Polynomial algebra cleanup
authoreberlm <eberlm@in.tum.de>
Tue, 16 Aug 2016 12:02:09 +0200
changeset 63704 6209c06d776f
parent 63703 ec095a532a2b
child 63705 7d371a18b6a2
Polynomial algebra cleanup
src/HOL/Codegenerator_Test/Candidates.thy
src/HOL/Library/Polynomial_Factorial.thy
src/HOL/Library/Polynomial_GCD_euclidean.thy
src/HOL/Number_Theory/Polynomial_Factorial.thy
--- a/src/HOL/Codegenerator_Test/Candidates.thy	Sun Aug 14 23:35:16 2016 +0200
+++ b/src/HOL/Codegenerator_Test/Candidates.thy	Tue Aug 16 12:02:09 2016 +0200
@@ -9,7 +9,7 @@
   "~~/src/HOL/Library/Library"
   "~~/src/HOL/Library/Sublist_Order"
   "~~/src/HOL/Number_Theory/Euclidean_Algorithm"
-  "~~/src/HOL/Number_Theory/Polynomial_Factorial"
+  "~~/src/HOL/Library/Polynomial_Factorial"
   "~~/src/HOL/Data_Structures/Tree_Map"
   "~~/src/HOL/Data_Structures/Tree_Set"
   "~~/src/HOL/Number_Theory/Eratosthenes"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Polynomial_Factorial.thy	Tue Aug 16 12:02:09 2016 +0200
@@ -0,0 +1,1468 @@
+theory Polynomial_Factorial
+imports 
+  Complex_Main
+  Euclidean_Algorithm 
+  "~~/src/HOL/Library/Polynomial"
+  "~~/src/HOL/Library/Normalized_Fraction"
+begin
+
+subsection \<open>Prelude\<close>
+
+lemma msetprod_mult: 
+  "msetprod (image_mset (\<lambda>x. f x * g x) A) = msetprod (image_mset f A) * msetprod (image_mset g A)"
+  by (induction A) (simp_all add: mult_ac)
+  
+lemma msetprod_const: "msetprod (image_mset (\<lambda>_. c) A) = c ^ size A"
+  by (induction A) (simp_all add: mult_ac)
+  
+lemma dvd_field_iff: "x dvd y \<longleftrightarrow> (x = 0 \<longrightarrow> y = (0::'a::field))"
+proof safe
+  assume "x \<noteq> 0"
+  hence "y = x * (y / x)" by (simp add: field_simps)
+  thus "x dvd y" by (rule dvdI)
+qed auto
+
+lemma nat_descend_induct [case_names base descend]:
+  assumes "\<And>k::nat. k > n \<Longrightarrow> P k"
+  assumes "\<And>k::nat. k \<le> n \<Longrightarrow> (\<And>i. i > k \<Longrightarrow> P i) \<Longrightarrow> P k"
+  shows   "P m"
+  using assms by induction_schema (force intro!: wf_measure[of "\<lambda>k. Suc n - k"])+
+
+lemma GreatestI_ex: "\<exists>k::nat. P k \<Longrightarrow> \<forall>y. P y \<longrightarrow> y < b \<Longrightarrow> P (GREATEST x. P x)"
+  by (metis GreatestI)
+
+
+context field
+begin
+
+subclass idom_divide ..
+
+end
+
+context field
+begin
+
+definition normalize_field :: "'a \<Rightarrow> 'a" 
+  where [simp]: "normalize_field x = (if x = 0 then 0 else 1)"
+definition unit_factor_field :: "'a \<Rightarrow> 'a" 
+  where [simp]: "unit_factor_field x = x"
+definition euclidean_size_field :: "'a \<Rightarrow> nat" 
+  where [simp]: "euclidean_size_field x = (if x = 0 then 0 else 1)"
+definition mod_field :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+  where [simp]: "mod_field x y = (if y = 0 then x else 0)"
+
+end
+
+instantiation real :: euclidean_ring
+begin
+
+definition [simp]: "normalize_real = (normalize_field :: real \<Rightarrow> _)"
+definition [simp]: "unit_factor_real = (unit_factor_field :: real \<Rightarrow> _)"
+definition [simp]: "euclidean_size_real = (euclidean_size_field :: real \<Rightarrow> _)"
+definition [simp]: "mod_real = (mod_field :: real \<Rightarrow> _)"
+
+instance by standard (simp_all add: dvd_field_iff divide_simps)
+end
+
+instantiation real :: euclidean_ring_gcd
+begin
+
+definition gcd_real :: "real \<Rightarrow> real \<Rightarrow> real" where
+  "gcd_real = gcd_eucl"
+definition lcm_real :: "real \<Rightarrow> real \<Rightarrow> real" where
+  "lcm_real = lcm_eucl"
+definition Gcd_real :: "real set \<Rightarrow> real" where
+ "Gcd_real = Gcd_eucl"
+definition Lcm_real :: "real set \<Rightarrow> real" where
+ "Lcm_real = Lcm_eucl"
+
+instance by standard (simp_all add: gcd_real_def lcm_real_def Gcd_real_def Lcm_real_def)
+
+end
+
+instantiation rat :: euclidean_ring
+begin
+
+definition [simp]: "normalize_rat = (normalize_field :: rat \<Rightarrow> _)"
+definition [simp]: "unit_factor_rat = (unit_factor_field :: rat \<Rightarrow> _)"
+definition [simp]: "euclidean_size_rat = (euclidean_size_field :: rat \<Rightarrow> _)"
+definition [simp]: "mod_rat = (mod_field :: rat \<Rightarrow> _)"
+
+instance by standard (simp_all add: dvd_field_iff divide_simps)
+end
+
+instantiation rat :: euclidean_ring_gcd
+begin
+
+definition gcd_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" where
+  "gcd_rat = gcd_eucl"
+definition lcm_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" where
+  "lcm_rat = lcm_eucl"
+definition Gcd_rat :: "rat set \<Rightarrow> rat" where
+ "Gcd_rat = Gcd_eucl"
+definition Lcm_rat :: "rat set \<Rightarrow> rat" where
+ "Lcm_rat = Lcm_eucl"
+
+instance by standard (simp_all add: gcd_rat_def lcm_rat_def Gcd_rat_def Lcm_rat_def)
+
+end
+
+instantiation complex :: euclidean_ring
+begin
+
+definition [simp]: "normalize_complex = (normalize_field :: complex \<Rightarrow> _)"
+definition [simp]: "unit_factor_complex = (unit_factor_field :: complex \<Rightarrow> _)"
+definition [simp]: "euclidean_size_complex = (euclidean_size_field :: complex \<Rightarrow> _)"
+definition [simp]: "mod_complex = (mod_field :: complex \<Rightarrow> _)"
+
+instance by standard (simp_all add: dvd_field_iff divide_simps)
+end
+
+instantiation complex :: euclidean_ring_gcd
+begin
+
+definition gcd_complex :: "complex \<Rightarrow> complex \<Rightarrow> complex" where
+  "gcd_complex = gcd_eucl"
+definition lcm_complex :: "complex \<Rightarrow> complex \<Rightarrow> complex" where
+  "lcm_complex = lcm_eucl"
