define roots of negative reals so that many lemmas no longer require side conditions; simplification solves more goals than previously
--- a/src/HOL/Complex/Complex.thy Sun May 13 19:15:36 2007 +0200
+++ b/src/HOL/Complex/Complex.thy Sun May 13 20:05:42 2007 +0200
@@ -394,7 +394,6 @@
lemma complex_mod_mult: "cmod (x * y) = cmod x * cmod y"
apply (induct x, induct y)
apply (simp add: real_sqrt_mult_distrib [symmetric])
-apply (rule_tac f=sqrt in arg_cong)
apply (simp add: power2_sum power2_diff power_mult_distrib ring_distrib)
done
@@ -618,9 +617,7 @@
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
apply (simp add: cmod_def)
-apply (rule real_sqrt_eq_iff [THEN iffD2])
-apply (auto simp add: complex_mult_cnj
- simp del: of_real_add)
+apply (simp add: complex_mult_cnj del: of_real_add)
done
lemma complex_Re_cnj [simp]: "Re(cnj z) = Re z"
--- a/src/HOL/Complex/NSCA.thy Sun May 13 19:15:36 2007 +0200
+++ b/src/HOL/Complex/NSCA.thy Sun May 13 20:05:42 2007 +0200
@@ -269,11 +269,12 @@
apply (erule (1) InfinitesimalD2)
done
-lemma real_sqrt_lessI: "\<lbrakk>0 \<le> x; 0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> sqrt x < u"
-by (frule (1) real_sqrt_less_mono) simp
+lemma real_sqrt_lessI: "\<lbrakk>0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> sqrt x < u"
+(* TODO: this belongs somewhere else *)
+by (frule real_sqrt_less_mono) simp
lemma hypreal_sqrt_lessI:
- "\<And>x u. \<lbrakk>0 \<le> x; 0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u"
+ "\<And>x u. \<lbrakk>0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u"
by transfer (rule real_sqrt_lessI)
lemma hypreal_sqrt_ge_zero: "\<And>x. 0 \<le> x \<Longrightarrow> 0 \<le> ( *f* sqrt) x"
--- a/src/HOL/Hyperreal/NthRoot.thy Sun May 13 19:15:36 2007 +0200
+++ b/src/HOL/Hyperreal/NthRoot.thy Sun May 13 20:05:42 2007 +0200
@@ -4,20 +4,13 @@
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
-header{*Existence of Nth Root*}
+header {* Nth Roots of Real Numbers *}
theory NthRoot
imports SEQ Parity
begin
-definition
- root :: "[nat, real] \<Rightarrow> real" where
- "root n x = (THE u. (0 < x \<longrightarrow> 0 < u) \<and> (u ^ n = x))"
-
-definition
- sqrt :: "real \<Rightarrow> real" where
- "sqrt x = root 2 x"
-
+subsection {* Existence of Nth Root *}
text {*
Various lemmas needed for this result. We follow the proof given by
@@ -65,7 +58,7 @@
by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete)
-subsection{*First Half -- Lemmas First*}
+subsubsection {* First Half -- Lemmas First *}
lemma lemma_nth_realpow_seq:
"isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u
@@ -104,7 +97,7 @@
apply (auto simp add: real_of_nat_def)
done
-subsection{*Second Half*}
+subsubsection {* Second Half *}
lemma less_isLub_not_isUb:
"[| isLub (UNIV::real set) S u; x < u |]
@@ -165,7 +158,7 @@
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym)
done
-(* positive only *)
+text {* positive only *}
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a"
apply (frule nth_realpow_isLub_ex, auto)
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym lemma_nth_realpow_isLub_gt_zero)
@@ -174,7 +167,7 @@
lemma realpow_pos_nth2: "(0::real) < a ==> \<exists>r. 0 < r & r ^ Suc n = a"
by (blast intro: realpow_pos_nth)
-(* uniqueness of nth positive root *)
+text {* uniqueness of nth positive root *}
