>. Cauchy \<sigma> \<longrightarrow> range \<sigma> \<subseteq> S \<longrightarrow> Cauchy (f \<circ> \<sigma>)"
@@ -1937,7 +1937,7 @@
 qed
 
 
-subsection\<^marker>\<open>tag unimportant\<close>\<open> Finite intersection property\<close>
+section\<^marker>\<open>tag unimportant\<close>\<open> Finite intersection property\<close>
 
 text\<open>Also developed in HOL's toplogical spaces theory, but the Heine-Borel type class isn't available there.\<close>
 
@@ -1985,7 +1985,7 @@
   by (simp add: closed_limpt compact_eq_bounded_closed convergent_imp_bounded islimpt_insert sequence_unique_limpt)
 
 
-subsection \<open>Properties of Balls and Spheres\<close>
+section \<open>Properties of Balls and Spheres\<close>
 
 lemma compact_cball[simp]:
   fixes x :: "'a::heine_borel"
@@ -2029,7 +2029,7 @@
 qed
 
 
-subsection \<open>Distance from a Set\<close>
+section \<open>Distance from a Set\<close>
 
 lemma distance_attains_sup:
   assumes "compact s" "s \<noteq> {}"
@@ -2066,7 +2066,7 @@
 qed
 
 
-subsection \<open>Infimum Distance\<close>
+section \<open>Infimum Distance\<close>
 
 definition\<^marker>\<open>tag important\<close> "infdist x A = (if A = {} then 0 else INF a\<in>A. dist x a)"
 
@@ -2299,7 +2299,7 @@
 qed
 
 
-subsection \<open>Separation between Points and Sets\<close>
+section \<open>Separation between Points and Sets\<close>
 
 proposition separate_point_closed:
   fixes S :: "'a::heine_borel set"
@@ -2362,7 +2362,7 @@
 qed
 
 
-subsection \<open>Uniform Continuity\<close>
+section \<open>Uniform Continuity\<close>
 
 lemma uniformly_continuous_onE:
   assumes "uniformly_continuous_on s f" "0 < e"
@@ -2429,7 +2429,7 @@
 qed
 
 
-subsection \<open>Continuity on a Compact Domain Implies Uniform Continuity\<close>
+section \<open>Continuity on a Compact Domain Implies Uniform Continuity\<close>
 
 text\<open>From the proof of the Heine-Borel theorem: Lemma 2 in section 3.7, page 69 of
 J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)\<close>
@@ -2521,7 +2521,7 @@
     by (force intro: compact_uniformly_equicontinuous [OF S, of "{f}"])
 
 
-subsection\<^marker>\<open>tag unimportant\<close>\<open> Theorems relating continuity and uniform continuity to closures\<close>
+section\<^marker>\<open>tag unimportant\<close>\<open> Theorems relating continuity and uniform continuity to closures\<close>
 
 lemma continuous_on_closure:
    "continuous_on (closure S) f \<longleftrightarrow>
@@ -2765,7 +2765,7 @@
   by (metis (no_types, lifting) assms bounded_closure_image compact_closure compact_continuous_image compact_eq_bounded_closed image_cong uniformly_continuous_imp_continuous uniformly_continuous_on_extension_on_closure)
 
 
-subsection \<open>With Abstract Topology (TODO: move and remove dependency?)\<close>
+section \<open>With Abstract Topology (TODO: move and remove dependency?)\<close>
 
 lemma openin_contains_ball:
     "openin (top_of_set T) S \<longleftrightarrow>
@@ -2796,7 +2796,7 @@
 qed
 
 
-subsection \<open>Closed Nest\<close>
+section \<open>Closed Nest\<close>
 
 text \<open>Bounded closed nest property (proof does not use Heine-Borel)\<close>
 
@@ -2908,7 +2908,7 @@
   then show ?thesis ..
 qed
 
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Making a continuous function avoid some value in a neighbourhood\<close>
+section\<^marker>\<open>tag unimportant\<close> \<open>Making a continuous function avoid some value in a neighbourhood\<close>
 
 lemma continuous_within_avoid:
   fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
@@ -2958,7 +2958,7 @@
   using continuous_at_avoid[of x f a] assms(4)
   by auto
 
-subsection \<open>Consequences for Real Numbers\<close>
+section \<open>Consequences for Real Numbers\<close>
 
 lemma closed_contains_Inf:
   fixes S :: "real set"
@@ -3093,7 +3093,7 @@
   by auto
 
 
-subsection\<open>The infimum of the distance between two sets\<close>
+section\<open>The infimum of the distance between two sets\<close>
 
 definition\<^marker>\<open>tag important\<close> setdist :: "'a::metric_space set \<Rightarrow> 'a set \<Rightarrow> real" where
   "setdist s t \<equiv>
@@ -3269,4 +3269,72 @@
   qed (fact \<open>y \<in> B\<close>)
 qed
 
+
+section \<open>Diameter Lemma\<close>
+
+text \<open>taken from the AFP entry Martingales, by Ata Keskin, TU München\<close>
+
+lemma diameter_comp_strict_mono:
+  fixes s :: "nat \<Rightarrow> 'a :: metric_space"
+  assumes "strict_mono r" "bounded {s i |i. r n \<le> i}"
+  shows "diameter {s (r i) | i. n \<le> i} \<le> diameter {s i | i. r n \<le> i}"
+proof (rule diameter_subset)
+  show "{s (r i) | i. n \<le> i} \<subseteq> {s i | i. r n \<le> i}" using assms(1) monotoneD strict_mono_mono by fastforce
+qed (intro assms(2))
+
+lemma diameter_bounded_bound':
+  fixes S :: "'a :: metric_space set"
+  assumes S: "bdd_above (case_prod dist ` (S\<times>S))" and "x \<in> S" "y \<in> S"
+  shows "dist x y \<le> diameter S"
+proof -
+  have "(x,y) \<in> S\<times>S" using assms by auto
+  then have "dist x y \<le> (SUP (x,y)\<in>S\<times>S. dist x y)"
+    by (metis S cSUP_upper case_prod_conv)
+  with \<open>x \<in> S\<close> show ?thesis by (auto simp: diameter_def)
+qed
+
+lemma bounded_imp_dist_bounded:
+  assumes "bounded (range s)"
+  shows "bounded ((\<lambda>(i, j). dist (s i) (s j)) ` ({n..} \<times> {n..}))"
+  using bounded_dist_comp[OF bounded_fst bounded_snd, OF bounded_Times(1,1)[OF assms(1,1)]] by (rule bounded_subset, force) 
+
+text \<open>A sequence is Cauchy, if and only if it is bounded and its diameter tends to zero. The diameter is well-defined only if the sequence is bounded.\<close>
+lemma cauchy_iff_diameter_tends_to_zero_and_bounded:
+  fixes s :: "nat \<Rightarrow> 'a :: metric_space"
+  shows "Cauchy s \<longleftrightarrow> ((\<lambda>n. diameter {s i | i. i \<ge> n}) \<longlonglongrightarrow> 0 \<and> bounded (range s))"
+proof -
+  have "{s i |i. N \<le> i} \<noteq> {}" for N by blast
+  hence diameter_SUP: "diameter {s i |i. N \<le> i} = (SUP (i, j) \<in> {N..} \<times> {N..}. dist (s i) (s j))" for N unfolding diameter_def by (auto intro!: arg_cong[of _ _ Sup])
+  show ?thesis 
+  proof (intro iffI)
+    assume asm: "Cauchy s"
+    have "\<exists>N. \<forall>n\<ge>N. norm (diameter {s i |i. n \<le> i}) < e" if e_pos: "e > 0" for e
+    proof -
+      obtain N where dist_less: "dist (s n) (s m) < (1/2) * e" if "n \<ge> N" "m \<ge> N" for n m using asm e_pos by (metis Cauchy_def mult_pos_pos zero_less_divide_iff zero_less_numeral zero_less_one)
+      {
+        fix r assume "r \<ge> N"
+        hence "dist (s n) (s m) < (1/2) * e" if "n \<ge> r" "m \<ge> r" for n m using dist_less that by simp
+        hence "(SUP (i, j) \<in> {r..} \<times> {r..}. dist (s i) (s j)) \<le> (1/2) * e" by (intro cSup_least) fastforce+
+        also have "... < e" using e_pos by simp
+        finally have "diameter {s i |i. r \<le> i} < e" using diameter_SUP by presburger
+      }
+      moreover have "diameter {s i |i. r \<le> i} \<ge> 0" for r unfolding diameter_SUP using bounded_imp_dist_bounded[OF cauchy_imp_bounded, THEN bounded_imp_bdd_above, OF asm] by (intro cSup_upper2, auto)
+      ultimately show ?thesis by auto
+    qed                 
+    thus "(\<lambda>n. diameter {s i |i. n \<le> i}) \<longlonglongrightarrow> 0 \<and> bounded (range s)" using cauchy_imp_bounded[OF asm] by (simp add: LIMSEQ_iff)
+  next
+    assume asm: "(\<lambda>n. diameter {s i |i. n \<le> i}) \<longlonglongrightarrow> 0 \<and> bounded (range s)"
+    have "\<exists>N. \<forall>n\<ge>N. \<forall>m\<ge>N. dist (s n) (s m) < e" if e_pos: "e > 0" for e
+    proof -
+      obtain N where diam_less: "diameter {s i |i. r \<le> i} < e" if "r \<ge> N" for r using LIMSEQ_D asm(1) e_pos by fastforce
+      {
+        fix n m assume "n \<ge> N" "m \<ge> N"
+        hence "dist (s n) (s m) < e" using cSUP_lessD[OF bounded_imp_dist_bounded[THEN bounded_imp_bdd_above], OF _ diam_less[unfolded diameter_SUP]] asm by auto
+      }
+      thus ?thesis by blast
+    qed
+    then show "Cauchy s" by (simp add: Cauchy_def)
+  qed            
+qed
+  
 end
--- a/src/HOL/Analysis/Set_Integral.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Analysis/Set_Integral.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -7,13 +7,13 @@
 TODO: keep all these? Need unicode translations as well.
 *)
 
+chapter \<open>Integrals over a Set\<close>
+
 theory Set_Integral
   imports Radon_Nikodym
 begin
 