+definition Gcd_complex :: "complex set \<Rightarrow> complex" where
+ "Gcd_complex = Gcd_eucl"
+definition Lcm_complex :: "complex set \<Rightarrow> complex" where
+ "Lcm_complex = Lcm_eucl"
+
+instance by standard (simp_all add: gcd_complex_def lcm_complex_def Gcd_complex_def Lcm_complex_def)
+
+end
+
+
+
+subsection \<open>Lifting elements into the field of fractions\<close>
+
+definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" where "to_fract x = Fract x 1"
+
+lemma to_fract_0 [simp]: "to_fract 0 = 0"
+  by (simp add: to_fract_def eq_fract Zero_fract_def)
+
+lemma to_fract_1 [simp]: "to_fract 1 = 1"
+  by (simp add: to_fract_def eq_fract One_fract_def)
+
+lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y"
+  by (simp add: to_fract_def)
+
+lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y"
+  by (simp add: to_fract_def)
+  
+lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x"
+  by (simp add: to_fract_def)
+  
+lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y"
+  by (simp add: to_fract_def)
+
+lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y"
+  by (simp add: to_fract_def eq_fract)
+  
+lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0"
+  by (simp add: to_fract_def Zero_fract_def eq_fract)
+
+lemma snd_quot_of_fract_nonzero [simp]: "snd (quot_of_fract x) \<noteq> 0"
+  by transfer simp
+
+lemma Fract_quot_of_fract [simp]: "Fract (fst (quot_of_fract x)) (snd (quot_of_fract x)) = x"
+  by transfer (simp del: fractrel_iff, subst fractrel_normalize_quot_left, simp)
+
+lemma to_fract_quot_of_fract:
+  assumes "snd (quot_of_fract x) = 1"
+  shows   "to_fract (fst (quot_of_fract x)) = x"
+proof -
+  have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp
+  also note assms
+  finally show ?thesis by (simp add: to_fract_def)
+qed
+
+lemma snd_quot_of_fract_Fract_whole:
+  assumes "y dvd x"
+  shows   "snd (quot_of_fract (Fract x y)) = 1"
+  using assms by transfer (auto simp: normalize_quot_def Let_def gcd_proj2_if_dvd)
+  
+lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b"
+  by (simp add: to_fract_def)
+
+lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)"
+  unfolding to_fract_def by transfer (simp add: normalize_quot_def)
+
+lemma fst_quot_of_fract_eq_0_iff [simp]: "fst (quot_of_fract x) = 0 \<longleftrightarrow> x = 0"
+  by transfer simp
+ 
+lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1"
+  unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all
+
+lemma coprime_quot_of_fract:
+  "coprime (fst (quot_of_fract x)) (snd (quot_of_fract x))"
+  by transfer (simp add: coprime_normalize_quot)
+
+lemma unit_factor_snd_quot_of_fract: "unit_factor (snd (quot_of_fract x)) = 1"
+  using quot_of_fract_in_normalized_fracts[of x] 
+  by (simp add: normalized_fracts_def case_prod_unfold)  
+
+lemma unit_factor_1_imp_normalized: "unit_factor x = 1 \<Longrightarrow> normalize x = x"
+  by (subst (2) normalize_mult_unit_factor [symmetric, of x])
+     (simp del: normalize_mult_unit_factor)
+  
+lemma normalize_snd_quot_of_fract: "normalize (snd (quot_of_fract x)) = snd (quot_of_fract x)"
+  by (intro unit_factor_1_imp_normalized unit_factor_snd_quot_of_fract)
+
+  
+subsection \<open>Mapping polynomials\<close>
+
+definition map_poly 
+     :: "('a :: comm_semiring_0 \<Rightarrow> 'b :: comm_semiring_0) \<Rightarrow> 'a poly \<Rightarrow> 'b poly" where
+  "map_poly f p = Poly (map f (coeffs p))"
+
+lemma map_poly_0 [simp]: "map_poly f 0 = 0"
+  by (simp add: map_poly_def)
+
+lemma map_poly_1: "map_poly f 1 = [:f 1:]"
+  by (simp add: map_poly_def)
+
+lemma map_poly_1' [simp]: "f 1 = 1 \<Longrightarrow> map_poly f 1 = 1"
+  by (simp add: map_poly_def one_poly_def)
+
+lemma coeff_map_poly:
+  assumes "f 0 = 0"
+  shows   "coeff (map_poly f p) n = f (coeff p n)"
+  by (auto simp: map_poly_def nth_default_def coeffs_def assms
+        not_less Suc_le_eq coeff_eq_0 simp del: upt_Suc)
+
+lemma coeffs_map_poly [code abstract]: 
+    "coeffs (map_poly f p) = strip_while (op = 0) (map f (coeffs p))"
+  by (simp add: map_poly_def)
+
+lemma set_coeffs_map_poly:
+  "(\<And>x. f x = 0 \<longleftrightarrow> x = 0) \<Longrightarrow> set (coeffs (map_poly f p)) = f ` set (coeffs p)"
+  by (cases "p = 0") (auto simp: coeffs_map_poly last_map last_coeffs_not_0)
+
+lemma coeffs_map_poly': 
+  assumes "(\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0)"
+  shows   "coeffs (map_poly f p) = map f (coeffs p)"
+  by (cases "p = 0") (auto simp: coeffs_map_poly last_map last_coeffs_not_0 assms 
+                           intro!: strip_while_not_last split: if_splits)
+
+lemma degree_map_poly:
+  assumes "\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
+  shows   "degree (map_poly f p) = degree p"
+  by (simp add: degree_eq_length_coeffs coeffs_map_poly' assms)
+
+lemma map_poly_eq_0_iff:
+  assumes "f 0 = 0" "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
+  shows   "map_poly f p = 0 \<longleftrightarrow> p = 0"
+proof -
+  {
+    fix n :: nat
+    have "coeff (map_poly f p) n = f (coeff p n)" by (simp add: coeff_map_poly assms)
+    also have "\<dots> = 0 \<longleftrightarrow> coeff p n = 0"
+    proof (cases "n < length (coeffs p)")
+      case True
+      hence "coeff p n \<in> set (coeffs p)" by (auto simp: coeffs_def simp del: upt_Suc)
+      with assms show "f (coeff p n) = 0 \<longleftrightarrow> coeff p n = 0" by auto
+    qed (auto simp: assms length_coeffs nth_default_coeffs_eq [symmetric] nth_default_def)
+    finally have "(coeff (map_poly f p) n = 0) = (coeff p n = 0)" .