lemma realpow_pos_nth_unique:
"[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a"
apply (auto intro!: realpow_pos_nth)
@@ -185,159 +178,250 @@
subsection {* Nth Root *}
-lemma real_root_zero [simp]: "root (Suc n) 0 = 0"
-apply (simp add: root_def)
-apply (safe intro!: the_equality power_0_Suc elim!: realpow_zero_zero)
-done
+text {* We define roots of negative reals such that
+ @{term "root n (- x) = - root n x"}. This allows
+ us to omit side conditions from many theorems. *}
-lemma real_root_pow_pos:
- "0 < x ==> (root (Suc n) x) ^ (Suc n) = x"
-apply (simp add: root_def del: realpow_Suc)
-apply (drule_tac n="Suc n" in realpow_pos_nth_unique, simp)
-apply (erule theI' [THEN conjunct2])
-done
-
-lemma real_root_pow_pos2: "0 \<le> x ==> (root (Suc n) x) ^ (Suc n) = x"
-by (auto dest!: real_le_imp_less_or_eq dest: real_root_pow_pos)
+definition
+ root :: "[nat, real] \<Rightarrow> real" where
+ "root n x = (if 0 < x then (THE u. 0 < u \<and> u ^ n = x) else
+ if x < 0 then - (THE u. 0 < u \<and> u ^ n = - x) else 0)"
-lemma real_root_pos:
- "0 < x ==> root(Suc n) (x ^ (Suc n)) = x"
+lemma real_root_zero [simp]: "root n 0 = 0"
+unfolding root_def by simp
+
+lemma real_root_minus: "0 < n \<Longrightarrow> root n (- x) = - root n x"
+unfolding root_def by simp
+
+lemma real_root_gt_zero: "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> 0 < root n x"
apply (simp add: root_def)
-apply (rule the_equality)
-apply (frule_tac [2] n = n in zero_less_power)
-apply (auto simp add: zero_less_mult_iff)
-apply (rule_tac x = u and y = x in linorder_cases)
-apply (drule_tac n1 = n and x = u in zero_less_Suc [THEN [3] realpow_less])
-apply (drule_tac [4] n1 = n and x = x in zero_less_Suc [THEN [3] realpow_less])
-apply (auto)
-done
-
-lemma real_root_pos2: "0 \<le> x ==> root(Suc n) (x ^ (Suc n)) = x"
-by (auto dest!: real_le_imp_less_or_eq real_root_pos)
-
-lemma real_root_gt_zero:
- "0 < x ==> 0 < root (Suc n) x"
-apply (simp add: root_def del: realpow_Suc)
-apply (drule_tac n="Suc n" in realpow_pos_nth_unique, simp)
+apply (drule (1) realpow_pos_nth_unique)
apply (erule theI' [THEN conjunct1])
done
-lemma real_root_pos_pos:
- "0 < x ==> 0 \<le> root(Suc n) x"
-by (rule real_root_gt_zero [THEN order_less_imp_le])
+lemma real_root_pow_pos: (* TODO: rename *)
+ "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
+apply (simp add: root_def)
+apply (drule (1) realpow_pos_nth_unique)
+apply (erule theI' [THEN conjunct2])
+done
-lemma real_root_pos_pos_le: "0 \<le> x ==> 0 \<le> root(Suc n) x"
+lemma real_root_pow_pos2 [simp]: (* TODO: rename *)
+ "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
+by (auto simp add: order_le_less real_root_pow_pos)
+
+lemma real_root_ge_zero: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> 0 \<le> root n x"
by (auto simp add: order_le_less real_root_gt_zero)
-lemma real_root_one [simp]: "root (Suc n) 1 = 1"
-apply (simp add: root_def)
-apply (rule the_equality, auto)
-apply (rule ccontr)
-apply (rule_tac x = u and y = 1 in linorder_cases)
-apply (drule_tac n = n in realpow_Suc_less_one)
-apply (drule_tac [4] n = n in power_gt1_lemma)
-apply (auto)
+lemma real_root_power_cancel: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (x ^ n) = x"
+apply (subgoal_tac "0 \<le> x ^ n")
+apply (subgoal_tac "0 \<le> root n (x ^ n)")
