universal bifinite domain
authorhuffman
Tue, 01 Jul 2008 01:28:07 +0200
changeset 27411 60fad3219d32
parent 27410 22f75653163f
child 27412 e93b937ca933
universal bifinite domain
src/HOLCF/Universal.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Universal.thy	Tue Jul 01 01:28:07 2008 +0200
@@ -0,0 +1,850 @@
+(*  Title:      HOLCF/Universal.thy
+    ID:         $Id$
+    Author:     Brian Huffman
+*)
+
+theory Universal
+imports CompactBasis NatIso
+begin
+
+subsection {* Basis datatype *}
+
+types ubasis = nat
+
+definition
+  node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis"
+where
+  "node i x A = Suc (prod2nat (i, prod2nat (x, set2nat A)))"
+
+lemma node_not_0 [simp]: "node i x A \<noteq> 0"
+unfolding node_def by simp
+
+lemma node_gt_0 [simp]: "0 < node i x A"
+unfolding node_def by simp
+
+lemma node_inject [simp]:
+  "\<lbrakk>finite A; finite B\<rbrakk>
+    \<Longrightarrow> node i x A = node j y B \<longleftrightarrow> i = j \<and> x = y \<and> A = B"
+unfolding node_def by simp
+
+lemma node_gt0: "i < node i x A"
+unfolding node_def less_Suc_eq_le
+by (rule le_prod2nat_1)
+
+lemma node_gt1: "x < node i x A"
+unfolding node_def less_Suc_eq_le
+by (rule order_trans [OF le_prod2nat_1 le_prod2nat_2])
+
+lemma nat_less_power2: "n < 2^n"
+by (induct n) simp_all
+
+lemma node_gt2: "\<lbrakk>finite A; y \<in> A\<rbrakk> \<Longrightarrow> y < node i x A"
+unfolding node_def less_Suc_eq_le set2nat_def
+apply (rule order_trans [OF _ le_prod2nat_2])
+apply (rule order_trans [OF _ le_prod2nat_2])
+apply (rule order_trans [where y="setsum (op ^ 2) {y}"])
+apply (simp add: nat_less_power2 [THEN order_less_imp_le])
+apply (erule setsum_mono2, simp, simp)
+done
+
+lemma eq_prod2nat_pairI:
+  "\<lbrakk>fst (nat2prod x) = a; snd (nat2prod x) = b\<rbrakk> \<Longrightarrow> x = prod2nat (a, b)"
+by (erule subst, erule subst, simp)
+
+lemma node_cases:
+  assumes 1: "x = 0 \<Longrightarrow> P"
+  assumes 2: "\<And>i y A. \<lbrakk>finite A; x = node i y A\<rbrakk> \<Longrightarrow> P"
+  shows "P"
+ apply (cases x)
+  apply (erule 1)
+ apply (rule 2)
+  apply (rule finite_nat2set)
+ apply (simp add: node_def)
+ apply (rule eq_prod2nat_pairI [OF refl])
+ apply (rule eq_prod2nat_pairI [OF refl refl])
+done
+
+lemma node_induct:
+  assumes 1: "P 0"
+  assumes 2: "\<And>i x A. \<lbrakk>P x; finite A; \<forall>y\<in>A. P y\<rbrakk> \<Longrightarrow> P (node i x A)"
+  shows "P x"
+ apply (induct x rule: nat_less_induct)
+ apply (case_tac n rule: node_cases)
+  apply (simp add: 1)
+ apply (simp add: 2 node_gt1 node_gt2)
+done
+
+subsection {* Basis ordering *}
+
+inductive
+  ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+  ubasis_le_refl: "ubasis_le x x"
+| ubasis_le_trans:
+    "\<lbrakk>ubasis_le x y; ubasis_le y z\<rbrakk> \<Longrightarrow> ubasis_le x z"
+| ubasis_le_lower:
+    "finite A \<Longrightarrow> ubasis_le x (node i x A)"
+| ubasis_le_upper:
+    "\<lbrakk>finite A; y \<in> A; ubasis_le x y\<rbrakk> \<Longrightarrow> ubasis_le (node i x A) y"
+
+lemma ubasis_le_minimal: "ubasis_le 0 x"
+apply (induct x rule: node_induct)
+apply (rule ubasis_le_refl)
+apply (erule ubasis_le_trans)
+apply (erule ubasis_le_lower)
+done
+
+subsubsection {* Generic take function *}
+
+function
+  ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis"
+where
+  "ubasis_until P 0 = 0"
+| "finite A \<Longrightarrow> ubasis_until P (node i x A) =
+    (if P (node i x A) then node i x A else ubasis_until P x)"
+    apply clarify
+    apply (rule_tac x=b in node_cases)
+     apply simp
+    apply simp
+    apply fast
+   apply simp
+  apply simp
+ apply simp
+done
+
+termination ubasis_until
+apply (relation "measure snd")
+apply (rule wf_measure)
+apply (simp add: node_gt1)
+done
+
+lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)"
+by (induct x rule: node_induct) simp_all
+
+lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)"
+by (induct x rule: node_induct) auto
+
+lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x"