-(*
-    Notation
-*)
+section \<open>Notation\<close>
 
 definition\<^marker>\<open>tag important\<close> "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M"
 
@@ -45,9 +45,7 @@
   "_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real"
   ("(3LBINT _:_./ _)" [0,0,10] 10)
 
-(*
-    Basic properties
-*)
+section \<open>Basic properties\<close>
 
 (*
 lemma indicator_abs_eq: "\<And>A x. \<bar>indicator A x\<bar> = ((indicator A x) :: real)"
@@ -149,6 +147,13 @@
 (* TODO: integral_cmul_indicator should be named set_integral_const *)
 (* TODO: borel_integrable_atLeastAtMost should be named something like set_integrable_Icc_isCont *)
 
+lemma set_integral_scaleR_left: 
+  assumes "A \<in> sets M" "c \<noteq> 0 \<Longrightarrow> integrable M f"
+  shows "(LINT t:A|M. f t *\<^sub>R c) = (LINT t:A|M. f t) *\<^sub>R c"
+  unfolding set_lebesgue_integral_def 
+  using integrable_mult_indicator[OF assms]
+  by (subst integral_scaleR_left[symmetric], auto)
+
 lemma set_integral_scaleR_right [simp]: "(LINT t:A|M. a *\<^sub>R f t) = a *\<^sub>R (LINT t:A|M. f t)"
   unfolding set_lebesgue_integral_def
   by (subst integral_scaleR_right[symmetric]) (auto intro!: Bochner_Integration.integral_cong)
@@ -444,7 +449,7 @@
     using intgbl set_integrable_def by blast
 qed
 
-(* Proof from Royden Real Analysis, p. 91. *)
+text \<open>Proof from Royden, \emph{Real Analysis}, p. 91.\<close>
 lemma lebesgue_integral_countable_add:
   fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
   assumes meas[intro]: "\<And>i::nat. A i \<in> sets M"
@@ -489,11 +494,7 @@
       by simp
   qed
   show "LINT x|M. indicator (\<Union>(A ` UNIV)) x *\<^sub>R f x = LINT x|M. (\<Sum>i. indicator (A i) x *\<^sub>R f x)"
-    apply (rule Bochner_Integration.integral_cong[OF refl])
-    apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric])
-    using sums_unique[OF indicator_sums[OF disj]]
-    apply auto
-    done
+    by (metis (no_types, lifting) integral_cong sums sums_unique)
 qed
 
 lemma set_integral_cont_up:
@@ -562,6 +563,8 @@
 qed
 
 
+section \<open>Complex integrals\<close>
+
 abbreviation complex_integrable :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
   "complex_integrable M f \<equiv> integrable M f"
 
@@ -610,11 +613,11 @@
   "complex_set_lebesgue_integral M A f \<equiv> set_lebesgue_integral M A f"
 
 syntax
-"_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
-("(4CLINT _:_|_. _)" [0,0,0,10] 10)
+  "_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
+  ("(4CLINT _:_|_. _)" [0,0,0,10] 10)
 
 translations
-"CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)"
+  "CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)"
 
 lemma set_measurable_continuous_on_ivl:
   assumes "continuous_on {a..b} (f :: real \<Rightarrow> real)"
@@ -622,6 +625,7 @@
   unfolding set_borel_measurable_def
   by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp
 
+section \<open>NN Set Integrals\<close>
 
 text\<open>This notation is from Sébastien Gouëzel: His use is not directly in line with the
 notations in this file, they are more in line with sum, and more readable he thinks.\<close>
@@ -656,7 +660,7 @@
     by (auto split: split_indicator)
   then have "(\<integral>\<^sup>+x. f x * indicator (B \<union> C) x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator B x + f x * indicator C x \<partial>M)"
     by simp
-  also have "... = (\<integral>\<^sup>+x. f x * indicator B x \<partial>M) + (\<integral>\<^sup>+x. f x * indicator C x \<partial>M)"
+  also have "\<dots> = (\<integral>\<^sup>+x. f x * indicator B x \<partial>M) + (\<integral>\<^sup>+x. f x * indicator C x \<partial>M)"
     by (rule nn_integral_add) (auto simp add: assms mes pos)
   finally show ?thesis by simp
 qed
@@ -719,7 +723,7 @@
 proof -
   have "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x. (f x * indicator A x + g x * indicator A x) \<partial>M)"
     by (auto simp add: indicator_def intro!: nn_integral_cong)
-  also have "... = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M) + (\<integral>\<^sup>+x. g x * indicator A x \<partial>M)"
+  also have "\<dots> = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M) + (\<integral>\<^sup>+x. g x * indicator A x \<partial>M)"
     apply (rule nn_integral_add) using assms(1) assms(2) by auto
   finally show ?thesis by simp
 qed
@@ -750,9 +754,9 @@
 proof -
   have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+x. f (g x) \<partial>count_space A)"
     by (auto simp add: nn_integral_count_space_indicator[symmetric])
-  also have "... = (\<integral>\<^sup>+y. f y \<partial>count_space (g`A))"
+  also have "\<dots> = (\<integral>\<^sup>+y. f y \<partial>count_space (g`A))"
     by (simp add: assms nn_integral_bij_count_space inj_on_imp_bij_betw)
-  also have "... = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)"
+  also have "\<dots> = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)"
     by (auto simp add: nn_integral_count_space_indicator[symmetric])
   finally show ?thesis by simp
 qed
@@ -855,6 +859,8 @@
   then show ?thesis using * by auto
 qed
 
+section \<open>Scheffé's lemma\<close>
+
 text \<open>The next lemma shows that \<open>L\<^sup>1\<close> convergence of a sequence of functions follows from almost
 everywhere convergence and the weaker condition of the convergence of the integrated norms (or even
 just the nontrivial inequality about them). Useful in a lot of contexts! This statement (or its
@@ -897,7 +903,7 @@
   then have "AE x in M. liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" using assms(3) by auto
   then have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = (\<integral>\<^sup>+ x. 2 * ennreal(norm(f x)) \<partial>M)"
     by (simp add: nn_integral_cong_AE ennreal_mult)
-  also have "... = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" by (rule nn_integral_cmult) auto
+  also have "\<dots> = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" by (rule nn_integral_cmult) auto
   finally have int_liminf: "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
     by simp
 
@@ -906,11 +912,11 @@
   then have "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) =
       limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M))"
     by simp
-  also have "... = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x) \<partial>M))"
+  also have "\<dots> = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x) \<partial>M))"
     by (rule Limsup_const_add, auto simp add: finint)
-  also have "... \<le> (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
+  also have "\<dots> \<le> (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
     using assms(4) by (simp add: add_left_mono)
-  also have "... = 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
+  also have "\<dots> = 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
     unfolding one_add_one[symmetric] distrib_right by simp
   ultimately have a: "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) \<le>
     2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" by simp
@@ -994,6 +1000,7 @@
   with eq show ?case by simp
 qed
 
+section \<open>Convergence of integrals over an interval\<close>
 
 text \<open>
   The next lemmas relate convergence of integrals over an interval to
@@ -1122,7 +1129,7 @@
     using \<open>c>0\<close> A by (auto simp: ennreal_mult'[symmetric])
   then have "emeasure M {x \<in> A. u x \<ge> c} = emeasure M ({x \<in> A. ennreal(1/c) * u x \<ge> 1})"
     by simp
-  also have "... \<le> ennreal(1/c) * (\<integral>\<^sup>+ x. ennreal(u x) * indicator A x \<partial>M)"
+  also have "\<dots> \<le> ennreal(1/c) * (\<integral>\<^sup>+ x. ennreal(u x) * indicator A x \<partial>M)"
     by (intro nn_integral_Markov_inequality meas assms)
   also have "(\<integral>\<^sup>+ x. ennreal(u x) * indicator A x \<partial>M) = ennreal (set_lebesgue_integral M A u)"
     unfolding set_lebesgue_integral_def nn_integral_set_ennreal using assms AE
@@ -1178,4 +1185,767 @@
     by (simp add: exp_minus field_simps)
 qed
 