+apply (subgoal_tac "root n (x ^ n) ^ n = x ^ n")
+apply (erule (3) power_eq_imp_eq_base)
+apply (erule (1) real_root_pow_pos2)
+apply (erule (1) real_root_ge_zero)
+apply (erule zero_le_power)
done
-lemma real_root_less_mono:
- "[| 0 \<le> x; x < y |] ==> root(Suc n) x < root(Suc n) y"
+lemma real_root_pos_unique:
+ "\<lbrakk>0 < n; 0 \<le> y; y ^ n = x\<rbrakk> \<Longrightarrow> root n x = y"
+by (erule subst, rule real_root_power_cancel)
+
+lemma real_root_one [simp]: "0 < n \<Longrightarrow> root n 1 = 1"
+by (simp add: real_root_pos_unique)
+
+text {* Root function is strictly monotonic, hence injective *}
+
+lemma real_root_less_mono_lemma:
+ "\<lbrakk>0 < n; 0 \<le> x; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
apply (subgoal_tac "0 \<le> y")
-apply (rule_tac n="Suc n" in power_less_imp_less_base)
-apply (simp only: real_root_pow_pos2)
-apply (erule real_root_pos_pos_le)
-apply (erule order_trans)
-apply (erule order_less_imp_le)
+apply (subgoal_tac "root n x ^ n < root n y ^ n")
+apply (erule power_less_imp_less_base)
+apply (erule (1) real_root_ge_zero)
+apply simp
+apply simp
done
-lemma real_root_le_mono:
- "[| 0 \<le> x; x \<le> y |] ==> root(Suc n) x \<le> root(Suc n) y"
-apply (drule_tac y = y in order_le_imp_less_or_eq)
-apply (auto dest: real_root_less_mono intro: order_less_imp_le)
+lemma real_root_less_mono: "\<lbrakk>0 < n; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
+apply (cases "0 \<le> x")
+apply (erule (2) real_root_less_mono_lemma)
+apply (cases "0 \<le> y")
+apply (rule_tac y=0 in order_less_le_trans)
+apply (subgoal_tac "0 < root n (- x)")
+apply (simp add: real_root_minus)
+apply (simp add: real_root_gt_zero)
+apply (simp add: real_root_ge_zero)
+apply (subgoal_tac "root n (- y) < root n (- x)")
+apply (simp add: real_root_minus)
+apply (simp add: real_root_less_mono_lemma)
done
+lemma real_root_le_mono: "\<lbrakk>0 < n; x \<le> y\<rbrakk> \<Longrightarrow> root n x \<le> root n y"
+by (auto simp add: order_le_less real_root_less_mono)
+
lemma real_root_less_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x < root(Suc n) y) = (x < y)"
-apply (auto intro: real_root_less_mono)
-apply (rule ccontr, drule linorder_not_less [THEN iffD1])
-apply (drule_tac x = y and n = n in real_root_le_mono, auto)
+ "0 < n \<Longrightarrow> (root n x < root n y) = (x < y)"
+apply (cases "x < y")
+apply (simp add: real_root_less_mono)
+apply (simp add: linorder_not_less real_root_le_mono)
done
lemma real_root_le_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x \<le> root(Suc n) y) = (x \<le> y)"
-apply (auto intro: real_root_le_mono)
-apply (simp (no_asm) add: linorder_not_less [symmetric])
-apply auto
-apply (drule_tac x = y and n = n in real_root_less_mono, auto)
+ "0 < n \<Longrightarrow> (root n x \<le> root n y) = (x \<le> y)"
+apply (cases "x \<le> y")
+apply (simp add: real_root_le_mono)
+apply (simp add: linorder_not_le real_root_less_mono)
done
lemma real_root_eq_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x = root(Suc n) y) = (x = y)"
-apply (auto intro!: order_antisym [where 'a = real])
-apply (rule_tac n1 = n in real_root_le_iff [THEN iffD1])
-apply (rule_tac [4] n1 = n in real_root_le_iff [THEN iffD1], auto)
-done
+ "0 < n \<Longrightarrow> (root n x = root n y) = (x = y)"