+by (induct x rule: node_induct) simp_all
+
+lemma ubasis_until_idem:
+  "P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x"
+by (rule ubasis_until_same [OF ubasis_until])
+
+lemma ubasis_until_0:
+  "\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0"
+by (induct x rule: node_induct) simp_all
+
+lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x"
+apply (induct x rule: node_induct)
+apply (simp add: ubasis_le_refl)
+apply (simp add: ubasis_le_refl)
+apply (rule impI)
+apply (erule ubasis_le_trans)
+apply (erule ubasis_le_lower)
+done
+
+lemma ubasis_until_chain:
+  assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
+  shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)"
+apply (induct x rule: node_induct)
+apply (simp add: ubasis_le_refl)
+apply (simp add: ubasis_le_refl)
+apply (simp add: PQ)
+apply clarify
+apply (rule ubasis_le_trans)
+apply (rule ubasis_until_less)
+apply (erule ubasis_le_lower)
+done
+
+lemma ubasis_until_mono:
+  assumes "\<And>i x A y. \<lbrakk>finite A; P (node i x A); y \<in> A; ubasis_le x y\<rbrakk> \<Longrightarrow> P y"
+  shows "ubasis_le x y \<Longrightarrow> ubasis_le (ubasis_until P x) (ubasis_until P y)"
+ apply (induct set: ubasis_le)
+    apply (rule ubasis_le_refl)
+   apply (erule (1) ubasis_le_trans)
+  apply (simp add: ubasis_le_refl)
+  apply (rule impI)
+  apply (rule ubasis_le_trans)
+   apply (rule ubasis_until_less)
+  apply (erule ubasis_le_lower)
+ apply simp
+ apply (rule impI)
+ apply (subst ubasis_until_same)
+  apply (erule (3) prems)
+ apply (erule (2) ubasis_le_upper)
+done
+
+lemma finite_range_ubasis_until:
+  "finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
+apply (rule finite_subset [where B="insert 0 {x. P x}"])
+apply (clarsimp simp add: ubasis_until')
+apply simp
+done
+
+subsubsection {* Take function for @{typ ubasis} *}
+
+definition
+  ubasis_take :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis"
+where
+  "ubasis_take n = ubasis_until (\<lambda>x. x \<le> n)"
+
+lemma ubasis_take_le: "ubasis_take n x \<le> n"
+unfolding ubasis_take_def by (rule ubasis_until, rule le0)
+
+lemma ubasis_take_same: "x \<le> n \<Longrightarrow> ubasis_take n x = x"
+unfolding ubasis_take_def by (rule ubasis_until_same)
+
+lemma ubasis_take_idem: "ubasis_take n (ubasis_take n x) = ubasis_take n x"
+by (rule ubasis_take_same [OF ubasis_take_le])
+
+lemma ubasis_take_0 [simp]: "ubasis_take 0 x = 0"
+unfolding ubasis_take_def by (simp add: ubasis_until_0)
+
+lemma ubasis_take_less: "ubasis_le (ubasis_take n x) x"
+unfolding ubasis_take_def by (rule ubasis_until_less)
+
+lemma ubasis_take_chain: "ubasis_le (ubasis_take n x) (ubasis_take (Suc n) x)"
+unfolding ubasis_take_def by (rule ubasis_until_chain) simp
+
+lemma ubasis_take_mono:
+  assumes "ubasis_le x y"
+  shows "ubasis_le (ubasis_take n x) (ubasis_take n y)"
+unfolding ubasis_take_def
+ apply (rule ubasis_until_mono [OF _ prems])
+ apply (frule (2) order_less_le_trans [OF node_gt2])
+ apply (erule order_less_imp_le)
+done
+
+lemma finite_range_ubasis_take: "finite (range (ubasis_take n))"
+apply (rule finite_subset [where B="{..n}"])
+apply (simp add: subset_eq ubasis_take_le)
+apply simp
+done
+
+lemma ubasis_take_covers: "\<exists>n. ubasis_take n x = x"
+apply (rule exI [where x=x])
+apply (simp add: ubasis_take_same)
+done
+
+interpretation udom: preorder [ubasis_le]
+apply default
+apply (rule ubasis_le_refl)
+apply (erule (1) ubasis_le_trans)
+done
+
+interpretation udom: basis_take [ubasis_le ubasis_take]
+apply default
+apply (rule ubasis_take_less)
+apply (rule ubasis_take_idem)
+apply (erule ubasis_take_mono)
+apply (rule ubasis_take_chain)
+apply (rule finite_range_ubasis_take)
+apply (rule ubasis_take_covers)
+done
+
+subsection {* Defining the universal domain by ideal completion *}
+
+typedef (open) udom = "{S. udom.ideal S}"
+by (fast intro: udom.ideal_principal)
+
+instantiation udom :: sq_ord
+begin
+
+definition
+  "x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y"
+
+instance ..