+
+section \<open>Integrable Simple Functions\<close>
+
+text \<open>This section is from the Martingales AFP entry, by Ata Keskin, TU München\<close>
+
+text \<open>We restate some basic results concerning Bochner-integrable functions.\<close>
+  
+lemma integrable_implies_simple_function_sequence:
+  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
+  assumes "integrable M f"
+  obtains s where "\<And>i. simple_function M (s i)"
+      and "\<And>i. emeasure M {y \<in> space M. s i y \<noteq> 0} \<noteq> \<infinity>"
+      and "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. s i x) \<longlonglongrightarrow> f x"
+      and "\<And>x i. x \<in> space M \<Longrightarrow> norm (s i x) \<le> 2 * norm (f x)"
+proof-
+  have f: "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. norm (f x) \<partial>M) < \<infinity>" using assms unfolding integrable_iff_bounded by auto
+  obtain s where s: "\<And>i. simple_function M (s i)" "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. s i x) \<longlonglongrightarrow> f x" "\<And>i x. x \<in> space M \<Longrightarrow> norm (s i x) \<le> 2 * norm (f x)" using borel_measurable_implies_sequence_metric[OF f(1)] unfolding norm_conv_dist by metis
+  {
+    fix i
+    have "(\<integral>\<^sup>+x. norm (s i x) \<partial>M) \<le> (\<integral>\<^sup>+x. ennreal (2 * norm (f x)) \<partial>M)" using s by (intro nn_integral_mono, auto)
+    also have "\<dots> < \<infinity>" using f by (simp add: nn_integral_cmult ennreal_mult_less_top ennreal_mult)
+    finally have sbi: "Bochner_Integration.simple_bochner_integrable M (s i)" using s by (intro simple_bochner_integrableI_bounded) auto
+    hence "emeasure M {y \<in> space M. s i y \<noteq> 0} \<noteq> \<infinity>" by (auto intro: integrableI_simple_bochner_integrable simple_bochner_integrable.cases)
+  }
+  thus ?thesis using that s by blast
+qed
+
+text \<open>Simple functions can be represented by sums of indicator functions.\<close>
+
+lemma simple_function_indicator_representation_banach:
+  fixes f ::"'a \<Rightarrow> 'b :: {second_countable_topology, banach}"
+  assumes "simple_function M f" "x \<in> space M"
+  shows "f x = (\<Sum>y \<in> f ` space M. indicator (f -` {y} \<inter> space M) x *\<^sub>R y)"
+  (is "?l = ?r")
+proof -
+  have "?r = (\<Sum>y \<in> f ` space M. (if y = f x then indicator (f -` {y} \<inter> space M) x *\<^sub>R y else 0))" 
+    by (auto intro!: sum.cong)
+  also have "\<dots> =  indicator (f -` {f x} \<inter> space M) x *\<^sub>R f x" using assms by (auto dest: simple_functionD)
+  also have "\<dots> = f x" using assms by (auto simp: indicator_def)
+  finally show ?thesis by auto
+qed
+
+lemma simple_function_indicator_representation_AE:
+  fixes f ::"'a \<Rightarrow> 'b :: {second_countable_topology, banach}"
+  assumes "simple_function M f"
+  shows "AE x in M. f x = (\<Sum>y \<in> f ` space M. indicator (f -` {y} \<inter> space M) x *\<^sub>R y)"  
+  by (metis (mono_tags, lifting) AE_I2 simple_function_indicator_representation_banach assms)
+
+lemmas simple_function_scaleR[intro] = simple_function_compose2[where h="(*\<^sub>R)"]
+lemmas integrable_simple_function = simple_bochner_integrable.intros[THEN has_bochner_integral_simple_bochner_integrable, THEN integrable.intros] 
+
+text \<open>Induction rule for simple integrable functions.\<close>
+
+lemma\<^marker>\<open>tag important\<close> integrable_simple_function_induct[consumes 2, case_names cong indicator add, induct set: simple_function]:
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach}"
+  assumes f: "simple_function M f" "emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity>"
+  assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity> 
+                    \<Longrightarrow> simple_function M g \<Longrightarrow> emeasure M {y \<in> space M. g y \<noteq> 0} \<noteq> \<infinity> 
+                    \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g"
+  assumes indicator: "\<And>A y. A \<in> sets M \<Longrightarrow> emeasure M A < \<infinity> \<Longrightarrow> P (\<lambda>x. indicator A x *\<^sub>R y)"
+  assumes add: "\<And>f g. simple_function M f \<Longrightarrow> emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> 
+                      simple_function M g \<Longrightarrow> emeasure M {y \<in> space M. g y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> 
+                      (\<And>z. z \<in> space M \<Longrightarrow> norm (f z + g z) = norm (f z) + norm (g z)) \<Longrightarrow>
+                      P f \<Longrightarrow> P g \<Longrightarrow> P (\<lambda>x. f x + g x)"
+  shows "P f"
+proof-
+  let ?f = "\<lambda>x. (\<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+  have f_ae_eq: "f x = ?f x" if "x \<in> space M" for x using simple_function_indicator_representation_banach[OF f(1) that] .
+  moreover have "emeasure M {y \<in> space M. ?f y \<noteq> 0} \<noteq> \<infinity>" by (metis (no_types, lifting) Collect_cong calculation f(2))
+  moreover have "P (\<lambda>x. \<Sum>y\<in>S. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+                "simple_function M (\<lambda>x. \<Sum>y\<in>S. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+                "emeasure M {y \<in> space M. (\<Sum>x\<in>S. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<noteq> \<infinity>"
+                if "S \<subseteq> f ` space M" for S using simple_functionD(1)[OF assms(1), THEN rev_finite_subset, OF that] that 
+  proof (induction rule: finite_induct)
+    case empty
+    {
+      case 1
+      then show ?case using indicator[of "{}"] by force
+    next
+      case 2
+      then show ?case by force 
+    next
+      case 3
+      then show ?case by force 
+    }
+  next
+    case (insert x F)
+    have "(f -` {x} \<inter> space M) \<subseteq> {y \<in> space M. f y \<noteq> 0}" if "x \<noteq> 0" using that by blast
+    moreover have "{y \<in> space M. f y \<noteq> 0} = space M - (f -` {0} \<inter> space M)" by blast
+    moreover have "space M - (f -` {0} \<inter> space M) \<in> sets M" using simple_functionD(2)[OF f(1)] by blast
+    ultimately have fin_0: "emeasure M (f -` {x} \<inter> space M) < \<infinity>" if "x \<noteq> 0" using that by (metis emeasure_mono f(2) infinity_ennreal_def top.not_eq_extremum top_unique)
+    hence fin_1: "emeasure M {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0} \<noteq> \<infinity>" if "x \<noteq> 0" by (metis (mono_tags, lifting) emeasure_mono f(1) indicator_simps(2) linorder_not_less mem_Collect_eq scaleR_eq_0_iff simple_functionD(2) subsetI that)
+
+    have *: "(\<Sum>y\<in>insert x F. indicat_real (f -` {y} \<inter> space M) xa *\<^sub>R y) = (\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) xa *\<^sub>R y) + indicat_real (f -` {x} \<inter> space M) xa *\<^sub>R x" for xa by (metis (no_types, lifting) Diff_empty Diff_insert0 add.commute insert.hyps(1) insert.hyps(2) sum.insert_remove)
+    have **: "{y \<in> space M. (\<Sum>x\<in>insert x F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<subseteq> {y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<union> {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0}" unfolding * by fastforce    
+    {
+      case 1
+      hence x: "x \<in> f ` space M" and F: "F \<subseteq> f ` space M" by auto
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert(3)[OF F] by simp
+      next
+        case False
+        have norm_argument: "norm ((\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) + indicat_real (f -` {x} \<inter> space M) z *\<^sub>R x) = norm (\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) + norm (indicat_real (f -` {x} \<inter> space M) z *\<^sub>R x)" if z: "z \<in> space M" for z
+        proof (cases "f z = x")
+          case True
+          have "indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y = 0" if "y \<in> F" for y
+            using True insert(2) z that 1 unfolding indicator_def by force
+          hence "(\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) = 0" by (meson sum.neutral)
+          then show ?thesis by force
+        next
+          case False
+          then show ?thesis by force
+        qed
+        show ?thesis 
+          using False simple_functionD(2)[OF f(1)] insert(3,5)[OF F] simple_function_scaleR fin_0 fin_1 
+          by (subst *, subst add, subst simple_function_sum) (blast intro: norm_argument indicator)+
+      qed 
+    next
+      case 2
+      hence x: "x \<in> f ` space M" and F: "F \<subseteq> f ` space M" by auto
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert(4)[OF F] by simp
+      next
+        case False
+        then show ?thesis unfolding * using insert(4)[OF F] simple_functionD(2)[OF f(1)] by fast
+      qed
+    next
+      case 3
+      hence x: "x \<in> f ` space M" and F: "F \<subseteq> f ` space M" by auto
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert(5)[OF F] by simp
+      next
+        case False
+        have "emeasure M {y \<in> space M. (\<Sum>x\<in>insert x F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<le> emeasure M ({y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<union> {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0})"
+          using ** simple_functionD(2)[OF insert(4)[OF F]] simple_functionD(2)[OF f(1)] by (intro emeasure_mono, force+)
+        also have "\<dots> \<le> emeasure M {y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} + emeasure M {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0}"
+          using simple_functionD(2)[OF insert(4)[OF F]] simple_functionD(2)[OF f(1)] by (intro emeasure_subadditive, force+)
+        also have "\<dots> < \<infinity>" using insert(5)[OF F] fin_1[OF False] by (simp add: less_top)
+        finally show ?thesis by simp
+      qed
+    }
+  qed
+  moreover have "simple_function M (\<lambda>x. \<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)" using calculation by blast
+  moreover have "P (\<lambda>x. \<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)" using calculation by blast
+  ultimately show ?thesis by (intro cong[OF _ _ f(1,2)], blast, presburger+) 
+qed
+
+text \<open>Induction rule for non-negative simple integrable functions\<close>
+lemma\<^marker>\<open>tag important\<close> integrable_simple_function_induct_nn[consumes 3, case_names cong indicator add, induct set: simple_function]:
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes f: "simple_function M f" "emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity>" "\<And>x. x \<in> space M \<longrightarrow> f x \<ge> 0"
+  assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x \<ge> 0) \<Longrightarrow> simple_function M g \<Longrightarrow> emeasure M {y \<in> space M. g y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> g x \<ge> 0) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g"
+  assumes indicator: "\<And>A y. y \<ge> 0 \<Longrightarrow> A \<in> sets M \<Longrightarrow> emeasure M A < \<infinity> \<Longrightarrow> P (\<lambda>x. indicator A x *\<^sub>R y)"
+  assumes add: "\<And>f g. (\<And>x. x \<in> space M \<Longrightarrow> f x \<ge> 0) \<Longrightarrow> simple_function M f \<Longrightarrow> emeasure M {y \<in> space M. f y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> 
+                      (\<And>x. x \<in> space M \<Longrightarrow> g x \<ge> 0) \<Longrightarrow> simple_function M g \<Longrightarrow> emeasure M {y \<in> space M. g y \<noteq> 0} \<noteq> \<infinity> \<Longrightarrow> 
+                      (\<And>z. z \<in> space M \<Longrightarrow> norm (f z + g z) = norm (f z) + norm (g z)) \<Longrightarrow>
+                      P f \<Longrightarrow> P g \<Longrightarrow> P (\<lambda>x. f x + g x)"
+  shows "P f"
+proof-
+  let ?f = "\<lambda>x. (\<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+  have f_ae_eq: "f x = ?f x" if "x \<in> space M" for x using simple_function_indicator_representation_banach[OF f(1) that] .
+  moreover have "emeasure M {y \<in> space M. ?f y \<noteq> 0} \<noteq> \<infinity>" by (metis (no_types, lifting) Collect_cong calculation f(2))
+  moreover have "P (\<lambda>x. \<Sum>y\<in>S. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+                "simple_function M (\<lambda>x. \<Sum>y\<in>S. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+                "emeasure M {y \<in> space M. (\<Sum>x\<in>S. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<noteq> \<infinity>"
+                "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> (\<Sum>y\<in>S. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)"
+                if "S \<subseteq> f ` space M" for S using simple_functionD(1)[OF assms(1), THEN rev_finite_subset, OF that] that 