+by (simp add: order_eq_iff)
+
+lemmas real_root_gt_0_iff [simp] = real_root_less_iff [where x=0, simplified]
+lemmas real_root_lt_0_iff [simp] = real_root_less_iff [where y=0, simplified]
+lemmas real_root_ge_0_iff [simp] = real_root_le_iff [where x=0, simplified]
+lemmas real_root_le_0_iff [simp] = real_root_le_iff [where y=0, simplified]
+lemmas real_root_eq_0_iff [simp] = real_root_eq_iff [where y=0, simplified]
-lemma real_root_pos_unique:
- "[| 0 \<le> x; 0 \<le> y; y ^ (Suc n) = x |] ==> root (Suc n) x = y"
-by (auto dest: real_root_pos2 simp del: realpow_Suc)
+text {* Roots of multiplication and division *}
+
+lemma real_root_mult_lemma:
+ "\<lbrakk>0 < n; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> root n (x * y) = root n x * root n y"
+by (simp add: real_root_pos_unique mult_nonneg_nonneg power_mult_distrib)
+
+lemma real_root_inverse_lemma:
+ "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (inverse x) = inverse (root n x)"
+by (simp add: real_root_pos_unique power_inverse [symmetric])
lemma real_root_mult:
- "[| 0 \<le> x; 0 \<le> y |]
- ==> root(Suc n) (x * y) = root(Suc n) x * root(Suc n) y"
-apply (rule real_root_pos_unique)
-apply (auto intro!: real_root_pos_pos_le
- simp add: power_mult_distrib zero_le_mult_iff real_root_pow_pos2
- simp del: realpow_Suc)
-done
+ assumes n: "0 < n"
+ shows "root n (x * y) = root n x * root n y"
+proof (rule linorder_le_cases, rule_tac [!] linorder_le_cases)
+ assume "0 \<le> x" and "0 \<le> y"
+ thus ?thesis by (rule real_root_mult_lemma [OF n])
+next
+ assume "0 \<le> x" and "y \<le> 0"
+ hence "0 \<le> x" and "0 \<le> - y" by simp_all
+ hence "root n (x * - y) = root n x * root n (- y)"
+ by (rule real_root_mult_lemma [OF n])
+ thus ?thesis by (simp add: real_root_minus [OF n])
+next
+ assume "x \<le> 0" and "0 \<le> y"
+ hence "0 \<le> - x" and "0 \<le> y" by simp_all
+ hence "root n (- x * y) = root n (- x) * root n y"
+ by (rule real_root_mult_lemma [OF n])
+ thus ?thesis by (simp add: real_root_minus [OF n])
+next
+ assume "x \<le> 0" and "y \<le> 0"
+ hence "0 \<le> - x" and "0 \<le> - y" by simp_all
+ hence "root n (- x * - y) = root n (- x) * root n (- y)"
+ by (rule real_root_mult_lemma [OF n])
+ thus ?thesis by (simp add: real_root_minus [OF n])
+qed
lemma real_root_inverse:
- "0 \<le> x ==> (root(Suc n) (inverse x) = inverse(root(Suc n) x))"
-apply (rule real_root_pos_unique)
-apply (auto intro: real_root_pos_pos_le
- simp add: power_inverse [symmetric] real_root_pow_pos2
- simp del: realpow_Suc)
-done
+ assumes n: "0 < n"
+ shows "root n (inverse x) = inverse (root n x)"
+proof (rule linorder_le_cases)
+ assume "0 \<le> x"
+ thus ?thesis by (rule real_root_inverse_lemma [OF n])
+next
+ assume "x \<le> 0"
+ hence "0 \<le> - x" by simp
+ hence "root n (inverse (- x)) = inverse (root n (- x))"
+ by (rule real_root_inverse_lemma [OF n])
+ thus ?thesis by (simp add: real_root_minus [OF n])
+qed
-lemma real_root_divide:
- "[| 0 \<le> x; 0 \<le> y |]
- ==> (root(Suc n) (x / y) = root(Suc n) x / root(Suc n) y)"
-apply (simp add: divide_inverse)
-apply (auto simp add: real_root_mult real_root_inverse)
-done
+lemma real_root_divide:
+ "0 < n \<Longrightarrow> root n (x / y) = root n x / root n y"
+by (simp add: divide_inverse real_root_mult real_root_inverse)
+
+lemma real_root_power:
+ "0 < n \<Longrightarrow> root n (x ^ k) = root n x ^ k"
+by (induct k, simp_all add: real_root_mult)
-subsection{*Square Root*}
+subsection {* Square Root *}
-text{*needed because 2 is a binary numeral!*}
-lemma root_2_eq [simp]: "root 2 = root (Suc (Suc 0))"
-by (simp only: numeral_2_eq_2)
+definition
+ sqrt :: "real \<Rightarrow> real" where
+ "sqrt = root 2"
-lemma real_sqrt_zero [simp]: "sqrt 0 = 0"
-by (simp add: sqrt_def)
+lemma pos2: "0 < (2::nat)" by simp
+
+lemma real_sqrt_unique: "\<lbrakk>y\<twosuperior> = x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt x = y"
+unfolding sqrt_def by (rule real_root_pos_unique [OF pos2])
-lemma real_sqrt_one [simp]: "sqrt 1 = 1"
-by (simp add: sqrt_def)
+lemma real_sqrt_abs [simp]: "sqrt (x\<twosuperior>) = \<bar>x\<bar>"
+apply (rule real_sqrt_unique)
+apply (rule power2_abs)
+apply (rule abs_ge_zero)
+done
-lemma real_sqrt_pow2 [simp]: "0 \<le> x ==> (sqrt x)\<twosuperior> = x"
-unfolding sqrt_def numeral_2_eq_2
-by (rule real_root_pow_pos2)
+lemma real_sqrt_pow2 [simp]: "0 \<le> x \<Longrightarrow> (sqrt x)\<twosuperior> = x"
+unfolding sqrt_def by (rule real_root_pow_pos2 [OF pos2])
-lemma real_sqrt_pow2_iff [iff]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)"
+lemma real_sqrt_pow2_iff [simp]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)"
apply (rule iffI)
apply (erule subst)
apply (rule zero_le_power2)
apply (erule real_sqrt_pow2)
done
-lemma sqrt_eqI: "\<lbrakk>r\<twosuperior> = a; 0 \<le> r\<rbrakk> \<Longrightarrow> sqrt a = r"
-unfolding sqrt_def numeral_2_eq_2
-by (erule subst, erule real_root_pos2)
+lemma real_sqrt_zero [simp]: "sqrt 0 = 0"
+unfolding sqrt_def by (rule real_root_zero)
+
+lemma real_sqrt_one [simp]: "sqrt 1 = 1"
+unfolding sqrt_def by (rule real_root_one [OF pos2])
+
+lemma real_sqrt_minus: "sqrt (- x) = - sqrt x"
+unfolding sqrt_def by (rule real_root_minus [OF pos2])
+
+lemma real_sqrt_mult: "sqrt (x * y) = sqrt x * sqrt y"
+unfolding sqrt_def by (rule real_root_mult [OF pos2])
+
+lemma real_sqrt_inverse: "sqrt (inverse x) = inverse (sqrt x)"
+unfolding sqrt_def by (rule real_root_inverse [OF pos2])
+
+lemma real_sqrt_divide: "sqrt (x / y) = sqrt x / sqrt y"
+unfolding sqrt_def by (rule real_root_divide [OF pos2])
+
+lemma real_sqrt_power: "sqrt (x ^ k) = sqrt x ^ k"
+unfolding sqrt_def by (rule real_root_power [OF pos2])
+
+lemma real_sqrt_gt_zero: "0 < x \<Longrightarrow> 0 < sqrt x"
+unfolding sqrt_def by (rule real_root_gt_zero [OF pos2])
+
+lemma real_sqrt_ge_zero: "0 \<le> x \<Longrightarrow> 0 \<le> sqrt x"
+unfolding sqrt_def by (rule real_root_ge_zero [OF pos2])
-lemma real_sqrt_abs [simp]: "sqrt (x\<twosuperior>) = \<bar>x\<bar>"
-apply (rule sqrt_eqI)
-apply (rule power2_abs)
-apply (rule abs_ge_zero)
-done
+lemma real_sqrt_less_mono: "x < y \<Longrightarrow> sqrt x < sqrt y"
+unfolding sqrt_def by (rule real_root_less_mono [OF pos2])
+
+lemma real_sqrt_le_mono: "x \<le> y \<Longrightarrow> sqrt x \<le> sqrt y"
+unfolding sqrt_def by (rule real_root_le_mono [OF pos2])
+
+lemma real_sqrt_less_iff [simp]: "(sqrt x < sqrt y) = (x < y)"
+unfolding sqrt_def by (rule real_root_less_iff [OF pos2])
+
+lemma real_sqrt_le_iff [simp]: "(sqrt x \<le> sqrt y) = (x \<le> y)"
+unfolding sqrt_def by (rule real_root_le_iff [OF pos2])
+
+lemma real_sqrt_eq_iff [simp]: "(sqrt x = sqrt y) = (x = y)"