+  }
+  thus ?thesis by (auto simp: poly_eq_iff)
+qed
+
+lemma map_poly_smult:
+  assumes "f 0 = 0""\<And>c x. f (c * x) = f c * f x"
+  shows   "map_poly f (smult c p) = smult (f c) (map_poly f p)"
+  by (intro poly_eqI) (simp_all add: assms coeff_map_poly)
+
+lemma map_poly_pCons:
+  assumes "f 0 = 0"
+  shows   "map_poly f (pCons c p) = pCons (f c) (map_poly f p)"
+  by (intro poly_eqI) (simp_all add: assms coeff_map_poly coeff_pCons split: nat.splits)
+
+lemma map_poly_map_poly:
+  assumes "f 0 = 0" "g 0 = 0"
+  shows   "map_poly f (map_poly g p) = map_poly (f \<circ> g) p"
+  by (intro poly_eqI) (simp add: coeff_map_poly assms)
+
+lemma map_poly_id [simp]: "map_poly id p = p"
+  by (simp add: map_poly_def)
+
+lemma map_poly_id' [simp]: "map_poly (\<lambda>x. x) p = p"
+  by (simp add: map_poly_def)
+
+lemma map_poly_cong: 
+  assumes "(\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = g x)"
+  shows   "map_poly f p = map_poly g p"
+proof -
+  from assms have "map f (coeffs p) = map g (coeffs p)" by (intro map_cong) simp_all
+  thus ?thesis by (simp only: coeffs_eq_iff coeffs_map_poly)
+qed
+
+lemma map_poly_monom: "f 0 = 0 \<Longrightarrow> map_poly f (monom c n) = monom (f c) n"
+  by (intro poly_eqI) (simp_all add: coeff_map_poly)
+
+lemma map_poly_idI:
+  assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
+  shows   "map_poly f p = p"
+  using map_poly_cong[OF assms, of _ id] by simp
+
+lemma map_poly_idI':
+  assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
+  shows   "p = map_poly f p"
+  using map_poly_cong[OF assms, of _ id] by simp
+
+lemma smult_conv_map_poly: "smult c p = map_poly (\<lambda>x. c * x) p"
+  by (intro poly_eqI) (simp_all add: coeff_map_poly)
+
+lemma div_const_poly_conv_map_poly: 
+  assumes "[:c:] dvd p"
+  shows   "p div [:c:] = map_poly (\<lambda>x. x div c) p"
+proof (cases "c = 0")
+  case False
+  from assms obtain q where p: "p = [:c:] * q" by (erule dvdE)
+  moreover {
+    have "smult c q = [:c:] * q" by simp
+    also have "\<dots> div [:c:] = q" by (rule nonzero_mult_divide_cancel_left) (insert False, auto)
+    finally have "smult c q div [:c:] = q" .
+  }
+  ultimately show ?thesis by (intro poly_eqI) (auto simp: coeff_map_poly False)
+qed (auto intro!: poly_eqI simp: coeff_map_poly)
+
+
+
+subsection \<open>Various facts about polynomials\<close>
+
+lemma msetprod_const_poly: "msetprod (image_mset (\<lambda>x. [:f x:]) A) = [:msetprod (image_mset f A):]"
+  by (induction A) (simp_all add: one_poly_def mult_ac)
+
+lemma degree_mod_less': "b \<noteq> 0 \<Longrightarrow> a mod b \<noteq> 0 \<Longrightarrow> degree (a mod b) < degree b"
+  using degree_mod_less[of b a] by auto
+  
+lemma is_unit_const_poly_iff: 
+    "[:c :: 'a :: {comm_semiring_1,semiring_no_zero_divisors}:] dvd 1 \<longleftrightarrow> c dvd 1"
+  by (auto simp: one_poly_def)
+
+lemma is_unit_poly_iff:
+  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
+  shows "p dvd 1 \<longleftrightarrow> (\<exists>c. p = [:c:] \<and> c dvd 1)"
+proof safe
+  assume "p dvd 1"
+  then obtain q where pq: "1 = p * q" by (erule dvdE)
+  hence "degree 1 = degree (p * q)" by simp
+  also from pq have "\<dots> = degree p + degree q" by (intro degree_mult_eq) auto
+  finally have "degree p = 0" by simp
+  from degree_eq_zeroE[OF this] obtain c where c: "p = [:c:]" .
+  with \<open>p dvd 1\<close> show "\<exists>c. p = [:c:] \<and> c dvd 1"
+    by (auto simp: is_unit_const_poly_iff)
+qed (auto simp: is_unit_const_poly_iff)
+
+lemma is_unit_polyE:
+  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
+  assumes "p dvd 1" obtains c where "p = [:c:]" "c dvd 1"
+  using assms by (subst (asm) is_unit_poly_iff) blast
+
+lemma smult_eq_iff:
+  assumes "(b :: 'a :: field) \<noteq> 0"
+  shows   "smult a p = smult b q \<longleftrightarrow> smult (a / b) p = q"
+proof
+  assume "smult a p = smult b q"
+  also from assms have "smult (inverse b) \<dots> = q" by simp
+  finally show "smult (a / b) p = q" by (simp add: field_simps)
+qed (insert assms, auto)
+
+lemma irreducible_const_poly_iff:
+  fixes c :: "'a :: {comm_semiring_1,semiring_no_zero_divisors}"
+  shows "irreducible [:c:] \<longleftrightarrow> irreducible c"
+proof
+  assume A: "irreducible c"
+  show "irreducible [:c:]"
+  proof (rule irreducibleI)
+    fix a b assume ab: "[:c:] = a * b"
+    hence "degree [:c:] = degree (a * b)" by (simp only: )
+    also from A ab have "a \<noteq> 0" "b \<noteq> 0" by auto
+    hence "degree (a * b) = degree a + degree b" by (simp add: degree_mult_eq)
+    finally have "degree a = 0" "degree b = 0" by auto
+    then obtain a' b' where ab': "a = [:a':]" "b = [:b':]" by (auto elim!: degree_eq_zeroE)
+    from ab have "coeff [:c:] 0 = coeff (a * b) 0" by (simp only: )
+    hence "c = a' * b'" by (simp add: ab' mult_ac)
+    from A and this have "a' dvd 1 \<or> b' dvd 1" by (rule irreducibleD)
+    with ab' show "a dvd 1 \<or> b dvd 1" by (auto simp: one_poly_def)
+  qed (insert A, auto simp: irreducible_def is_unit_poly_iff)
+next
+  assume A: "irreducible [:c:]"