+end
+
+instance udom :: po
+by (rule udom.typedef_ideal_po
+    [OF type_definition_udom sq_le_udom_def])
+
+instance udom :: cpo
+by (rule udom.typedef_ideal_cpo
+    [OF type_definition_udom sq_le_udom_def])
+
+lemma Rep_udom_lub:
+  "chain Y \<Longrightarrow> Rep_udom (\<Squnion>i. Y i) = (\<Union>i. Rep_udom (Y i))"
+by (rule udom.typedef_ideal_rep_contlub
+    [OF type_definition_udom sq_le_udom_def])
+
+lemma ideal_Rep_udom: "udom.ideal (Rep_udom xs)"
+by (rule Rep_udom [unfolded mem_Collect_eq])
+
+definition
+  udom_principal :: "nat \<Rightarrow> udom" where
+  "udom_principal t = Abs_udom {u. ubasis_le u t}"
+
+lemma Rep_udom_principal:
+  "Rep_udom (udom_principal t) = {u. ubasis_le u t}"
+unfolding udom_principal_def
+by (simp add: Abs_udom_inverse udom.ideal_principal)
+
+interpretation udom:
+  ideal_completion [ubasis_le ubasis_take udom_principal Rep_udom]
+apply unfold_locales
+apply (rule ideal_Rep_udom)
+apply (erule Rep_udom_lub)
+apply (rule Rep_udom_principal)
+apply (simp only: sq_le_udom_def)
+done
+
+text {* Universal domain is pointed *}
+
+lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x"
+apply (induct x rule: udom.principal_induct)
+apply (simp, simp add: ubasis_le_minimal)
+done
+
+instance udom :: pcpo
+by intro_classes (fast intro: udom_minimal)
+
+lemma inst_udom_pcpo: "\<bottom> = udom_principal 0"
+by (rule udom_minimal [THEN UU_I, symmetric])
+
+text {* Universal domain is bifinite *}
+
+instantiation udom :: bifinite
+begin
+
+definition
+  approx_udom_def: "approx = udom.completion_approx"
+
+instance
+apply (intro_classes, unfold approx_udom_def)
+apply (rule udom.chain_completion_approx)
+apply (rule udom.lub_completion_approx)
+apply (rule udom.completion_approx_idem)
+apply (rule udom.finite_fixes_completion_approx)
+done
+
+end
+
+lemma approx_udom_principal [simp]:
+  "approx n\<cdot>(udom_principal x) = udom_principal (ubasis_take n x)"
+unfolding approx_udom_def
+by (rule udom.completion_approx_principal)
+
+lemma approx_eq_udom_principal:
+  "\<exists>a\<in>Rep_udom x. approx n\<cdot>x = udom_principal (ubasis_take n a)"
+unfolding approx_udom_def
+by (rule udom.completion_approx_eq_principal)
+
+
+subsection {* Universality of @{typ udom} *}
+
+defaultsort bifinite
+
+subsubsection {* Choosing a maximal element from a finite set *}
+
+lemma finite_has_maximal:
+  fixes A :: "'a::po set"
+  shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
+proof (induct rule: finite_ne_induct)
+  case (singleton x)
+    show ?case by simp
+next
+  case (insert a A)
+  from `\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y`
+  obtain x where x: "x \<in> A"
+           and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast
+  show ?case
+  proof (intro bexI ballI impI)
+    fix y
+    assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y"
+    thus "(if x \<sqsubseteq> a then a else x) = y"
+      apply auto
+      apply (frule (1) trans_less)
+      apply (frule (1) x_eq)
+      apply (rule antisym_less, assumption)
+      apply simp
+      apply (erule (1) x_eq)
+      done
+  next
+    show "(if x \<sqsubseteq> a then a else x) \<in> insert a A"
+      by (simp add: x)
+  qed
+qed
+
+definition
+  choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis"
+where
+  "choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
+
+lemma choose_lemma:
+  "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
+unfolding choose_def
+apply (rule someI_ex)
+apply (frule (1) finite_has_maximal, fast)
+done
+
+lemma maximal_choose:
+  "\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y"
+apply (cases "A = {}", simp)