+unfolding sqrt_def by (rule real_root_eq_iff [OF pos2])
+
+lemmas real_sqrt_gt_0_iff [simp] = real_sqrt_less_iff [where x=0, simplified]
+lemmas real_sqrt_lt_0_iff [simp] = real_sqrt_less_iff [where y=0, simplified]
+lemmas real_sqrt_ge_0_iff [simp] = real_sqrt_le_iff [where x=0, simplified]
+lemmas real_sqrt_le_0_iff [simp] = real_sqrt_le_iff [where y=0, simplified]
+lemmas real_sqrt_eq_0_iff [simp] = real_sqrt_eq_iff [where y=0, simplified]
+
+lemmas real_sqrt_gt_1_iff [simp] = real_sqrt_less_iff [where x=1, simplified]
+lemmas real_sqrt_lt_1_iff [simp] = real_sqrt_less_iff [where y=1, simplified]
+lemmas real_sqrt_ge_1_iff [simp] = real_sqrt_le_iff [where x=1, simplified]
+lemmas real_sqrt_le_1_iff [simp] = real_sqrt_le_iff [where y=1, simplified]
+lemmas real_sqrt_eq_1_iff [simp] = real_sqrt_eq_iff [where y=1, simplified]
lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)"
apply auto
@@ -345,56 +429,25 @@
apply (simp add: zero_less_mult_iff)
done
-lemma real_sqrt_gt_zero: "0 < x ==> 0 < sqrt(x)"
-by (simp add: sqrt_def real_root_gt_zero)
-
-lemma real_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> sqrt(x)"
-by (auto intro: real_sqrt_gt_zero simp add: order_le_less)
-
-
-(*we need to prove something like this:
-lemma "[|r ^ n = a; 0<n; 0 < a \<longrightarrow> 0 < r|] ==> root n a = r"
-apply (case_tac n, simp)
-apply (simp add: root_def)
-apply (rule someI2 [of _ r], safe)
-apply (auto simp del: realpow_Suc dest: power_inject_base)
-*)
-
-lemma real_sqrt_mult_distrib:
- "[| 0 \<le> x; 0 \<le> y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)"
-unfolding sqrt_def numeral_2_eq_2
-by (rule real_root_mult)
-
-lemmas real_sqrt_mult_distrib2 = real_sqrt_mult_distrib
-
lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \<bar>x\<bar>"
apply (subst power2_eq_square [symmetric])
apply (rule real_sqrt_abs)
done
lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\<twosuperior>"
-by simp
+by simp (* TODO: delete *)
lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \<noteq> 0"
-apply (frule real_sqrt_pow2_gt_zero)
-apply (auto simp add: numeral_2_eq_2)
-done
+by simp (* TODO: delete *)
lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x"
by (simp add: power_inverse [symmetric])
lemma real_sqrt_eq_zero_cancel: "[| 0 \<le> x; sqrt(x) = 0|] ==> x = 0"
-apply (drule real_le_imp_less_or_eq)
-apply (auto dest: real_sqrt_not_eq_zero)
-done
-
-lemma real_sqrt_eq_zero_cancel_iff [simp]: "0 \<le> x ==> ((sqrt x = 0) = (x=0))"
-by (auto simp add: real_sqrt_eq_zero_cancel)
+by simp
lemma real_sqrt_ge_one: "1 \<le> x ==> 1 \<le> sqrt x"
-apply (rule power2_le_imp_le, simp)
-apply (simp add: real_sqrt_ge_zero)
-done
+by simp
lemma sqrt_divide_self_eq:
assumes nneg: "0 \<le> x"
@@ -413,25 +466,6 @@
qed
qed
-
-lemma real_sqrt_less_mono: "[| 0 \<le> x; x < y |] ==> sqrt(x) < sqrt(y)"
-by (simp add: sqrt_def)
-
-lemma real_sqrt_le_mono: "[| 0 \<le> x; x \<le> y |] ==> sqrt(x) \<le> sqrt(y)"
-by (simp add: sqrt_def)
-
-lemma real_sqrt_less_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) < sqrt(y)) = (x < y)"
-by (simp add: sqrt_def)
-
-lemma real_sqrt_le_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) \<le> sqrt(y)) = (x \<le> y)"
-by (simp add: sqrt_def)
-
-lemma real_sqrt_eq_iff [simp]:
- "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) = sqrt(y)) = (x = y)"
-by (simp add: sqrt_def)
-
lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r"
apply (simp add: divide_inverse)
apply (case_tac "r=0")
@@ -441,7 +475,7 @@
subsection {* Square Root of Sum of Squares *}
lemma "(sqrt (x\<twosuperior> + y\<twosuperior>))\<twosuperior> = x\<twosuperior> + y\<twosuperior>"
-by (rule realpow_two_le_add_order [THEN real_sqrt_pow2_iff [THEN iffD2]])
+by simp
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)"
by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero])
@@ -455,7 +489,7 @@
lemma real_sqrt_sum_squares_mult_squared_eq [simp]:
"sqrt ((x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)) ^ 2 = (x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)"
-by (auto simp add: zero_le_mult_iff simp del: realpow_Suc)
+by (auto simp add: zero_le_mult_iff)
lemma real_sqrt_sum_squares_ge1 [simp]: "x \<le> sqrt(x\<twosuperior> + y\<twosuperior>)"
by (rule power2_le_imp_le, simp_all)
@@ -463,15 +497,11 @@
lemma real_sqrt_sum_squares_ge2 [simp]: "y \<le> sqrt(x\<twosuperior> + y\<twosuperior>)"
by (rule power2_le_imp_le, simp_all)
-lemma real_sqrt_sos_less_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) < 1) = (x\<twosuperior> + y\<twosuperior> < 1)"
-apply (subst real_sqrt_one [symmetric])
-apply (rule real_sqrt_less_iff, auto)
-done
+lemma real_sqrt_sos_less_one_iff: "(sqrt (x\<twosuperior> + y\<twosuperior>) < 1) = (x\<twosuperior> + y\<twosuperior> < 1)"
+by (rule real_sqrt_lt_1_iff)
-lemma real_sqrt_sos_eq_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) = 1) = (x\<twosuperior> + y\<twosuperior> = 1)"
-apply (subst real_sqrt_one [symmetric])
-apply (rule real_sqrt_eq_iff, auto)
-done
+lemma real_sqrt_sos_eq_one_iff: "(sqrt (x\<twosuperior> + y\<twosuperior>) = 1) = (x\<twosuperior> + y\<twosuperior> = 1)"
+by (rule real_sqrt_eq_1_iff)
lemma power2_sum:
fixes x y :: "'a::{number_ring,recpower}"
@@ -501,4 +531,24 @@
apply (simp add: add_increasing)
done
+text "Legacy theorem names:"
+lemmas real_root_pos2 = real_root_power_cancel
+lemmas real_root_pos_pos = real_root_gt_zero [THEN order_less_imp_le]
+lemmas real_root_pos_pos_le = real_root_ge_zero
+lemmas real_sqrt_mult_distrib = real_sqrt_mult
+lemmas real_sqrt_mult_distrib2 = real_sqrt_mult
+lemmas real_sqrt_eq_zero_cancel_iff = real_sqrt_eq_0_iff
+
+(* needed for CauchysMeanTheorem.het_base from AFP *)
+lemma real_root_pos: "0 < x \<Longrightarrow> root (Suc n) (x ^ (Suc n)) = x"
+by (rule real_root_power_cancel [OF zero_less_Suc order_less_imp_le])
+
+(* FIXME: the stronger version of real_root_less_iff
+ breaks CauchysMeanTheorem.list_gmean_gt_iff from AFP. *)
+
+declare real_root_less_iff [simp del]
+lemma real_root_less_iff_nonneg [simp]:
+ "\<lbrakk>0 < n; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> (root n x < root n y) = (x < y)"
+by (rule real_root_less_iff)
+
end
--- a/src/HOL/Hyperreal/Transcendental.thy Sun May 13 19:15:36 2007 +0200
+++ b/src/HOL/Hyperreal/Transcendental.thy Sun May 13 20:05:42 2007 +0200
@@ -1928,7 +1928,8 @@
lemma lemma_real_divide_sqrt_ge_minus_one:
"0 < x ==> -1 \<le> x/(sqrt (x * x + y * y))"
-by (simp add: divide_const_simps linorder_not_le [symmetric])
+by (simp add: divide_const_simps linorder_not_le [symmetric]
+ del: real_sqrt_le_0_iff real_sqrt_ge_0_iff)
