--- a/src/HOL/Library/Formal_Power_Series.thy Wed Feb 17 10:00:22 2010 -0800
+++ b/src/HOL/Library/Formal_Power_Series.thy Wed Feb 17 10:30:36 2010 -0800
@@ -2864,8 +2864,8 @@
then have nz: "pochhammer (1 + b - of_nat n) n \<noteq> 0"
by (auto simp add: algebra_simps)
- from nz kn have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0"
- by (simp add: pochhammer_neq_0_mono)
+ from nz kn [simplified] have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0"
+ by (rule pochhammer_neq_0_mono)
{assume k0: "k = 0 \<or> n =0"
then have "b gchoose (n - k) = (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
using kn
--- a/src/HOL/Library/Ramsey.thy Wed Feb 17 10:00:22 2010 -0800
+++ b/src/HOL/Library/Ramsey.thy Wed Feb 17 10:30:36 2010 -0800
@@ -111,7 +111,7 @@
have infYx': "infinite (Yx-{yx'})" using fields px by auto
with fields px yx' Suc.prems
have partfx': "part r s (Yx - {yx'}) (f \<circ> insert yx')"
- by (simp add: o_def part_Suc_imp_part part_subset [where ?YY=YY])
+ by (simp add: o_def part_Suc_imp_part part_subset [where YY=YY and Y=Yx])
from Suc.hyps [OF infYx' partfx']
obtain Y' and t'
where Y': "Y' \<subseteq> Yx - {yx'}" "infinite Y'" "t' < s"
--- a/src/HOL/Library/Word.thy Wed Feb 17 10:00:22 2010 -0800
+++ b/src/HOL/Library/Word.thy Wed Feb 17 10:30:36 2010 -0800
@@ -980,7 +980,8 @@
fix xs
assume "length (norm_signed (\<zero>#xs)) = Suc (length xs)"
thus "norm_signed (\<zero>#xs) = \<zero>#xs"
- by (simp add: norm_signed_Cons norm_unsigned_equal split: split_if_asm)
+ by (simp add: norm_signed_Cons norm_unsigned_equal [THEN eqTrueI]
+ split: split_if_asm)
next
fix xs
assume "length (norm_signed (\<one>#xs)) = Suc (length xs)"
--- a/src/HOL/Library/Zorn.thy Wed Feb 17 10:00:22 2010 -0800
+++ b/src/HOL/Library/Zorn.thy Wed Feb 17 10:30:36 2010 -0800
@@ -333,7 +333,7 @@
lemma antisym_init_seg_of:
"r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r=s"
-by(auto simp:init_seg_of_def)
+unfolding init_seg_of_def by safe
lemma Chain_init_seg_of_Union:
"R \<in> Chain init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"