+  proof (induction rule: finite_subset_induct')
+    case empty
+    {
+      case 1
+      then show ?case using indicator[of 0 "{}"] by force
+    next
+      case 2
+      then show ?case by force 
+    next
+      case 3
+      then show ?case by force 
+    next
+      case 4
+      then show ?case by force 
+    }
+  next
+    case (insert x F)
+    have "(f -` {x} \<inter> space M) \<subseteq> {y \<in> space M. f y \<noteq> 0}" if "x \<noteq> 0" 
+      using that by blast
+    moreover have "{y \<in> space M. f y \<noteq> 0} = space M - (f -` {0} \<inter> space M)"
+      by blast
+    moreover have "space M - (f -` {0} \<inter> space M) \<in> sets M" 
+      using simple_functionD(2)[OF f(1)] by blast
+    ultimately have fin_0: "emeasure M (f -` {x} \<inter> space M) < \<infinity>" if "x \<noteq> 0" 
+      using that by (metis emeasure_mono f(2) infinity_ennreal_def top.not_eq_extremum top_unique)
+    hence fin_1: "emeasure M {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0} \<noteq> \<infinity>" if "x \<noteq> 0" 
+      by (metis (mono_tags, lifting) emeasure_mono f(1) indicator_simps(2) linorder_not_less mem_Collect_eq scaleR_eq_0_iff simple_functionD(2) subsetI that)
+
+    have nonneg_x: "x \<ge> 0" using insert f by blast
+    have *: "(\<Sum>y\<in>insert x F. indicat_real (f -` {y} \<inter> space M) xa *\<^sub>R y) = (\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) xa *\<^sub>R y) + indicat_real (f -` {x} \<inter> space M) xa *\<^sub>R x" for xa by (metis (no_types, lifting) add.commute insert.hyps(1) insert.hyps(4) sum.insert)
+    have **: "{y \<in> space M. (\<Sum>x\<in>insert x F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<subseteq> {y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<union> {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0}" unfolding * by fastforce    
+    {
+      case 1
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert by simp
+      next
+        case False
+        have norm_argument: "norm ((\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) + indicat_real (f -` {x} \<inter> space M) z *\<^sub>R x) 
+              = norm (\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) + norm (indicat_real (f -` {x} \<inter> space M) z *\<^sub>R x)" 
+          if z: "z \<in> space M" for z
+        proof (cases "f z = x")
+          case True
+          have "indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y = 0" if "y \<in> F" for y 
+            using True insert z that 1 unfolding indicator_def by force
+          hence "(\<Sum>y\<in>F. indicat_real (f -` {y} \<inter> space M) z *\<^sub>R y) = 0" 
+            by (meson sum.neutral)
+          thus ?thesis by force
+        qed (force)
+        show ?thesis using False fin_0 fin_1 f norm_argument 
+          by (subst *, subst add, presburger add: insert, intro insert, intro insert, fastforce simp add: indicator_def intro!: insert(2) f(3), auto intro!: indicator insert nonneg_x)
+      qed 
+    next
+      case 2
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert by simp
+      next
+        case False
+        then show ?thesis unfolding * using insert simple_functionD(2)[OF f(1)] by fast
+      qed
+    next
+      case 3
+      show ?case 
+      proof (cases "x = 0")
+        case True
+        then show ?thesis unfolding * using insert by simp
+      next
+        case False
+        have "emeasure M {y \<in> space M. (\<Sum>x\<in>insert x F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} 
+           \<le> emeasure M ({y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} \<union> {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0})"
+          using ** simple_functionD(2)[OF insert(6)] simple_functionD(2)[OF f(1)] insert.IH(2) by (intro emeasure_mono, blast, simp) 
+        also have "\<dots> \<le> emeasure M {y \<in> space M. (\<Sum>x\<in>F. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x) \<noteq> 0} + emeasure M {y \<in> space M. indicat_real (f -` {x} \<inter> space M) y *\<^sub>R x \<noteq> 0}"
+          using simple_functionD(2)[OF insert(6)] simple_functionD(2)[OF f(1)] by (intro emeasure_subadditive, force+)
+        also have "\<dots> < \<infinity>" using insert(7) fin_1[OF False] by (simp add: less_top)
+        finally show ?thesis by simp
+      qed
+    next
+      case (4 \<xi>)
+      thus ?case using insert nonneg_x f(3) by (auto simp add: scaleR_nonneg_nonneg intro: sum_nonneg)
+    }
+  qed
+  moreover have "simple_function M (\<lambda>x. \<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)" 
+    using calculation by blast
+  moreover have "P (\<lambda>x. \<Sum>y\<in>f ` space M. indicat_real (f -` {y} \<inter> space M) x *\<^sub>R y)" 
+    using calculation by blast
+  moreover have "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x" using f(3) by simp
+  ultimately show ?thesis
+    by (smt (verit) Collect_cong f(1) local.cong) 
+qed
+
+lemma finite_nn_integral_imp_ae_finite:
+  fixes f :: "'a \<Rightarrow> ennreal"
+  assumes "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. f x \<partial>M) < \<infinity>"
+  shows "AE x in M. f x < \<infinity>"
+proof (rule ccontr, goal_cases)
+  case 1
+  let ?A = "space M \<inter> {x. f x = \<infinity>}"
+  have *: "emeasure M ?A > 0" using 1 assms(1) 
+    by (metis (mono_tags, lifting) assms(2) eventually_mono infinity_ennreal_def nn_integral_noteq_infinite top.not_eq_extremum)
+  have "(\<integral>\<^sup>+x. f x * indicator ?A x \<partial>M) = (\<integral>\<^sup>+x. \<infinity> * indicator ?A x \<partial>M)" 
+    by (metis (mono_tags, lifting) indicator_inter_arith indicator_simps(2) mem_Collect_eq mult_eq_0_iff)
+  also have "\<dots> = \<infinity> * emeasure M ?A" 
+    using assms(1) by (intro nn_integral_cmult_indicator, simp)
+  also have "\<dots> = \<infinity>" 
+    using * by fastforce
+  finally have "(\<integral>\<^sup>+x. f x * indicator ?A x \<partial>M) = \<infinity>" .
+  moreover have "(\<integral>\<^sup>+x. f x * indicator ?A x \<partial>M) \<le> (\<integral>\<^sup>+x. f x \<partial>M)" 
+    by (intro nn_integral_mono, simp add: indicator_def)
+  ultimately show ?case using assms(2) by simp
+qed
+
+text \<open>Convergence in L1-Norm implies existence of a subsequence which convergences almost everywhere. 
+      This lemma is easier to use than the existing one in \<^theory>\<open>HOL-Analysis.Bochner_Integration\<close>\<close>
+
+lemma cauchy_L1_AE_cauchy_subseq:
+  fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
+  assumes [measurable]: "\<And>n. integrable M (s n)"
+      and "\<And>e. e > 0 \<Longrightarrow> \<exists>N. \<forall>i\<ge>N. \<forall>j\<ge>N. LINT x|M. norm (s i x - s j x) < e"
+  obtains r where "strict_mono r" "AE x in M. Cauchy (\<lambda>i. s (r i) x)"
+proof-
+  have "\<exists>r. \<forall>n. (\<forall>i\<ge>r n. \<forall>j\<ge> r n. LINT x|M. norm (s i x - s j x) < (1 / 2) ^ n) \<and> (r (Suc n) > r n)"
+  proof (intro dependent_nat_choice, goal_cases)
+    case 1
+    then show ?case using assms(2) by presburger
+  next
+    case (2 x n)
+    obtain N where *: "LINT x|M. norm (s i x - s j x) < (1 / 2) ^ Suc n" if "i \<ge> N" "j \<ge> N" for i j 
+      using assms(2)[of "(1 / 2) ^ Suc n"] by auto
+    {
+      fix i j assume "i \<ge> max N (Suc x)" "j \<ge> max N (Suc x)"
+      hence "integral\<^sup>L M (\<lambda>x. norm (s i x - s j x)) < (1 / 2) ^ Suc n" using * by fastforce
+    }
+    then show ?case by fastforce
+  qed
+  then obtain r where strict_mono: "strict_mono r" and "\<forall>i\<ge>r n. \<forall>j\<ge> r n. LINT x|M. norm (s i x - s j x) < (1 / 2) ^ n" for n 
+    using strict_mono_Suc_iff by blast
+  hence r_is: "LINT x|M. norm (s (r (Suc n)) x - s (r n) x) < (1 / 2) ^ n" for n by (simp add: strict_mono_leD)
+
+  define g where "g = (\<lambda>n x. (\<Sum>i\<le>n. ennreal (norm (s (r (Suc i)) x - s (r i) x))))"
+  define g' where "g' = (\<lambda>x. \<Sum>i. ennreal (norm (s (r (Suc i)) x - s (r i) x)))"
+
+  have integrable_g: "(\<integral>\<^sup>+ x. g n x \<partial>M) < 2" for n
+  proof -
+    have "(\<integral>\<^sup>+ x. g n x \<partial>M) = (\<integral>\<^sup>+ x. (\<Sum>i\<le>n. ennreal (norm (s (r (Suc i)) x - s (r i) x))) \<partial>M)"
+      using g_def by simp
+    also have "\<dots> = (\<Sum>i\<le>n. (\<integral>\<^sup>+ x. ennreal (norm (s (r (Suc i)) x - s (r i) x)) \<partial>M))" 
+      by (intro nn_integral_sum, simp)
+    also have "\<dots> = (\<Sum>i\<le>n. LINT x|M. norm (s (r (Suc i)) x - s (r i) x))" 
+      unfolding dist_norm using assms(1) by (subst nn_integral_eq_integral[OF integrable_norm], auto)
+    also have "\<dots> < ennreal (\<Sum>i\<le>n. (1 / 2) ^ i)" 
+      by (intro ennreal_lessI[OF sum_pos sum_strict_mono[OF finite_atMost _ r_is]], auto)
+    also have "\<dots> \<le> ennreal 2" 
+      unfolding sum_gp0[of "1 / 2" n] by (intro ennreal_leI, auto)
+    finally show "(\<integral>\<^sup>+ x. g n x \<partial>M) < 2" by simp
+  qed
+
+  have integrable_g': "(\<integral>\<^sup>+ x. g' x \<partial>M) \<le> 2"
+  proof -
+    have "incseq (\<lambda>n. g n x)" for x by (intro incseq_SucI, auto simp add: g_def ennreal_leI)
+    hence "convergent (\<lambda>n. g n x)" for x
+      unfolding convergent_def using LIMSEQ_incseq_SUP by fast
+    hence "(\<lambda>n. g n x) \<longlonglongrightarrow> g' x" for x 
+      unfolding g_def g'_def by (intro summable_iff_convergent'[THEN iffD2, THEN summable_LIMSEQ'], blast)
+    hence "(\<integral>\<^sup>+ x. g' x \<partial>M) = (\<integral>\<^sup>+ x. liminf (\<lambda>n. g n x) \<partial>M)" by (metis lim_imp_Liminf trivial_limit_sequentially)
+    also have "\<dots> \<le> liminf (\<lambda>n. \<integral>\<^sup>+ x. g n x \<partial>M)" by (intro nn_integral_liminf, simp add: g_def)
+    also have "\<dots> \<le> liminf (\<lambda>n. 2)" using integrable_g by (intro Liminf_mono) (simp add: order_le_less)
+    also have "\<dots> = 2" 
+      using sequentially_bot tendsto_iff_Liminf_eq_Limsup by blast
+    finally show ?thesis .
+  qed
+  hence "AE x in M. g' x < \<infinity>" 
+    by (intro finite_nn_integral_imp_ae_finite) (auto simp add: order_le_less_trans g'_def)
+  moreover have "summable (\<lambda>i. norm (s (r (Suc i)) x - s (r i) x))" if "g' x \<noteq> \<infinity>" for x 
+    using that unfolding g'_def by (intro summable_suminf_not_top) fastforce+ 
+  ultimately have ae_summable: "AE x in M. summable (\<lambda>i. s (r (Suc i)) x - s (r i) x)" 
+    using summable_norm_cancel unfolding dist_norm by force
+
+  {
+    fix x assume "summable (\<lambda>i. s (r (Suc i)) x - s (r i) x)"
+    hence "(\<lambda>n. \<Sum>i<n. s (r (Suc i)) x - s (r i) x) \<longlonglongrightarrow> (\<Sum>i. s (r (Suc i)) x - s (r i) x)" 
+      using summable_LIMSEQ by blast
+    moreover have "(\<lambda>n. (\<Sum>i<n. s (r (Suc i)) x - s (r i) x)) = (\<lambda>n. s (r n) x - s (r 0) x)" 
+      using sum_lessThan_telescope by fastforce
+    ultimately have "(\<lambda>n. s (r n) x - s (r 0) x) \<longlonglongrightarrow> (\<Sum>i. s (r (Suc i)) x - s (r i) x)" by argo
+    hence "(\<lambda>n. s (r n) x - s (r 0) x + s (r 0) x) \<longlonglongrightarrow> (\<Sum>i. s (r (Suc i)) x - s (r i) x) + s (r 0) x" 
+      by (intro isCont_tendsto_compose[of _ "\<lambda>z. z + s (r 0) x"], auto)
+    hence "Cauchy (\<lambda>n. s (r n) x)" by (simp add: LIMSEQ_imp_Cauchy)
+  }
+  hence "AE x in M. Cauchy (\<lambda>i. s (r i) x)" using ae_summable by fast
+  thus ?thesis by (rule that[OF strict_mono(1)])
+qed
+
+subsection \<open>Totally Ordered Banach Spaces\<close>
+
+lemma integrable_max[simp, intro]:
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology}"
+  assumes fg[measurable]: "integrable M f" "integrable M g"
+  shows "integrable M (\<lambda>x. max (f x) (g x))"
+proof (rule Bochner_Integration.integrable_bound)
+  {
+    fix x y :: 'b                                             
+    have "norm (max x y) \<le> max (norm x) (norm y)" by linarith
+    also have "\<dots> \<le> norm x + norm y" by simp
+    finally have "norm (max x y) \<le> norm (norm x + norm y)" by simp
+  }
+  thus "AE x in M. norm (max (f x) (g x)) \<le> norm (norm (f x) + norm (g x))" by simp
+qed (auto intro: Bochner_Integration.integrable_add[OF integrable_norm[OF fg(1)] integrable_norm[OF fg(2)]])
+
+lemma integrable_min[simp, intro]:
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology}"
+  assumes [measurable]: "integrable M f" "integrable M g"
+  shows "integrable M (\<lambda>x. min (f x) (g x))"
+proof -
+  have "norm (min (f x) (g x)) \<le> norm (f x) \<or> norm (min (f x) (g x)) \<le> norm (g x)" for x by linarith
+  thus ?thesis 