+  show "irreducible c"
+  proof (rule irreducibleI)
+    fix a b assume ab: "c = a * b"
+    hence "[:c:] = [:a:] * [:b:]" by (simp add: mult_ac)
+    from A and this have "[:a:] dvd 1 \<or> [:b:] dvd 1" by (rule irreducibleD)
+    thus "a dvd 1 \<or> b dvd 1" by (simp add: one_poly_def)
+  qed (insert A, auto simp: irreducible_def one_poly_def)
+qed
+
+lemma lead_coeff_monom [simp]: "lead_coeff (monom c n) = c"
+  by (cases "c = 0") (simp_all add: lead_coeff_def degree_monom_eq)
+
+  
+subsection \<open>Normalisation of polynomials\<close>
+
+instantiation poly :: ("{normalization_semidom,idom_divide}") normalization_semidom
+begin
+
+definition unit_factor_poly :: "'a poly \<Rightarrow> 'a poly"
+  where "unit_factor_poly p = monom (unit_factor (lead_coeff p)) 0"
+
+definition normalize_poly :: "'a poly \<Rightarrow> 'a poly"
+  where "normalize_poly p = map_poly (\<lambda>x. x div unit_factor (lead_coeff p)) p"
+
+lemma normalize_poly_altdef:
+  "normalize p = p div [:unit_factor (lead_coeff p):]"
+proof (cases "p = 0")
+  case False
+  thus ?thesis
+    by (subst div_const_poly_conv_map_poly)
+       (auto simp: normalize_poly_def const_poly_dvd_iff lead_coeff_def )
+qed (auto simp: normalize_poly_def)
+
+instance
+proof
+  fix p :: "'a poly"
+  show "unit_factor p * normalize p = p"
+    by (cases "p = 0")
+       (simp_all add: unit_factor_poly_def normalize_poly_def monom_0 
+          smult_conv_map_poly map_poly_map_poly o_def)
+next
+  fix p :: "'a poly"
+  assume "is_unit p"
+  then obtain c where p: "p = [:c:]" "is_unit c" by (auto simp: is_unit_poly_iff)
+  thus "normalize p = 1"
+    by (simp add: normalize_poly_def map_poly_pCons is_unit_normalize one_poly_def)
+next
+  fix p :: "'a poly" assume "p \<noteq> 0"
+  thus "is_unit (unit_factor p)"
+    by (simp add: unit_factor_poly_def monom_0 is_unit_poly_iff)
+qed (simp_all add: normalize_poly_def unit_factor_poly_def monom_0 lead_coeff_mult unit_factor_mult)
+
+end
+
+lemma unit_factor_pCons:
+  "unit_factor (pCons a p) = (if p = 0 then monom (unit_factor a) 0 else unit_factor p)"
+  by (simp add: unit_factor_poly_def)
+
+lemma normalize_monom [simp]:
+  "normalize (monom a n) = monom (normalize a) n"
+  by (simp add: map_poly_monom normalize_poly_def)
+
+lemma unit_factor_monom [simp]:
+  "unit_factor (monom a n) = monom (unit_factor a) 0"
+  by (simp add: unit_factor_poly_def )
+
+lemma normalize_const_poly: "normalize [:c:] = [:normalize c:]"
+  by (simp add: normalize_poly_def map_poly_pCons)
+
+lemma normalize_smult: "normalize (smult c p) = smult (normalize c) (normalize p)"
+proof -
+  have "smult c p = [:c:] * p" by simp
+  also have "normalize \<dots> = smult (normalize c) (normalize p)"
+    by (subst normalize_mult) (simp add: normalize_const_poly)
+  finally show ?thesis .
+qed
+
+lemma is_unit_smult_iff: "smult c p dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
+proof -
+  have "smult c p = [:c:] * p" by simp
+  also have "\<dots> dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
+  proof safe
+    assume A: "[:c:] * p dvd 1"
+    thus "p dvd 1" by (rule dvd_mult_right)
+    from A obtain q where B: "1 = [:c:] * p * q" by (erule dvdE)
+    have "c dvd c * (coeff p 0 * coeff q 0)" by simp
+    also have "\<dots> = coeff ([:c:] * p * q) 0" by (simp add: mult.assoc coeff_mult)
+    also note B [symmetric]
+    finally show "c dvd 1" by simp
+  next
+    assume "c dvd 1" "p dvd 1"
+    from \<open>c dvd 1\<close> obtain d where "1 = c * d" by (erule dvdE)
+    hence "1 = [:c:] * [:d:]" by (simp add: one_poly_def mult_ac)
+    hence "[:c:] dvd 1" by (rule dvdI)
+    from mult_dvd_mono[OF this \<open>p dvd 1\<close>] show "[:c:] * p dvd 1" by simp
+  qed
+  finally show ?thesis .
+qed
+
+
+subsection \<open>Content and primitive part of a polynomial\<close>
+
+definition content :: "('a :: semiring_Gcd poly) \<Rightarrow> 'a" where
+  "content p = Gcd (set (coeffs p))"
+
+lemma content_0 [simp]: "content 0 = 0"
+  by (simp add: content_def)
+
+lemma content_1 [simp]: "content 1 = 1"
+  by (simp add: content_def)
+
+lemma content_const [simp]: "content [:c:] = normalize c"
+  by (simp add: content_def cCons_def)
+
+lemma const_poly_dvd_iff_dvd_content:
+  fixes c :: "'a :: semiring_Gcd"
+  shows "[:c:] dvd p \<longleftrightarrow> c dvd content p"
+proof (cases "p = 0")
+  case [simp]: False
+  have "[:c:] dvd p \<longleftrightarrow> (\<forall>n. c dvd coeff p n)" by (rule const_poly_dvd_iff)
+  also have "\<dots> \<longleftrightarrow> (\<forall>a\<in>set (coeffs p). c dvd a)"
+  proof safe
+    fix n :: nat assume "\<forall>a\<in>set (coeffs p). c dvd a"
+    thus "c dvd coeff p n"
+      by (cases "n \<le> degree p") (auto simp: coeff_eq_0 coeffs_def split: if_splits)
+  qed (auto simp: coeffs_def simp del: upt_Suc split: if_splits)
+  also have "\<dots> \<longleftrightarrow> c dvd content p"
+    by (simp add: content_def dvd_Gcd_iff mult.commute [of "unit_factor x" for x]
+          dvd_mult_unit_iff lead_coeff_nonzero)
+  finally show ?thesis .