+apply (frule (1) choose_lemma, simp)
+done
+
+lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
+by (frule (1) choose_lemma, simp)
+
+function
+  choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat"
+where
+  "choose_pos A x =
+    (if finite A \<and> x \<in> A \<and> x \<noteq> choose A
+      then Suc (choose_pos (A - {choose A}) x) else 0)"
+by auto
+
+termination choose_pos
+apply (relation "measure (card \<circ> fst)", simp)
+apply clarsimp
+apply (rule card_Diff1_less)
+apply assumption
+apply (erule choose_in)
+apply clarsimp
+done
+
+declare choose_pos.simps [simp del]
+
+lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0"
+by (simp add: choose_pos.simps)
+
+lemma inj_on_choose_pos [OF refl]:
+  "\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A"
+ apply (induct n arbitrary: A)
+  apply simp
+ apply (case_tac "A = {}", simp)
+ apply (frule (1) choose_in)
+ apply (rule inj_onI)
+ apply (drule_tac x="A - {choose A}" in meta_spec, simp)
+ apply (simp add: choose_pos.simps)
+ apply (simp split: split_if_asm)
+ apply (erule (1) inj_onD, simp, simp)
+done
+
+lemma choose_pos_bounded [OF refl]:
+  "\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n"
+apply (induct n arbitrary: A)
+apply simp
+ apply (case_tac "A = {}", simp)
+ apply (frule (1) choose_in)
+apply (subst choose_pos.simps)
+apply simp
+done
+
+lemma choose_pos_lessD:
+  "\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<not> x \<sqsubseteq> y"
+ apply (induct A x arbitrary: y rule: choose_pos.induct)
+ apply simp
+ apply (case_tac "x = choose A")
+  apply simp
+  apply (rule notI)
+  apply (frule (2) maximal_choose)
+  apply simp
+ apply (case_tac "y = choose A")
+  apply (simp add: choose_pos_choose)
+ apply (drule_tac x=y in meta_spec)
+ apply simp
+ apply (erule meta_mp)
+ apply (simp add: choose_pos.simps)
+done
+
+subsubsection {* Rank of basis elements *}
+
+primrec
+  cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis"
+where
+  "cb_take 0 = (\<lambda>x. compact_bot)"
+| "cb_take (Suc n) = compact_take n"
+
+lemma cb_take_covers: "\<exists>n. cb_take n x = x"
+apply (rule exE [OF compact_basis.take_covers [where a=x]])
+apply (rename_tac n, rule_tac x="Suc n" in exI, simp)
+done
+
+lemma cb_take_less: "cb_take n x \<sqsubseteq> x"
+by (cases n, simp, simp add: compact_basis.take_less)
+
+lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x"
+by (cases n, simp, simp add: compact_basis.take_take)
+
+lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y"
+by (cases n, simp, simp add: compact_basis.take_mono)
+
+lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x"
+apply (cases m, simp)
+apply (cases n, simp)
+apply (simp add: compact_basis.take_chain_le)
+done
+
+lemma range_const: "range (\<lambda>x. c) = {c}"
+by auto
+
+lemma finite_range_cb_take: "finite (range (cb_take n))"
+apply (cases n)
+apply (simp add: range_const)
+apply (simp add: compact_basis.finite_range_take)
+done
+
+definition
+  rank :: "'a compact_basis \<Rightarrow> nat"
+where
+  "rank x = (LEAST n. cb_take n x = x)"
+
+lemma compact_approx_rank: "cb_take (rank x) x = x"
+unfolding rank_def
+apply (rule LeastI_ex)
+apply (rule cb_take_covers)
+done
+
+lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x"
+apply (rule antisym_less [OF cb_take_less])
+apply (subst compact_approx_rank [symmetric])
+apply (erule cb_take_chain_le)
+done
+
+lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n"
+unfolding rank_def by (rule Least_le)
+
+lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x"
+by (rule iffI [OF rank_leD rank_leI])
+
+definition
+  rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