+    by (intro integrable_bound[OF integrable_max[OF integrable_norm(1,1), OF assms]], auto)
+qed
+
+text \<open>Restatement of \<open>integral_nonneg_AE\<close> for functions taking values in a Banach space.\<close>
+lemma integral_nonneg_AE_banach:                        
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes [measurable]: "f \<in> borel_measurable M" and nonneg: "AE x in M. 0 \<le> f x"
+  shows "0 \<le> integral\<^sup>L M f"
+proof cases
+  assume integrable: "integrable M f"
+  hence max: "(\<lambda>x. max 0 (f x)) \<in> borel_measurable M" "\<And>x. 0 \<le> max 0 (f x)" "integrable M (\<lambda>x. max 0 (f x))" by auto
+  hence "0 \<le> integral\<^sup>L M (\<lambda>x. max 0 (f x))"
+  proof -
+  obtain s where *: "\<And>i. simple_function M (s i)" 
+                    "\<And>i. emeasure M {y \<in> space M. s i y \<noteq> 0} \<noteq> \<infinity>" 
+                    "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. s i x) \<longlonglongrightarrow> f x" 
+                    "\<And>x i. x \<in> space M \<Longrightarrow> norm (s i x) \<le> 2 * norm (f x)" 
+    using integrable_implies_simple_function_sequence[OF integrable] by blast
+  have simple: "\<And>i. simple_function M (\<lambda>x. max 0 (s i x))" 
+    using * by fast
+    have "\<And>i. {y \<in> space M. max 0 (s i y) \<noteq> 0} \<subseteq> {y \<in> space M. s i y \<noteq> 0}" 
+      unfolding max_def by force
+    moreover have "\<And>i. {y \<in> space M. s i y \<noteq> 0} \<in> sets M" 
+      using * by measurable
+    ultimately have "\<And>i. emeasure M {y \<in> space M. max 0 (s i y) \<noteq> 0} \<le> emeasure M {y \<in> space M. s i y \<noteq> 0}" 
+      by (rule emeasure_mono) 
+    hence **:"\<And>i. emeasure M {y \<in> space M. max 0 (s i y) \<noteq> 0} \<noteq> \<infinity>" 
+      using *(2) by (auto intro: order.strict_trans1 simp add:  top.not_eq_extremum)
+    have "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. max 0 (s i x)) \<longlonglongrightarrow> max 0 (f x)"
+      using *(3) tendsto_max by blast
+    moreover have "\<And>x i. x \<in> space M \<Longrightarrow> norm (max 0 (s i x)) \<le> norm (2 *\<^sub>R f x)" 
+      using *(4) unfolding max_def by auto
+    ultimately have tendsto: "(\<lambda>i. integral\<^sup>L M (\<lambda>x. max 0 (s i x))) \<longlonglongrightarrow> integral\<^sup>L M (\<lambda>x. max 0 (f x))" 
+      using borel_measurable_simple_function simple integrable by (intro integral_dominated_convergence[OF max(1) _ integrable_norm[OF integrable_scaleR_right], of _ 2 f], blast+)
+    {
+      fix h :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}" 
+      assume "simple_function M h" "emeasure M {y \<in> space M. h y \<noteq> 0} \<noteq> \<infinity>" "\<And>x. x \<in> space M \<longrightarrow> h x \<ge> 0"
+      hence *: "integral\<^sup>L M h \<ge> 0"
+      proof (induct rule: integrable_simple_function_induct_nn)
+        case (cong f g)                   
+        then show ?case using Bochner_Integration.integral_cong by force
+      next
+        case (indicator A y)
+        hence "A \<noteq> {} \<Longrightarrow> y \<ge> 0" using sets.sets_into_space by fastforce
+        then show ?case using indicator by (cases "A = {}", auto simp add: scaleR_nonneg_nonneg)
+      next
+        case (add f g)
+        then show ?case by (simp add: integrable_simple_function)
+      qed
+    }
+    thus ?thesis using LIMSEQ_le_const[OF tendsto, of 0] ** simple by fastforce
+  qed
+  also have "\<dots> = integral\<^sup>L M f" using nonneg by (auto intro: integral_cong_AE)
+  finally show ?thesis .
+qed (simp add: not_integrable_integral_eq)
+
+lemma integral_mono_AE_banach:
+  fixes f g :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "integrable M f" "integrable M g" "AE x in M. f x \<le> g x"
+  shows "integral\<^sup>L M f \<le> integral\<^sup>L M g"
+  using integral_nonneg_AE_banach[of "\<lambda>x. g x - f x"] assms Bochner_Integration.integral_diff[OF assms(1,2)] by force
+
+lemma integral_mono_banach:
+  fixes f g :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "integrable M f" "integrable M g" "\<And>x. x \<in> space M \<Longrightarrow> f x \<le> g x"
+  shows "integral\<^sup>L M f \<le> integral\<^sup>L M g"
+  using integral_mono_AE_banach assms by blast
+
+subsection \<open>Auxiliary Lemmas for Set Integrals\<close>
+
+lemma nn_set_integral_eq_set_integral:
+  assumes [measurable]:"integrable M f"
+      and "AE x \<in> A in M. 0 \<le> f x" "A \<in> sets M"
+    shows "(\<integral>\<^sup>+x\<in>A. f x \<partial>M) = (\<integral> x \<in> A. f x \<partial>M)"
+proof-
+  have "(\<integral>\<^sup>+x. indicator A x *\<^sub>R f x \<partial>M) = (\<integral> x \<in> A. f x \<partial>M)"
+    unfolding set_lebesgue_integral_def 
+    using assms(2) by (intro nn_integral_eq_integral[of _ "\<lambda>x. indicat_real A x *\<^sub>R f x"], blast intro: assms integrable_mult_indicator, fastforce)
+  moreover have "(\<integral>\<^sup>+x. indicator A x *\<^sub>R f x \<partial>M) = (\<integral>\<^sup>+x\<in>A. f x \<partial>M)"  
+    by (metis ennreal_0 indicator_simps(1) indicator_simps(2) mult.commute mult_1 mult_zero_left real_scaleR_def)
+  ultimately show ?thesis by argo
+qed
+
+lemma set_integral_restrict_space:
+  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
+  assumes "\<Omega> \<inter> space M \<in> sets M"
+  shows "set_lebesgue_integral (restrict_space M \<Omega>) A f = set_lebesgue_integral M A (\<lambda>x. indicator \<Omega> x *\<^sub>R f x)"
+  unfolding set_lebesgue_integral_def 
+  by (subst integral_restrict_space, auto intro!: integrable_mult_indicator assms simp: mult.commute)
+
+lemma set_integral_const:
+  fixes c :: "'b::{banach, second_countable_topology}"
+  assumes "A \<in> sets M" "emeasure M A \<noteq> \<infinity>"
+  shows "set_lebesgue_integral M A (\<lambda>_. c) = measure M A *\<^sub>R c"
+  unfolding set_lebesgue_integral_def 
+  using assms by (metis has_bochner_integral_indicator has_bochner_integral_integral_eq infinity_ennreal_def less_top)
+
+lemma set_integral_mono_banach:
+  fixes f g :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "set_integrable M A f" "set_integrable M A g"
+    "\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x"
+  shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)"
+  using assms unfolding set_integrable_def set_lebesgue_integral_def
+  by (auto intro: integral_mono_banach split: split_indicator)
+
+lemma set_integral_mono_AE_banach:
+  fixes f g :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "set_integrable M A f" "set_integrable M A g" "AE x\<in>A in M. f x \<le> g x"
+  shows "set_lebesgue_integral M A f \<le> set_lebesgue_integral M A g" using assms unfolding set_lebesgue_integral_def by (auto simp add: set_integrable_def intro!: integral_mono_AE_banach[of M "\<lambda>x. indicator A x *\<^sub>R f x" "\<lambda>x. indicator A x *\<^sub>R g x"], simp add: indicator_def)
+
+subsection \<open>Integrability and Measurability of the Diameter\<close>
+
+context
+  fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: {second_countable_topology, banach}" and M
+  assumes bounded: "\<And>x. x \<in> space M \<Longrightarrow> bounded (range (\<lambda>i. s i x))"
+begin
+
+lemma borel_measurable_diameter: 
+  assumes [measurable]: "\<And>i. (s i) \<in> borel_measurable M"
+  shows "(\<lambda>x. diameter {s i x |i. n \<le> i}) \<in> borel_measurable M"
+proof -
+  have "{s i x |i. N \<le> i} \<noteq> {}" for x N by blast
+  hence diameter_SUP: "diameter {s i x |i. N \<le> i} = (SUP (i, j) \<in> {N..} \<times> {N..}. dist (s i x) (s j x))" for x N unfolding diameter_def by (auto intro!: arg_cong[of _ _ Sup])
+  
+  have "case_prod dist ` ({s i x |i. n \<le> i} \<times> {s i x |i. n \<le> i}) = ((\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..}))" for x by fast
+  hence *: "(\<lambda>x. diameter {s i x |i. n \<le> i}) =  (\<lambda>x. Sup ((\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..})))" using diameter_SUP by (simp add: case_prod_beta')
+  
+  have "bounded ((\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..}))" if "x \<in> space M" for x by (rule bounded_imp_dist_bounded[OF bounded, OF that])
+  hence bdd: "bdd_above ((\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..}))" if "x \<in> space M" for x using that bounded_imp_bdd_above by presburger
+  have "fst p \<in> borel_measurable M" "snd p \<in> borel_measurable M" if "p \<in> s ` {n..} \<times> s ` {n..}" for p using that by fastforce+
+  hence "(\<lambda>x. fst p x - snd p x) \<in> borel_measurable M" if "p \<in> s ` {n..} \<times> s ` {n..}" for p using that borel_measurable_diff by simp
+  hence "(\<lambda>x. case p of (f, g) \<Rightarrow> dist (f x) (g x)) \<in> borel_measurable M" if "p \<in> s ` {n..} \<times> s ` {n..}" for p unfolding dist_norm using that by measurable
+  moreover have "countable (s ` {n..} \<times> s ` {n..})" by (intro countable_SIGMA countable_image, auto)
+  ultimately show ?thesis unfolding * by (auto intro!: borel_measurable_cSUP bdd)
+qed
+
+lemma integrable_bound_diameter:
+  fixes f :: "'a \<Rightarrow> real"
+  assumes "integrable M f" 
+      and [measurable]: "\<And>i. (s i) \<in> borel_measurable M"
+      and "\<And>x i. x \<in> space M \<Longrightarrow> norm (s i x) \<le> f x"
+    shows "integrable M (\<lambda>x. diameter {s i x |i. n \<le> i})"
+proof -
+  have "{s i x |i. N \<le> i} \<noteq> {}" for x N by blast
+  hence diameter_SUP: "diameter {s i x |i. N \<le> i} = (SUP (i, j) \<in> {N..} \<times> {N..}. dist (s i x) (s j x))" for x N unfolding diameter_def by (auto intro!: arg_cong[of _ _ Sup])
+  {
+    fix x assume x: "x \<in> space M"
+    let ?S = "(\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..})"
+    have "case_prod dist ` ({s i x |i. n \<le> i} \<times> {s i x |i. n \<le> i}) = (\<lambda>(i, j). dist (s i x) (s j x)) ` ({n..} \<times> {n..})" by fast
+    hence *: "diameter {s i x |i. n \<le> i} =  Sup ?S" using diameter_SUP by (simp add: case_prod_beta')
+    
+    have "bounded ?S" by (rule bounded_imp_dist_bounded[OF bounded[OF x]])
+    hence Sup_S_nonneg:"0 \<le> Sup ?S" by (auto intro!: cSup_upper2 x bounded_imp_bdd_above)
+
+    have "dist (s i x) (s j x) \<le>  2 * f x" for i j by (intro dist_triangle2[THEN order_trans, of _ 0]) (metis norm_conv_dist assms(3) x add_mono mult_2)
+    hence "\<forall>c \<in> ?S. c \<le> 2 * f x" by force
+    hence "Sup ?S \<le> 2 * f x" by (intro cSup_least, auto)
+    hence "norm (Sup ?S) \<le> 2 * norm (f x)" using Sup_S_nonneg by auto
+    also have "\<dots> = norm (2 *\<^sub>R f x)" by simp
+    finally have "norm (diameter {s i x |i. n \<le> i}) \<le> norm (2 *\<^sub>R f x)" unfolding * .
+  }
+  hence "AE x in M. norm (diameter {s i x |i. n \<le> i}) \<le> norm (2 *\<^sub>R f x)" by blast
+  thus  "integrable M (\<lambda>x. diameter {s i x |i. n \<le> i})" using borel_measurable_diameter by (intro Bochner_Integration.integrable_bound[OF assms(1)[THEN integrable_scaleR_right[of 2]]], measurable)
+qed
+end    
+
+subsection \<open>Averaging Theorem\<close>
+
+text \<open>We aim to lift results from the real case to arbitrary Banach spaces. 
+      Our fundamental tool in this regard will be the averaging theorem. The proof of this theorem is due to Serge Lang (Real and Functional Analysis) \cite{Lang_1993}. 
+      The theorem allows us to make statements about a function’s value almost everywhere, depending on the value its integral takes on various sets of the measure space.\<close>
+
+text \<open>Before we introduce and prove the averaging theorem, we will first show the following lemma which is crucial for our proof. 
+      While not stated exactly in this manner, our proof makes use of the characterization of second-countable topological spaces given in the book General Topology by Ryszard Engelking (Theorem 4.1.15) \cite{engelking_1989}.
+    (Engelking's book \emph{General Topology})\<close>
+
+lemma balls_countable_basis:
+  obtains D :: "'a :: {metric_space, second_countable_topology} set" 
+  where "topological_basis (case_prod ball ` (D \<times> (\<rat> \<inter> {0<..})))"
+    and "countable D"
+    and "D \<noteq> {}"    
+proof -
+  obtain D :: "'a set" where dense_subset: "countable D" "D \<noteq> {}" "\<lbrakk>open U; U \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>y \<in> D. y \<in> U" for U using countable_dense_exists by blast
+  have "topological_basis (case_prod ball ` (D \<times> (\<rat> \<inter> {0<..})))"
+  proof (intro topological_basis_iff[THEN iffD2], fast, clarify)
+    fix U and x :: 'a assume asm: "open U" "x \<in> U"
+    obtain e where e: "e > 0" "ball x e \<subseteq> U" using asm openE by blast