+qed simp_all
+
+lemma content_dvd [simp]: "[:content p:] dvd p"
+  by (subst const_poly_dvd_iff_dvd_content) simp_all
+  
+lemma content_dvd_coeff [simp]: "content p dvd coeff p n"
+  by (cases "n \<le> degree p") 
+     (auto simp: content_def coeffs_def not_le coeff_eq_0 simp del: upt_Suc intro: Gcd_dvd)
+
+lemma content_dvd_coeffs: "c \<in> set (coeffs p) \<Longrightarrow> content p dvd c"
+  by (simp add: content_def Gcd_dvd)
+
+lemma normalize_content [simp]: "normalize (content p) = content p"
+  by (simp add: content_def)
+
+lemma is_unit_content_iff [simp]: "is_unit (content p) \<longleftrightarrow> content p = 1"
+proof
+  assume "is_unit (content p)"
+  hence "normalize (content p) = 1" by (simp add: is_unit_normalize del: normalize_content)
+  thus "content p = 1" by simp
+qed auto
+
+lemma content_smult [simp]: "content (smult c p) = normalize c * content p"
+  by (simp add: content_def coeffs_smult Gcd_mult)
+
+lemma content_eq_zero_iff [simp]: "content p = 0 \<longleftrightarrow> p = 0"
+  by (auto simp: content_def simp: poly_eq_iff coeffs_def)
+
+definition primitive_part :: "'a :: {semiring_Gcd,idom_divide} poly \<Rightarrow> 'a poly" where
+  "primitive_part p = (if p = 0 then 0 else map_poly (\<lambda>x. x div content p) p)"
+  
+lemma primitive_part_0 [simp]: "primitive_part 0 = 0"
+  by (simp add: primitive_part_def)
+
+lemma content_times_primitive_part [simp]:
+  fixes p :: "'a :: {idom_divide, semiring_Gcd} poly"
+  shows "smult (content p) (primitive_part p) = p"
+proof (cases "p = 0")
+  case False
+  thus ?thesis
+  unfolding primitive_part_def
+  by (auto simp: smult_conv_map_poly map_poly_map_poly o_def content_dvd_coeffs 
+           intro: map_poly_idI)
+qed simp_all
+
+lemma primitive_part_eq_0_iff [simp]: "primitive_part p = 0 \<longleftrightarrow> p = 0"
+proof (cases "p = 0")
+  case False
+  hence "primitive_part p = map_poly (\<lambda>x. x div content p) p"
+    by (simp add:  primitive_part_def)
+  also from False have "\<dots> = 0 \<longleftrightarrow> p = 0"
+    by (intro map_poly_eq_0_iff) (auto simp: dvd_div_eq_0_iff content_dvd_coeffs)
+  finally show ?thesis using False by simp
+qed simp
+
+lemma content_primitive_part [simp]:
+  assumes "p \<noteq> 0"
+  shows   "content (primitive_part p) = 1"
+proof -
+  have "p = smult (content p) (primitive_part p)" by simp
+  also have "content \<dots> = content p * content (primitive_part p)" 
+    by (simp del: content_times_primitive_part)
+  finally show ?thesis using assms by simp
+qed
+
+lemma content_decompose:
+  fixes p :: "'a :: semiring_Gcd poly"
+  obtains p' where "p = smult (content p) p'" "content p' = 1"
+proof (cases "p = 0")
+  case True
+  thus ?thesis by (intro that[of 1]) simp_all
+next
+  case False
+  from content_dvd[of p] obtain r where r: "p = [:content p:] * r" by (erule dvdE)
+  have "content p * 1 = content p * content r" by (subst r) simp
+  with False have "content r = 1" by (subst (asm) mult_left_cancel) simp_all
+  with r show ?thesis by (intro that[of r]) simp_all
+qed
+
+lemma smult_content_normalize_primitive_part [simp]:
+  "smult (content p) (normalize (primitive_part p)) = normalize p"
+proof -
+  have "smult (content p) (normalize (primitive_part p)) = 
+          normalize ([:content p:] * primitive_part p)" 
+    by (subst normalize_mult) (simp_all add: normalize_const_poly)
+  also have "[:content p:] * primitive_part p = p" by simp
+  finally show ?thesis .
+qed
+
+lemma content_dvd_contentI [intro]:
+  "p dvd q \<Longrightarrow> content p dvd content q"
+  using const_poly_dvd_iff_dvd_content content_dvd dvd_trans by blast
+  
+lemma primitive_part_const_poly [simp]: "primitive_part [:x:] = [:unit_factor x:]"
+  by (simp add: primitive_part_def map_poly_pCons)
+ 
+lemma primitive_part_prim: "content p = 1 \<Longrightarrow> primitive_part p = p"
+  by (auto simp: primitive_part_def)
+  
+lemma degree_primitive_part [simp]: "degree (primitive_part p) = degree p"
+proof (cases "p = 0")
+  case False
+  have "p = smult (content p) (primitive_part p)" by simp
+  also from False have "degree \<dots> = degree (primitive_part p)"
+    by (subst degree_smult_eq) simp_all
+  finally show ?thesis ..