+where
+  "rank_le x = {y. rank y \<le> rank x}"
+
+definition
+  rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
+where
+  "rank_lt x = {y. rank y < rank x}"
+
+definition
+  rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
+where
+  "rank_eq x = {y. rank y = rank x}"
+
+lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y"
+unfolding rank_eq_def by simp
+
+lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y"
+unfolding rank_lt_def by simp
+
+lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x"
+unfolding rank_eq_def rank_le_def by auto
+
+lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x"
+unfolding rank_lt_def rank_le_def by auto
+
+lemma finite_rank_le: "finite (rank_le x)"
+unfolding rank_le_def
+apply (rule finite_subset [where B="range (cb_take (rank x))"])
+apply clarify
+apply (rule range_eqI)
+apply (erule rank_leD [symmetric])
+apply (rule finite_range_cb_take)
+done
+
+lemma finite_rank_eq: "finite (rank_eq x)"
+by (rule finite_subset [OF rank_eq_subset finite_rank_le])
+
+lemma finite_rank_lt: "finite (rank_lt x)"
+by (rule finite_subset [OF rank_lt_subset finite_rank_le])
+
+lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
+unfolding rank_lt_def rank_eq_def rank_le_def by auto
+
+lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x"
+unfolding rank_lt_def rank_eq_def rank_le_def by auto
+
+subsubsection {* Reordering of basis elements *}
+
+definition
+  reorder :: "'a compact_basis \<Rightarrow> nat"
+where
+  "reorder x = card (rank_lt x) + choose_pos (rank_eq x) x"
+
+lemma reorder_bounded: "reorder x < card (rank_le x)"
+unfolding reorder_def
+ apply (rule ord_less_eq_trans)
+  apply (rule add_strict_left_mono)
+  apply (rule choose_pos_bounded)
+   apply (rule finite_rank_eq)
+  apply (simp add: rank_eq_def)
+ apply (subst card_Un_disjoint [symmetric])
+    apply (rule finite_rank_lt)
+   apply (rule finite_rank_eq)
+  apply (rule rank_lt_Int_rank_eq)
+ apply (simp add: rank_lt_Un_rank_eq)
+done
+
+lemma reorder_ge: "card (rank_lt x) \<le> reorder x"
+unfolding reorder_def by simp
+
+lemma reorder_rank_mono:
+  fixes x y :: "'a compact_basis"
+  shows "rank x < rank y \<Longrightarrow> reorder x < reorder y"
+apply (rule less_le_trans [OF reorder_bounded])
+apply (rule order_trans [OF _ reorder_ge])
+apply (rule card_mono)
+apply (rule finite_rank_lt)
+apply (simp add: rank_le_def rank_lt_def subset_eq)
+done
+
+lemma reorder_eqD: "reorder x = reorder y \<Longrightarrow> x = y"
+ apply (rule linorder_cases [where x="rank x" and y="rank y"])
+   apply (drule reorder_rank_mono, simp)
+  apply (simp add: reorder_def)
+  apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD])
+     apply (rule finite_rank_eq)
+    apply (simp cong: rank_lt_cong rank_eq_cong)
+   apply (simp add: rank_eq_def)
+  apply (simp add: rank_eq_def)
+ apply (drule reorder_rank_mono, simp)
+done
+
+lemma inj_reorder: "inj reorder"
+by (rule inj_onI, erule reorder_eqD)
+
+subsubsection {* Embedding and projection on basis elements *}
+
+function
+  basis_emb :: "'a compact_basis \<Rightarrow> ubasis"
+where
+  "basis_emb x = (if x = compact_bot then 0 else
+    node
+      (reorder x)
+      (case rank x of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> basis_emb (cb_take k x))
+      (basis_emb ` {y. reorder y < reorder x \<and> x \<sqsubseteq> y}))"
+by auto
+
+termination basis_emb
+apply (relation "measure reorder", simp)
+apply simp
+apply (rule reorder_rank_mono)
+apply (simp add: less_Suc_eq_le)
+apply (rule rank_leI)
+apply (rule cb_take_idem)
+apply simp
+done
+
+declare basis_emb.simps [simp del]
+
