--- a/src/HOL/Library/FuncSet.thy Mon Sep 20 20:00:06 2010 +0200
+++ b/src/HOL/Library/FuncSet.thy Mon Sep 20 21:09:42 2010 +0200
@@ -173,6 +173,20 @@
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
+lemma bij_betwI:
+assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A"
+ and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y"
+shows "bij_betw f A B"
+unfolding bij_betw_def
+proof
+ show "inj_on f A" by (metis g_f inj_on_def)
+next
+ have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto
+ moreover
+ have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff)
+ ultimately show "f ` A = B" by blast
+qed
+
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
by (auto simp add: bij_betw_def)
@@ -207,6 +221,9 @@
!!x. x\<in>A ==> f x = g x |] ==> f = g"
by (force simp add: fun_eq_iff extensional_def)
+lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f"
+by(rule extensionalityI[OF restrict_extensional]) auto
+
lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A"
by (unfold inv_into_def) (fast intro: someI2)