+qed simp_all
+
+
+subsection \<open>Lifting polynomial coefficients to the field of fractions\<close>
+
+abbreviation (input) fract_poly 
+  where "fract_poly \<equiv> map_poly to_fract"
+
+abbreviation (input) unfract_poly 
+  where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)"
+  
+lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)"
+  by (simp add: smult_conv_map_poly map_poly_map_poly o_def)
+
+lemma fract_poly_0 [simp]: "fract_poly 0 = 0"
+  by (simp add: poly_eqI coeff_map_poly)
+
+lemma fract_poly_1 [simp]: "fract_poly 1 = 1"
+  by (simp add: one_poly_def map_poly_pCons)
+
+lemma fract_poly_add [simp]:
+  "fract_poly (p + q) = fract_poly p + fract_poly q"
+  by (intro poly_eqI) (simp_all add: coeff_map_poly)
+
+lemma fract_poly_diff [simp]:
+  "fract_poly (p - q) = fract_poly p - fract_poly q"
+  by (intro poly_eqI) (simp_all add: coeff_map_poly)
+
+lemma to_fract_setsum [simp]: "to_fract (setsum f A) = setsum (\<lambda>x. to_fract (f x)) A"
+  by (cases "finite A", induction A rule: finite_induct) simp_all 
+
+lemma fract_poly_mult [simp]:
+  "fract_poly (p * q) = fract_poly p * fract_poly q"
+  by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult)
+
+lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q"
+  by (auto simp: poly_eq_iff coeff_map_poly)
+
+lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0"
+  using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff)
+
+lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q"
+  by (auto elim!: dvdE)
+
+lemma msetprod_fract_poly: 
+  "msetprod (image_mset (\<lambda>x. fract_poly (f x)) A) = fract_poly (msetprod (image_mset f A))"
+  by (induction A) (simp_all add: mult_ac)
+  
+lemma is_unit_fract_poly_iff:
+  "p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1"
+proof safe
+  assume A: "p dvd 1"
+  with fract_poly_dvd[of p 1] show "is_unit (fract_poly p)" by simp
+  from A show "content p = 1"
+    by (auto simp: is_unit_poly_iff normalize_1_iff)
+next
+  assume A: "fract_poly p dvd 1" and B: "content p = 1"
+  from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff)
+  {
+    fix n :: nat assume "n > 0"
+    have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly)
+    also note c
+    also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits)
+    finally have "coeff p n = 0" by simp
+  }
+  hence "degree p \<le> 0" by (intro degree_le) simp_all
+  with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE)
+qed
+  
+lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1"
+  using fract_poly_dvd[of p 1] by simp
+
+lemma fract_poly_smult_eqE:
+  fixes c :: "'a :: {idom_divide,ring_gcd} fract"
+  assumes "fract_poly p = smult c (fract_poly q)"
+  obtains a b 
+    where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a"
+proof -
+  define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)"
+  have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)"
+    by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms)
+  hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff)
+  hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff)
+  moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b"
+    by (simp_all add: a_def b_def coprime_quot_of_fract gcd.commute
+          normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric])
+  ultimately show ?thesis by (intro that[of a b])
+qed
+
+
+subsection \<open>Fractional content\<close>
+
+abbreviation (input) Lcm_coeff_denoms 
+    :: "'a :: {semiring_Gcd,idom_divide,ring_gcd} fract poly \<Rightarrow> 'a"
+  where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))"
+  
+definition fract_content :: 
+      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a fract" where
+  "fract_content p = 
+     (let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" 
+
+definition primitive_part_fract :: 
+      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a poly" where
+  "primitive_part_fract p = 
+     primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))"
+
+lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0"
+  by (simp add: primitive_part_fract_def)
+
+lemma fract_content_eq_0_iff [simp]:
+  "fract_content p = 0 \<longleftrightarrow> p = 0"
+  unfolding fract_content_def Let_def Zero_fract_def
+  by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff)
+
+lemma content_primitive_part_fract [simp]: "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1"
+  unfolding primitive_part_fract_def
+  by (rule content_primitive_part)
+     (auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff)  
+
+lemma content_times_primitive_part_fract:
+  "smult (fract_content p) (fract_poly (primitive_part_fract p)) = p"
+proof -
+  define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)"
+  have "fract_poly p' = 
+          map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)"
+    unfolding primitive_part_fract_def p'_def 
+    by (subst map_poly_map_poly) (simp_all add: o_assoc)
+  also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p"
+  proof (intro map_poly_idI, unfold o_apply)
+    fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))"
+    then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'"
+      by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits)
+    note c(2)
+    also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))"
+      by simp
+    also have "to_fract (Lcm_coeff_denoms p) * \<dots> = 
+                 Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))"
+      unfolding to_fract_def by (subst mult_fract) simp_all
+    also have "snd (quot_of_fract \<dots>) = 1"
+      by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto)
+    finally show "to_fract (fst (quot_of_fract c)) = c"
+      by (rule to_fract_quot_of_fract)
+  qed
+  also have "p' = smult (content p') (primitive_part p')" 
+    by (rule content_times_primitive_part [symmetric])
+  also have "primitive_part p' = primitive_part_fract p"
+    by (simp add: primitive_part_fract_def p'_def)
+  also have "fract_poly (smult (content p') (primitive_part_fract p)) = 
+               smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp
+  finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) =
+                      smult (to_fract (Lcm_coeff_denoms p)) p" .
+  thus ?thesis
+    by (subst (asm) smult_eq_iff)
+       (auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def)
+qed
+
+lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)"
+proof -
+  have "Lcm_coeff_denoms (fract_poly p) = 1"
+    by (auto simp: Lcm_1_iff set_coeffs_map_poly)
+  hence "fract_content (fract_poly p) = 
+           to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))"
+    by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff)
+  also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p"
+    by (intro map_poly_idI) simp_all
+  finally show ?thesis .
+qed
+
+lemma content_decompose_fract:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly"
+  obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1"
+proof (cases "p = 0")
+  case True
+  hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all
+  thus ?thesis ..
+next
+  case False
+  thus ?thesis
+    by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract])
+qed
+
+
+subsection \<open>More properties of content and primitive part\<close>
+
+lemma lift_prime_elem_poly:
+  assumes "prime_elem (c :: 'a :: semidom)"
+  shows   "prime_elem [:c:]"
+proof (rule prime_elemI)
+  fix a b assume *: "[:c:] dvd a * b"
+  from * have dvd: "c dvd coeff (a * b) n" for n
+    by (subst (asm) const_poly_dvd_iff) blast
+  {
+    define m where "m = (GREATEST m. \<not>c dvd coeff b m)"
+    assume "\<not>[:c:] dvd b"
+    hence A: "\<exists>i. \<not>c dvd coeff b i" by (subst (asm) const_poly_dvd_iff) blast
+    have B: "\<forall>i. \<not>c dvd coeff b i \<longrightarrow> i < Suc (degree b)"
+      by (auto intro: le_degree simp: less_Suc_eq_le)
+    have coeff_m: "\<not>c dvd coeff b m" unfolding m_def by (rule GreatestI_ex[OF A B])
+    have "i \<le> m" if "\<not>c dvd coeff b i" for i
+      unfolding m_def by (rule Greatest_le[OF that B])
+    hence dvd_b: "c dvd coeff b i" if "i > m" for i using that by force
+
+    have "c dvd coeff a i" for i
+    proof (induction i rule: nat_descend_induct[of "degree a"])
+      case (base i)
+      thus ?case by (simp add: coeff_eq_0)
+    next
+      case (descend i)
+      let ?A = "{..i+m} - {i}"
+      have "c dvd coeff (a * b) (i + m)" by (rule dvd)
+      also have "coeff (a * b) (i + m) = (\<Sum>k\<le>i + m. coeff a k * coeff b (i + m - k))"
+        by (simp add: coeff_mult)
+      also have "{..i+m} = insert i ?A" by auto
+      also have "(\<Sum>k\<in>\<dots>. coeff a k * coeff b (i + m - k)) =
+                   coeff a i * coeff b m + (\<Sum>k\<in>?A. coeff a k * coeff b (i + m - k))"
+        (is "_ = _ + ?S")
+        by (subst setsum.insert) simp_all
+      finally have eq: "c dvd coeff a i * coeff b m + ?S" .