+lemma basis_emb_compact_bot [simp]: "basis_emb compact_bot = 0"
+by (simp add: basis_emb.simps)
+
+lemma fin1: "finite {y. reorder y < reorder x \<and> x \<sqsubseteq> y}"
+apply (subst Collect_conj_eq)
+apply (rule finite_Int)
+apply (rule disjI1)
+apply (subgoal_tac "finite (reorder -` {n. n < reorder x})", simp)
+apply (rule finite_vimageI [OF _ inj_reorder])
+apply (simp add: lessThan_def [symmetric])
+done
+
+lemma fin2: "finite (basis_emb ` {y. reorder y < reorder x \<and> x \<sqsubseteq> y})"
+by (rule finite_imageI [OF fin1])
+
+lemma basis_emb_mono [OF refl]:
+  "\<lbrakk>n = max (reorder x) (reorder y); x \<sqsubseteq> y\<rbrakk>
+    \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)"
+proof (induct n arbitrary: x y rule: less_induct)
+  case (less n)
+  assume IH:
+    "\<And>(m::nat) (x::'a compact_basis) y.
+      \<lbrakk>m < n; m = max (reorder x) (reorder y); x \<sqsubseteq> y\<rbrakk>
+        \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)"
+  assume n: "n = max (reorder x) (reorder y)"
+  assume less: "x \<sqsubseteq> y"
+  show ?case
+  proof (cases)
+    assume "x = compact_bot"
+    thus ?case by (simp add: ubasis_le_minimal)
+  next
+    assume x_neq [simp]: "x \<noteq> compact_bot"
+    with less have y_neq [simp]: "y \<noteq> compact_bot"
+      apply clarify
+      apply (drule antisym_less [OF compact_minimal])
+      apply simp
+      done
+    show ?case
+    proof (rule linorder_cases)
+      assume 1: "reorder x < reorder y"
+      show ?case
+      proof (rule linorder_cases)
+        assume "rank x < rank y"
+        with 1 show ?case
+          apply (case_tac "rank y", simp)
+          apply (subst basis_emb.simps [where x=y])
+          apply simp
+          apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]])
+          apply (rule IH [OF _ refl, unfolded n])
+           apply (simp add: less_max_iff_disj)
+           apply (rule reorder_rank_mono)
+           apply (simp add: less_Suc_eq_le)
+           apply (rule rank_leI)
+           apply (rule cb_take_idem)
+          apply (simp add: less_Suc_eq_le)
+          apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y")
+           apply (simp add: rank_leD)
+          apply (rule cb_take_mono [OF less])
+          done
+      next
+        assume "rank x = rank y"
+        with 1 show ?case
+          apply (simp add: reorder_def)
+          apply (simp cong: rank_lt_cong rank_eq_cong)
+          apply (drule choose_pos_lessD)
+             apply (rule finite_rank_eq)
+            apply (simp add: rank_eq_def)
+           apply (simp add: rank_eq_def)
+          apply (simp add: less)
+          done
+      next
+        assume "rank x > rank y"
+        hence "reorder x > reorder y"
+          by (rule reorder_rank_mono)
+        with 1 show ?case by simp
+      qed
+    next
+      assume "reorder x = reorder y"
+      hence "x = y" by (rule reorder_eqD)
+      thus ?case by (simp add: ubasis_le_refl)
+    next
+      assume "reorder x > reorder y"
+      with less show ?case
+        apply (simp add: basis_emb.simps [where x=x])
+        apply (rule ubasis_le_upper [OF fin2], simp)
+        apply (cases "rank x")
+         apply (simp add: ubasis_le_minimal)
+        apply simp
+        apply (rule IH [OF _ refl, unfolded n])
+         apply (simp add: less_max_iff_disj)
+         apply (rule reorder_rank_mono)
+         apply (simp add: less_Suc_eq_le)
+         apply (rule rank_leI)
+         apply (rule cb_take_idem)
+        apply (erule rev_trans_less)
+        apply (rule cb_take_less)
+       done
+    qed
+  qed
+qed
+
+lemma inj_basis_emb: "inj basis_emb"