lemma real_sqrt_sum_squares_gt_zero1: "x < 0 ==> 0 < sqrt (x * x + y * y)"
apply (rule real_sqrt_gt_zero)
@@ -1943,14 +1944,10 @@
done
lemma real_sqrt_sum_squares_gt_zero3: "x \<noteq> 0 ==> 0 < sqrt(x\<twosuperior> + y\<twosuperior>)"
-apply (cut_tac x = x and y = 0 in linorder_less_linear)
-apply (auto intro: real_sqrt_sum_squares_gt_zero2 real_sqrt_sum_squares_gt_zero1 simp add: numeral_2_eq_2)
-done
+by (simp add: add_pos_nonneg)
lemma real_sqrt_sum_squares_gt_zero3a: "y \<noteq> 0 ==> 0 < sqrt(x\<twosuperior> + y\<twosuperior>)"
-apply (drule_tac y = x in real_sqrt_sum_squares_gt_zero3)
-apply (auto simp add: real_add_commute)
-done
+by (simp add: add_nonneg_pos)
lemma real_sqrt_sum_squares_eq_cancel: "sqrt(x\<twosuperior> + y\<twosuperior>) = x ==> y = 0"
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, auto)
@@ -1965,7 +1962,8 @@
lemma lemma_real_divide_sqrt_ge_minus_one2:
"x < 0 ==> -1 \<le> x/(sqrt (x * x + y * y))"
-apply (simp add: divide_const_simps)
+apply (simp add: divide_const_simps
+ del: real_sqrt_gt_0_iff real_sqrt_lt_0_iff)
apply (insert minus_le_real_sqrt_sumsq [of x y], arith)
done
@@ -1979,10 +1977,12 @@
by (subst add_commute, simp add: minus_sqrt_le)
lemma not_neg_sqrt_sumsq: "~ sqrt (x * x + y * y) < 0"
-by (simp add: linorder_not_less)
+by (simp add: linorder_not_less
+ del: real_sqrt_lt_0_iff real_sqrt_ge_0_iff)
lemma cos_x_y_ge_minus_one: "-1 \<le> x / sqrt (x * x + y * y)"
-by (simp add: minus_sqrt_le not_neg_sqrt_sumsq divide_const_simps)
+by (simp add: minus_sqrt_le not_neg_sqrt_sumsq divide_const_simps
+ del: real_sqrt_gt_0_iff real_sqrt_lt_0_iff)
lemma cos_x_y_ge_minus_one1a [simp]: "-1 \<le> y / sqrt (x * x + y * y)"
by (subst add_commute, simp add: cos_x_y_ge_minus_one)
@@ -2006,11 +2006,13 @@
lemma cos_abs_x_y_ge_minus_one [simp]:
"-1 \<le> \<bar>x\<bar> / sqrt (x * x + y * y)"
-by (auto simp add: divide_const_simps abs_if linorder_not_le [symmetric])
+by (auto simp add: divide_const_simps abs_if linorder_not_le [symmetric]
+ simp del: real_sqrt_ge_0_iff real_sqrt_le_0_iff)
lemma cos_abs_x_y_le_one [simp]: "\<bar>x\<bar> / sqrt (x * x + y * y) \<le> 1"
-apply (insert minus_le_real_sqrt_sumsq [of x y] le_real_sqrt_sumsq [of x y])
-apply (auto simp add: divide_const_simps abs_if linorder_neq_iff)
+apply (insert minus_le_real_sqrt_sumsq [of x y] le_real_sqrt_sumsq [of x y])
+apply (auto simp add: divide_const_simps abs_if linorder_neq_iff
+ simp del: real_sqrt_gt_0_iff real_sqrt_eq_0_iff)
done
declare cos_arcos [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp]
@@ -2165,20 +2167,15 @@
apply (rule real_add_commute [THEN subst])
apply (rule real_sqrt_ge_abs1)
done
-declare real_sqrt_ge_abs1 [simp] real_sqrt_ge_abs2 [simp]
lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2"
-by (auto intro: real_sqrt_gt_zero)
+by simp
lemma real_sqrt_two_ge_zero [simp]: "0 \<le> sqrt 2"
-by (auto intro: real_sqrt_ge_zero)
+by simp
lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2"
-apply (rule order_less_le_trans [of _ "7/5"], simp)
-apply (rule_tac n = 1 in realpow_increasing)
- prefer 3 apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc)
-apply (simp_all add: numeral_2_eq_2)
-done
+by simp
lemma lemma_real_divide_sqrt_less: "0 < u ==> u / sqrt 2 < u"
by (simp add: divide_less_eq mult_compare_simps)