+      moreover have "c dvd ?S"
+      proof (rule dvd_setsum)
+        fix k assume k: "k \<in> {..i+m} - {i}"
+        show "c dvd coeff a k * coeff b (i + m - k)"
+        proof (cases "k < i")
+          case False
+          with k have "c dvd coeff a k" by (intro descend.IH) simp
+          thus ?thesis by simp
+        next
+          case True
+          hence "c dvd coeff b (i + m - k)" by (intro dvd_b) simp
+          thus ?thesis by simp
+        qed
+      qed
+      ultimately have "c dvd coeff a i * coeff b m"
+        by (simp add: dvd_add_left_iff)
+      with assms coeff_m show "c dvd coeff a i"
+        by (simp add: prime_elem_dvd_mult_iff)
+    qed
+    hence "[:c:] dvd a" by (subst const_poly_dvd_iff) blast
+  }
+  thus "[:c:] dvd a \<or> [:c:] dvd b" by blast
+qed (insert assms, simp_all add: prime_elem_def one_poly_def)
+
+lemma prime_elem_const_poly_iff:
+  fixes c :: "'a :: semidom"
+  shows   "prime_elem [:c:] \<longleftrightarrow> prime_elem c"
+proof
+  assume A: "prime_elem [:c:]"
+  show "prime_elem c"
+  proof (rule prime_elemI)
+    fix a b assume "c dvd a * b"
+    hence "[:c:] dvd [:a:] * [:b:]" by (simp add: mult_ac)
+    from A and this have "[:c:] dvd [:a:] \<or> [:c:] dvd [:b:]" by (rule prime_elem_dvd_multD)
+    thus "c dvd a \<or> c dvd b" by simp
+  qed (insert A, auto simp: prime_elem_def is_unit_poly_iff)
+qed (auto intro: lift_prime_elem_poly)
+
+context
+begin
+
+private lemma content_1_mult:
+  fixes f g :: "'a :: {semiring_Gcd,factorial_semiring} poly"
+  assumes "content f = 1" "content g = 1"
+  shows   "content (f * g) = 1"
+proof (cases "f * g = 0")
+  case False
+  from assms have "f \<noteq> 0" "g \<noteq> 0" by auto
+
+  hence "f * g \<noteq> 0" by auto
+  {
+    assume "\<not>is_unit (content (f * g))"
+    with False have "\<exists>p. p dvd content (f * g) \<and> prime p"
+      by (intro prime_divisor_exists) simp_all
+    then obtain p where "p dvd content (f * g)" "prime p" by blast
+    from \<open>p dvd content (f * g)\<close> have "[:p:] dvd f * g"
+      by (simp add: const_poly_dvd_iff_dvd_content)
+    moreover from \<open>prime p\<close> have "prime_elem [:p:]" by (simp add: lift_prime_elem_poly)
+    ultimately have "[:p:] dvd f \<or> [:p:] dvd g"
+      by (simp add: prime_elem_dvd_mult_iff)
+    with assms have "is_unit p" by (simp add: const_poly_dvd_iff_dvd_content)
+    with \<open>prime p\<close> have False by simp
+  }
+  hence "is_unit (content (f * g))" by blast
+  hence "normalize (content (f * g)) = 1" by (simp add: is_unit_normalize del: normalize_content)
+  thus ?thesis by simp
+qed (insert assms, auto)
+
+lemma content_mult:
+  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
+  shows "content (p * q) = content p * content q"
+proof -
+  from content_decompose[of p] guess p' . note p = this
+  from content_decompose[of q] guess q' . note q = this
+  have "content (p * q) = content p * content q * content (p' * q')"
+    by (subst p, subst q) (simp add: mult_ac normalize_mult)
+  also from p q have "content (p' * q') = 1" by (intro content_1_mult)
+  finally show ?thesis by simp
+qed
+
+lemma primitive_part_mult:
+  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
+  shows "primitive_part (p * q) = primitive_part p * primitive_part q"
+proof -
+  have "primitive_part (p * q) = p * q div [:content (p * q):]"
+    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
+  also have "\<dots> = (p div [:content p:]) * (q div [:content q:])"
+    by (subst div_mult_div_if_dvd) (simp_all add: content_mult mult_ac)
+  also have "\<dots> = primitive_part p * primitive_part q"
+    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
+  finally show ?thesis .
+qed
+
+lemma primitive_part_smult:
+  fixes p :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
+  shows "primitive_part (smult a p) = smult (unit_factor a) (primitive_part p)"
+proof -
+  have "smult a p = [:a:] * p" by simp
+  also have "primitive_part \<dots> = smult (unit_factor a) (primitive_part p)"
+    by (subst primitive_part_mult) simp_all
+  finally show ?thesis .
+qed  
+
+lemma primitive_part_dvd_primitive_partI [intro]:
+  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
+  shows "p dvd q \<Longrightarrow> primitive_part p dvd primitive_part q"
+  by (auto elim!: dvdE simp: primitive_part_mult)
+
+lemma content_msetprod: 
+  fixes A :: "'a :: {factorial_semiring, semiring_Gcd} poly multiset"
+  shows "content (msetprod A) = msetprod (image_mset content A)"
+  by (induction A) (simp_all add: content_mult mult_ac)
+
+lemma fract_poly_dvdD:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
+  assumes "fract_poly p dvd fract_poly q" "content p = 1"
+  shows   "p dvd q"
+proof -
+  from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE)
+  from content_decompose_fract[of r] guess c r' . note r' = this
+  from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp  
+  from fract_poly_smult_eqE[OF this] guess a b . note ab = this
+  have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2))
+  hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4))
+  have "1 = gcd a (normalize b)" by (simp add: ab)
+  also note eq'
+  also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4))
+  finally have [simp]: "a = 1" by simp
+  from eq ab have "q = p * ([:b:] * r')" by simp
+  thus ?thesis by (rule dvdI)
+qed
+
+lemma content_prod_eq_1_iff: 
+  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
+  shows "content (p * q) = 1 \<longleftrightarrow> content p = 1 \<and> content q = 1"
+proof safe
+  assume A: "content (p * q) = 1"
+  {
+    fix p q :: "'a poly" assume "content p * content q = 1"
+    hence "1 = content p * content q" by simp
+    hence "content p dvd 1" by (rule dvdI)
+    hence "content p = 1" by simp
+  } note B = this
+  from A B[of p q] B [of q p] show "content p = 1" "content q = 1" 
+    by (simp_all add: content_mult mult_ac)
+qed (auto simp: content_mult)
+
+end
+
+
+subsection \<open>Polynomials over a field are a Euclidean ring\<close>
+
+context
+begin
+
+private definition unit_factor_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
+  "unit_factor_field_poly p = [:lead_coeff p:]"
+
+private definition normalize_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
+  "normalize_field_poly p = smult (inverse (lead_coeff p)) p"
+
+private definition euclidean_size_field_poly :: "'a :: field poly \<Rightarrow> nat" where
+  "euclidean_size_field_poly p = (if p = 0 then 0 else 2 ^ degree p)" 
+
+private lemma dvd_field_poly: "dvd.dvd (op * :: 'a :: field poly \<Rightarrow> _) = op dvd"