+ apply (rule inj_onI)
+ apply (case_tac "x = compact_bot")
+  apply (case_tac [!] "y = compact_bot")
+    apply simp
+   apply (simp add: basis_emb.simps)
+  apply (simp add: basis_emb.simps)
+ apply (simp add: basis_emb.simps)
+ apply (simp add: fin2 inj_eq [OF inj_reorder])
+done
+
+definition
+  basis_prj :: "nat \<Rightarrow> 'a compact_basis"
+where
+  "basis_prj x = inv basis_emb
+    (ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)) x)"
+
+lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x"
+unfolding basis_prj_def
+ apply (subst ubasis_until_same)
+  apply (rule rangeI)
+ apply (rule inv_f_f)
+ apply (rule inj_basis_emb)
+done
+
+lemma basis_prj_node:
+  "\<lbrakk>finite A; node i x A \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk>
+    \<Longrightarrow> basis_prj (node i x A) = (basis_prj x :: 'a compact_basis)"
+unfolding basis_prj_def by simp
+
+lemma basis_prj_0: "basis_prj 0 = compact_bot"
+apply (subst basis_emb_compact_bot [symmetric])
+apply (rule basis_prj_basis_emb)
+done
+
+lemma basis_prj_mono: "ubasis_le x y \<Longrightarrow> basis_prj x \<sqsubseteq> basis_prj y"
+ apply (erule ubasis_le.induct)
+    apply (rule refl_less)
+   apply (erule (1) trans_less)
+  apply (case_tac "node i x A \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")
+   apply (erule rangeE, rename_tac a)
+   apply (case_tac "a = compact_bot", simp)
+   apply (simp add: basis_prj_basis_emb)
+   apply (simp add: basis_emb.simps)
+   apply (clarsimp simp add: fin2)
+   apply (case_tac "rank a", simp)
+    apply (simp add: basis_prj_0)
+   apply (simp add: basis_prj_basis_emb)
+   apply (rule cb_take_less)
+  apply (simp add: basis_prj_node)
+ apply (case_tac "node i x A \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")
+  apply (erule rangeE, rename_tac a)
+  apply (case_tac "a = compact_bot", simp)
+  apply (simp add: basis_prj_basis_emb)
+  apply (simp add: basis_emb.simps)
+  apply (clarsimp simp add: fin2)
+  apply (case_tac "rank a", simp add: basis_prj_basis_emb)
+  apply (simp add: basis_prj_basis_emb)
+ apply (simp add: basis_prj_node)
+done
+
+lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x"
+unfolding basis_prj_def
+ apply (subst f_inv_f [where f=basis_emb])
+  apply (rule ubasis_until)
+  apply (rule range_eqI [where x=compact_bot])
+  apply simp
+ apply (rule ubasis_until_less)
+done
+
+hide (open) const
+  node
+  choose
+  choose_pos
+  reorder
+
+subsubsection {* EP-pair from any bifinite domain into @{typ udom} *}
+
+definition
+  udom_emb :: "'a::bifinite \<rightarrow> udom"
+where
+  "udom_emb = compact_basis.basis_fun (\<lambda>x. udom_principal (basis_emb x))"
+
+definition
+  udom_prj :: "udom \<rightarrow> 'a::bifinite"
+where
+  "udom_prj = udom.basis_fun (\<lambda>x. Rep_compact_basis (basis_prj x))"
+
+lemma udom_emb_principal:
+  "udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)"
+unfolding udom_emb_def
+apply (rule compact_basis.basis_fun_principal)
+apply (rule udom.principal_mono)
+apply (erule basis_emb_mono)
+done
+
+lemma udom_prj_principal:
+  "udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)"
+unfolding udom_prj_def
+apply (rule udom.basis_fun_principal)
+apply (rule compact_basis.principal_mono)
+apply (erule basis_prj_mono)
+done
+
+lemma ep_pair_udom: "ep_pair udom_emb udom_prj"
+ apply default
+  apply (rule compact_basis.principal_induct, simp)
+  apply (simp add: udom_emb_principal udom_prj_principal)
+  apply (simp add: basis_prj_basis_emb)
+ apply (rule udom.principal_induct, simp)
+ apply (simp add: udom_emb_principal udom_prj_principal)
+ apply (rule basis_emb_prj_less)
+done
+
+end