+    obtain y where y: "y \<in> D" "y \<in> ball x (e / 3)" using dense_subset(3)[OF open_ball, of x "e / 3"] centre_in_ball[THEN iffD2, OF divide_pos_pos[OF e(1), of 3]] by force
+    obtain r where r: "r \<in> \<rat> \<inter> {e/3<..<e/2}" unfolding Rats_def using of_rat_dense[OF divide_strict_left_mono[OF _ e(1)], of 2 3] by auto
+
+    have *: "x \<in> ball y r" using r y by (simp add: dist_commute)
+    hence "ball y r \<subseteq> U" using r by (intro order_trans[OF _ e(2)], simp, metric)
+    moreover have "ball y r \<in> (case_prod ball ` (D \<times> (\<rat> \<inter> {0<..})))" using y(1) r by force
+    ultimately show "\<exists>B'\<in>(case_prod ball ` (D \<times> (\<rat> \<inter> {0<..}))). x \<in> B' \<and> B' \<subseteq> U" using * by meson
+  qed
+  thus ?thesis using that dense_subset by blast
+qed
+
+context sigma_finite_measure
+begin         
+
+text \<open>To show statements concerning \<open>\<sigma>\<close>-finite measure spaces, one usually shows the statement for finite measure spaces and uses a limiting argument to show it for the \<open>\<sigma>\<close>-finite case.
+      The following induction scheme formalizes this.\<close>
+lemma sigma_finite_measure_induct[case_names finite_measure, consumes 0]:
+  assumes "\<And>(N :: 'a measure) \<Omega>. finite_measure N 
+                              \<Longrightarrow> N = restrict_space M \<Omega>
+                              \<Longrightarrow> \<Omega> \<in> sets M 
+                              \<Longrightarrow> emeasure N \<Omega> \<noteq> \<infinity> 
+                              \<Longrightarrow> emeasure N \<Omega> \<noteq> 0 
+                              \<Longrightarrow> almost_everywhere N Q"
+      and [measurable]: "Measurable.pred M Q"
+  shows "almost_everywhere M Q"
+proof -
+  have *: "almost_everywhere N Q" if "finite_measure N" "N = restrict_space M \<Omega>" "\<Omega> \<in> sets M" "emeasure N \<Omega> \<noteq> \<infinity>" for N \<Omega> using that by (cases "emeasure N \<Omega> = 0", auto intro: emeasure_0_AE assms(1))
+
+  obtain A :: "nat \<Rightarrow> 'a set" where A: "range A \<subseteq> sets M" "(\<Union>i. A i) = space M" and emeasure_finite: "emeasure M (A i) \<noteq> \<infinity>" for i using sigma_finite by metis
+  note A(1)[measurable]
+  have space_restr: "space (restrict_space M (A i)) = A i" for i unfolding space_restrict_space by simp
+  {
+    fix i    
+    have *: "{x \<in> A i \<inter> space M. Q x} = {x \<in> space M. Q x} \<inter> (A i)" by fast
+    have "Measurable.pred (restrict_space M (A i)) Q" using A by (intro measurableI, auto simp add: space_restr intro!: sets_restrict_space_iff[THEN iffD2], measurable, auto)
+  }
+  note this[measurable]
+  {
+    fix i
+    have "finite_measure (restrict_space M (A i))" using emeasure_finite by (intro finite_measureI, subst space_restr, subst emeasure_restrict_space, auto)
+    hence "emeasure (restrict_space M (A i)) {x \<in> A i. \<not>Q x} = 0" using emeasure_finite by (intro AE_iff_measurable[THEN iffD1, OF _ _ *], measurable, subst space_restr[symmetric], intro sets.top, auto simp add: emeasure_restrict_space)
+    hence "emeasure M {x \<in> A i. \<not> Q x} = 0" by (subst emeasure_restrict_space[symmetric], auto)
+  }
+  hence "emeasure M (\<Union>i. {x \<in> A i. \<not> Q x}) = 0" by (intro emeasure_UN_eq_0, auto)
+  moreover have "(\<Union>i. {x \<in> A i. \<not> Q x}) = {x \<in> space M. \<not> Q x}" using A by auto
+  ultimately show ?thesis by (intro AE_iff_measurable[THEN iffD2], auto)
+qed
+
+text \<open>Real Functional Analysis - Lang\<close>
+text \<open>The Averaging Theorem allows us to make statements concerning how a function behaves almost everywhere, depending on its behaviour on average.\<close>
+lemma averaging_theorem:
+  fixes f::"_ \<Rightarrow> 'b::{second_countable_topology, banach}"
+  assumes [measurable]: "integrable M f" 
+      and closed: "closed S"
+      and "\<And>A. A \<in> sets M \<Longrightarrow> measure M A > 0 \<Longrightarrow> (1 / measure M A) *\<^sub>R set_lebesgue_integral M A f \<in> S"
+    shows "AE x in M. f x \<in> S"
+proof (induct rule: sigma_finite_measure_induct)
+  case (finite_measure N \<Omega>)
+
+  interpret finite_measure N by (rule finite_measure)
+  
+  have integrable[measurable]: "integrable N f" using assms finite_measure by (auto simp: integrable_restrict_space integrable_mult_indicator)
+  have average: "(1 / Sigma_Algebra.measure N A) *\<^sub>R set_lebesgue_integral N A f \<in> S" if "A \<in> sets N" "measure N A > 0" for A
+  proof -
+    have *: "A \<in> sets M" using that by (simp add: sets_restrict_space_iff finite_measure)
+    have "A = A \<inter> \<Omega>" by (metis finite_measure(2,3) inf.orderE sets.sets_into_space space_restrict_space that(1))
+    hence "set_lebesgue_integral N A f = set_lebesgue_integral M A f" unfolding finite_measure by (subst set_integral_restrict_space, auto simp add: finite_measure set_lebesgue_integral_def indicator_inter_arith[symmetric])
+    moreover have "measure N A = measure M A" using that by (auto intro!: measure_restrict_space simp add: finite_measure sets_restrict_space_iff)
+    ultimately show ?thesis using that * assms(3) by presburger
+  qed
+
+  obtain D :: "'b set" where balls_basis: "topological_basis (case_prod ball ` (D \<times> (\<rat> \<inter> {0<..})))" and countable_D: "countable D" using balls_countable_basis by blast
+  have countable_balls: "countable (case_prod ball ` (D \<times> (\<rat> \<inter> {0<..})))" using countable_rat countable_D by blast
+
+  obtain B where B_balls: "B \<subseteq> case_prod ball ` (D \<times> (\<rat> \<inter> {0<..}))" "\<Union>B = -S" using topological_basis[THEN iffD1, OF balls_basis] open_Compl[OF assms(2)] by meson
+  hence countable_B: "countable B" using countable_balls countable_subset by fast
+
+  define b where "b = from_nat_into (B \<union> {{}})"
+  have "B \<union> {{}} \<noteq> {}" by simp
+  have range_b: "range b = B \<union> {{}}" using countable_B by (auto simp add: b_def intro!: range_from_nat_into)
+  have open_b: "open (b i)" for i unfolding b_def using B_balls open_ball from_nat_into[of "B \<union> {{}}" i] by force
+  have Union_range_b: "\<Union>(range b) = -S" using B_balls range_b by simp
+
+  {
+    fix v r assume ball_in_Compl: "ball v r \<subseteq> -S"
+    define A where "A = f -` ball v r \<inter> space N"
+    have dist_less: "dist (f x) v < r" if "x \<in> A" for x using that unfolding A_def vimage_def by (simp add: dist_commute)
+    hence AE_less: "AE x \<in> A in N. norm (f x - v) < r" by (auto simp add: dist_norm)
+    have *: "A \<in> sets N" unfolding A_def by simp
+    have "emeasure N A = 0" 
+    proof -
+      {
+        assume asm: "emeasure N A > 0"
+        hence measure_pos: "measure N A > 0" unfolding emeasure_eq_measure by simp
+        hence "(1 / measure N A) *\<^sub>R set_lebesgue_integral N A f - v 
+             = (1 / measure N A) *\<^sub>R set_lebesgue_integral N A (\<lambda>x. f x - v)" 
+          using integrable integrable_const * 
+          by (subst set_integral_diff(2), auto simp add: set_integrable_def set_integral_const[OF *] algebra_simps intro!: integrable_mult_indicator)
+        moreover have "norm (\<integral>x\<in>A. (f x - v)\<partial>N) \<le> (\<integral>x\<in>A. norm (f x - v)\<partial>N)" 
+          using * by (auto intro!: integral_norm_bound[of N "\<lambda>x. indicator A x *\<^sub>R (f x - v)", THEN order_trans] integrable_mult_indicator integrable simp add: set_lebesgue_integral_def)
+        ultimately have "norm ((1 / measure N A) *\<^sub>R set_lebesgue_integral N A f - v) 
+                       \<le> set_lebesgue_integral N A (\<lambda>x. norm (f x - v)) / measure N A" using asm by (auto intro: divide_right_mono)
+        also have "\<dots> < set_lebesgue_integral N A (\<lambda>x. r) / measure N A" 
+          unfolding set_lebesgue_integral_def 
+          using asm * integrable integrable_const AE_less measure_pos
+          by (intro divide_strict_right_mono integral_less_AE[of _ _ A] integrable_mult_indicator)
+            (fastforce simp add: dist_less dist_norm indicator_def)+
+        also have "\<dots> = r" using * measure_pos by (simp add: set_integral_const)
+        finally have "dist ((1 / measure N A) *\<^sub>R set_lebesgue_integral N A f) v < r" by (subst dist_norm)
+        hence "False" using average[OF * measure_pos] by (metis ComplD dist_commute in_mono mem_ball ball_in_Compl)
+      }
+      thus ?thesis by fastforce
+    qed
+  }
+  note * = this
+  {
+    fix b' assume "b' \<in> B"
+    hence ball_subset_Compl: "b' \<subseteq> -S" and ball_radius_pos: "\<exists>v \<in> D. \<exists>r>0. b' = ball v r" using B_balls by (blast, fast)
+  }
+  note ** = this
+  hence "emeasure N (f -` b i \<inter> space N) = 0" for i by (cases "b i = {}", simp) (metis UnE singletonD  * range_b[THEN eq_refl, THEN range_subsetD])
+  hence "emeasure N (\<Union>i. f -` b i \<inter> space N) = 0" using open_b by (intro emeasure_UN_eq_0) fastforce+
+  moreover have "(\<Union>i. f -` b i \<inter> space N) = f -` (\<Union>(range b)) \<inter> space N" by blast
+  ultimately have "emeasure N (f -` (-S) \<inter> space N) = 0" using Union_range_b by argo
+  hence "AE x in N. f x \<notin> -S" using open_Compl[OF assms(2)] by (intro AE_iff_measurable[THEN iffD2], auto)
+  thus ?case by force
+qed (simp add: pred_sets2[OF borel_closed] assms(2))
+  
+lemma density_zero:
+  fixes f::"'a \<Rightarrow> 'b::{second_countable_topology, banach}"
+  assumes "integrable M f"
+      and density_0: "\<And>A. A \<in> sets M \<Longrightarrow> set_lebesgue_integral M A f = 0"
+  shows "AE x in M. f x = 0"
+  using averaging_theorem[OF assms(1), of "{0}"] assms(2)
+  by (simp add: scaleR_nonneg_nonneg)
+
+text \<open>The following lemma shows that densities are unique in Banach spaces.\<close>
+lemma density_unique_banach:
+  fixes f f'::"'a \<Rightarrow> 'b::{second_countable_topology, banach}"
+  assumes "integrable M f" "integrable M f'"
+      and density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> set_lebesgue_integral M A f = set_lebesgue_integral M A f'"
+  shows "AE x in M. f x = f' x"
+proof-
+  { 
+    fix A assume asm: "A \<in> sets M"
+    hence "LINT x|M. indicat_real A x *\<^sub>R (f x - f' x) = 0" using density_eq assms(1,2) by (simp add: set_lebesgue_integral_def algebra_simps Bochner_Integration.integral_diff[OF integrable_mult_indicator(1,1)])
+  }
+  thus ?thesis using density_zero[OF Bochner_Integration.integrable_diff[OF assms(1,2)]] by (simp add: set_lebesgue_integral_def)
+qed
+
+lemma density_nonneg:
+  fixes f::"_ \<Rightarrow> 'b::{second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "integrable M f" 
+      and "\<And>A. A \<in> sets M \<Longrightarrow> set_lebesgue_integral M A f \<ge> 0"
+    shows "AE x in M. f x \<ge> 0"
+  using averaging_theorem[OF assms(1), of "{0..}", OF closed_atLeast] assms(2)
+  by (simp add: scaleR_nonneg_nonneg)
+
+corollary integral_nonneg_eq_0_iff_AE_banach:
+  fixes f :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes f[measurable]: "integrable M f" and nonneg: "AE x in M. 0 \<le> f x"
+  shows "integral\<^sup>L M f = 0 \<longleftrightarrow> (AE x in M. f x = 0)"
+proof 
+  assume *: "integral\<^sup>L M f = 0"
+  {
+    fix A assume asm: "A \<in> sets M"
+    have "0 \<le> integral\<^sup>L M (\<lambda>x. indicator A x *\<^sub>R f x)" using nonneg by (subst integral_zero[of M, symmetric], intro integral_mono_AE_banach integrable_mult_indicator asm f integrable_zero, auto simp add: indicator_def)
+    moreover have "\<dots> \<le> integral\<^sup>L M f" using nonneg by (intro integral_mono_AE_banach integrable_mult_indicator asm f, auto simp add: indicator_def)
+    ultimately have "set_lebesgue_integral M A f = 0" unfolding set_lebesgue_integral_def using * by force
+  }
+  thus "AE x in M. f x = 0" by (intro density_zero f, blast)
+qed (auto simp add: integral_eq_zero_AE)
+
+corollary integral_eq_mono_AE_eq_AE:
+  fixes f g :: "'a \<Rightarrow> 'b :: {second_countable_topology, banach, linorder_topology, ordered_real_vector}"
+  assumes "integrable M f" "integrable M g" "integral\<^sup>L M f = integral\<^sup>L M g" "AE x in M. f x \<le> g x" 
+  shows "AE x in M. f x = g x"
+proof -
+  define h where "h = (\<lambda>x. g x - f x)"
+  have "AE x in M. h x = 0" unfolding h_def using assms by (subst integral_nonneg_eq_0_iff_AE_banach[symmetric]) auto
+  then show ?thesis unfolding h_def by auto
+qed
+
 end
+
+end
--- a/src/HOL/Finite_Set.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Finite_Set.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -1873,6 +1873,11 @@
     by (simp add: card_Diff_subset)
 qed
 
+lemma card_Int_Diff:
+  assumes "finite A"
+  shows "card A = card (A \<inter> B) + card (A - B)"
+  by (simp add: assms card_Diff_subset_Int card_mono)
+
 lemma diff_card_le_card_Diff:
   assumes "finite B"
   shows "card A - card B \<le> card (A - B)"
--- a/src/HOL/HOL.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/HOL.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -1089,6 +1089,8 @@
 
 lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>x. P x) \<or> (\<exists>x. Q x)" by iprover
 lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>x. P x) \<and> (\<forall>x. Q x)" by iprover
+lemma all_imp_conj_distrib: "(\<forall>x. P x \<longrightarrow> Q x \<and> R x) \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q x) \<and> (\<forall>x. P x \<longrightarrow> R x)"
+  by iprover
 
 text \<open>
   \<^medskip> The \<open>\<and>\<close> congruence rule: not included by default!
--- a/src/HOL/Probability/Information.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Probability/Information.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -36,15 +36,15 @@
 
 lemma log_mult_eq:
   "log b (A * B) = (if 0 < A * B then log b \<bar>A\<bar> + log b \<bar>B\<bar> else log b 0)"
-  using log_mult[of b "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"]
+  using log_mult[of "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"]
   by (auto simp: zero_less_mult_iff mult_le_0_iff)
 
 lemma log_inverse_eq:
   "log b (inverse B) = (if 0 < B then - log b B else log b 0)"
-  using log_inverse[of b B] log_neg_const[of "inverse B"] b_gt_1 by simp
+  using ln_inverse log_def log_neg_const by force
 
 lemma log_divide_eq:
-  "log b (A / B) = (if 0 < A * B then log b \<bar>A\<bar> - log b \<bar>B\<bar> else log b 0)"
+  "log b (A / B) = (if 0 < A * B then (log b \<bar>A\<bar>) - log b \<bar>B\<bar> else log b 0)"
   unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse
   by (auto simp: zero_less_mult_iff mult_le_0_iff)
 
@@ -1809,16 +1809,18 @@
   assumes Pxy: "finite_entropy (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
   shows "conditional_entropy b S T X Y \<le> entropy b S X"
 proof -
-
   have "0 \<le> mutual_information b S T X Y"
     by (rule mutual_information_nonneg') fact+
   also have "\<dots> = entropy b S X - conditional_entropy b S T X Y"
-    apply (intro mutual_information_eq_entropy_conditional_entropy')
-    using assms
-    by (auto intro!: finite_entropy_integrable finite_entropy_distributed
-      finite_entropy_integrable_transform[OF Px]
-      finite_entropy_integrable_transform[OF Py]
-      intro: finite_entropy_nn)
+  proof (intro mutual_information_eq_entropy_conditional_entropy')
+    show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" 
+         "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" 
+         "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"
+      using assms
+      by (auto intro!: finite_entropy_integrable finite_entropy_distributed
+          finite_entropy_integrable_transform[OF Px] finite_entropy_integrable_transform[OF Py]
+          intro: finite_entropy_nn)
+  qed (use assms Px Py Pxy finite_entropy_nn finite_entropy_distributed in auto)
   finally show ?thesis by auto
 qed
 
@@ -1874,13 +1876,8 @@
 qed
 
 corollary (in information_space) entropy_data_processing:
-  assumes X: "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)"
-proof -
-  note fX = simple_function_compose[OF X, of f]
-  from X have "\<H>(X) = \<H>(f\<circ>X) + \<H>(X|f\<circ>X)" by (rule entropy_partition)
-  then show "\<H>(f \<circ> X) \<le> \<H>(X)"
-    by (simp only: conditional_entropy_nonneg [OF X fX] le_add_same_cancel1)
-qed
+  assumes "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)"
+  by (smt (verit) assms conditional_entropy_nonneg entropy_partition simple_function_compose)
 
 corollary (in information_space) entropy_of_inj:
   assumes X: "simple_function M X" and inj: "inj_on f (X`space M)"
--- a/src/HOL/Transcendental.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Transcendental.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -2585,17 +2585,18 @@
 lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
   by (simp add: powr_def log_def)
 
-lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
+lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr x) = x"
   by (simp add: log_def powr_def)
 
+lemma powr_eq_iff: "\<lbrakk>y>0; a>1\<rbrakk> \<Longrightarrow> a powr x = y \<longleftrightarrow> log a y = x"
+  by auto
+
 lemma log_mult:
-  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
-    log a (x * y) = log a x + log a y"
+  "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x * y) = log a x + log a y"
   by (simp add: log_def ln_mult divide_inverse distrib_right)
 
 lemma log_eq_div_ln_mult_log:
-  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
-    log a x = (ln b/ln a) * log b x"
+  "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a x = (ln b/ln a) * log b x"
   by (simp add: log_def divide_inverse)
 
 text\<open>Base 10 logarithms\<close>
@@ -2611,10 +2612,10 @@
 lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
   by (simp add: log_def)
 
-lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
+lemma log_inverse: "0 < x \<Longrightarrow> log a (inverse x) = - log a x"
   using ln_inverse log_def by auto
 
-lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
+lemma log_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
   by (simp add: log_mult divide_inverse log_inverse)
 
 lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
--- a/src/HOL/Transitive_Closure.thy	Tue Mar 05 18:41:56 2024 +0100
+++ b/src/HOL/Transitive_Closure.thy	Tue Mar 05 18:42:09 2024 +0100
@@ -321,6 +321,27 @@
   then show ?thesis by auto
 qed
 
+lemma rtranclp_ident_if_reflp_and_transp:
+  assumes "reflp R" and "transp R"
+  shows "R\<^sup>*\<^sup>* = R"
+proof (intro ext iffI)
+  fix x y
+  show "R\<^sup>*\<^sup>* x y \<Longrightarrow> R x y"
+  proof (induction y rule: rtranclp_induct)
+    case base
+    show ?case
+      using \<open>reflp R\<close>[THEN reflpD] .
+  next
+    case (step y z)
+    thus ?case
+      using \<open>transp R\<close>[THEN transpD, of x y  z] by simp
+  qed
+next
+  fix x y
+  show "R x y \<Longrightarrow> R\<^sup>*\<^sup>* x y"
+    using r_into_rtranclp .
+qed
+
 
 subsection \<open>Transitive closure\<close>
 
@@ -735,6 +756,28 @@
 
 declare trancl_into_rtrancl [elim]
 
+lemma tranclp_ident_if_transp:
+  assumes "transp R"
+  shows "R\<^sup>+\<^sup>+ = R"
+proof (intro ext iffI)
+  fix x y
+  show "R\<^sup>+\<^sup>+ x y \<Longrightarrow> R x y"
+  proof (induction y rule: tranclp_induct)
+    case (base y)
+    thus ?case
+      by simp
+  next
+    case (step y z)
+    thus ?case
+      using \<open>transp R\<close>[THEN transpD, of x y  z] by simp
+  qed
+next
+  fix x y
+  show "R x y \<Longrightarrow> R\<^sup>+\<^sup>+ x y"
+    using tranclp.r_into_trancl .
+qed
+
+
 subsection \<open>Symmetric closure\<close>
 
 definition symclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"