+    by (intro ext) (simp_all add: dvd.dvd_def dvd_def)
+
+interpretation field_poly: 
+  euclidean_ring "op div" "op *" "op mod" "op +" "op -" 0 "1 :: 'a :: field poly" 
+    normalize_field_poly unit_factor_field_poly euclidean_size_field_poly uminus
+proof (standard, unfold dvd_field_poly)
+  fix p :: "'a poly"
+  show "unit_factor_field_poly p * normalize_field_poly p = p"
+    by (cases "p = 0") 
+       (simp_all add: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_nonzero)
+next
+  fix p :: "'a poly" assume "is_unit p"
+  thus "normalize_field_poly p = 1"
+    by (elim is_unit_polyE) (auto simp: normalize_field_poly_def monom_0 one_poly_def field_simps)
+next
+  fix p :: "'a poly" assume "p \<noteq> 0"
+  thus "is_unit (unit_factor_field_poly p)"
+    by (simp add: unit_factor_field_poly_def lead_coeff_nonzero is_unit_pCons_iff)
+qed (auto simp: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_mult 
+       euclidean_size_field_poly_def intro!: degree_mod_less' degree_mult_right_le)
+
+private lemma field_poly_irreducible_imp_prime:
+  assumes "irreducible (p :: 'a :: field poly)"
+  shows   "prime_elem p"
+proof -
+  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
+  from field_poly.irreducible_imp_prime_elem[of p] assms
+    show ?thesis unfolding irreducible_def prime_elem_def dvd_field_poly
+      comm_semiring_1.irreducible_def[OF A] comm_semiring_1.prime_elem_def[OF A] by blast
+qed
+
+private lemma field_poly_msetprod_prime_factorization:
+  assumes "(x :: 'a :: field poly) \<noteq> 0"
+  shows   "msetprod (field_poly.prime_factorization x) = normalize_field_poly x"
+proof -
+  have A: "class.comm_monoid_mult op * (1 :: 'a poly)" ..
+  have "comm_monoid_mult.msetprod op * (1 :: 'a poly) = msetprod"
+    by (intro ext) (simp add: comm_monoid_mult.msetprod_def[OF A] msetprod_def)
+  with field_poly.msetprod_prime_factorization[OF assms] show ?thesis by simp
+qed
+
+private lemma field_poly_in_prime_factorization_imp_prime:
+  assumes "(p :: 'a :: field poly) \<in># field_poly.prime_factorization x"
+  shows   "prime_elem p"
+proof -
+  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
+  have B: "class.normalization_semidom op div op + op - (0 :: 'a poly) op * 1 
+             normalize_field_poly unit_factor_field_poly" ..
+  from field_poly.in_prime_factorization_imp_prime[of p x] assms
+    show ?thesis unfolding prime_elem_def dvd_field_poly
+      comm_semiring_1.prime_elem_def[OF A] normalization_semidom.prime_def[OF B] by blast
+qed
+
+
+subsection \<open>Primality and irreducibility in polynomial rings\<close>
+
+lemma nonconst_poly_irreducible_iff:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
+  assumes "degree p \<noteq> 0"
+  shows   "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1"
+proof safe
+  assume p: "irreducible p"
+
+  from content_decompose[of p] guess p' . note p' = this
+  hence "p = [:content p:] * p'" by simp
+  from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD)
+  moreover have "\<not>p' dvd 1"
+  proof
+    assume "p' dvd 1"
+    hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff)
+    with assms show False by contradiction
+  qed
+  ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff)
+  
+  show "irreducible (map_poly to_fract p)"
+  proof (rule irreducibleI)
+    have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto
+    with assms show "map_poly to_fract p \<noteq> 0" by auto
+  next
+    show "\<not>is_unit (fract_poly p)"
+    proof
+      assume "is_unit (map_poly to_fract p)"
+      hence "degree (map_poly to_fract p) = 0"
+        by (auto simp: is_unit_poly_iff)
+      hence "degree p = 0" by (simp add: degree_map_poly)
+      with assms show False by contradiction
+   qed
+ next
+   fix q r assume qr: "fract_poly p = q * r"
+   from content_decompose_fract[of q] guess cg q' . note q = this
+   from content_decompose_fract[of r] guess cr r' . note r = this
+   from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto
+   from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))"
+     by (simp add: q r)
+   from fract_poly_smult_eqE[OF this] guess a b . note ab = this
+   hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:)
+   with ab(4) have a: "a = normalize b" by (simp add: content_mult q r)
+   hence "normalize b = gcd a b" by simp
+   also from ab(3) have "\<dots> = 1" .
+   finally have "a = 1" "is_unit b" by (simp_all add: a normalize_1_iff)
+   
+   note eq
+   also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp
+   also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp
+   finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult)
+   from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD)
+   hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left)
+   hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit)
+   with q r show "is_unit q \<or> is_unit r"
+     by (auto simp add: is_unit_smult_iff dvd_field_iff nz)
+ qed
+
+next
+
+  assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
+  show "irreducible p"
+  proof (rule irreducibleI)
+    from irred show "p \<noteq> 0" by auto
+  next
+    from irred show "\<not>p dvd 1"
+      by (auto simp: irreducible_def dest: fract_poly_is_unit)
+  next
+    fix q r assume qr: "p = q * r"
+    hence "fract_poly p = fract_poly q * fract_poly r" by simp
+    from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" 
+      by (rule irreducibleD)
+    with primitive qr show "q dvd 1 \<or> r dvd 1"
+      by (auto simp:  content_prod_eq_1_iff is_unit_fract_poly_iff)
+  qed
+qed
+
+private lemma irreducible_imp_prime_poly:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
+  assumes "irreducible p"
+  shows   "prime_elem p"
+proof (cases "degree p = 0")
+  case True
+  with assms show ?thesis
+    by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff
+             intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE)
+next
+  case False
+  from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
+    by (simp_all add: nonconst_poly_irreducible_iff)
+  from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime)
+  show ?thesis
+  proof (rule prime_elemI)
+    fix q r assume "p dvd q * r"
+    hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd)
+    hence "fract_poly p dvd fract_poly q * fract_poly r" by simp
+    from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r"
+      by (rule prime_elem_dvd_multD)
+    with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD)
+  qed (insert assms, auto simp: irreducible_def)
+qed
+
+
+lemma degree_primitive_part_fract [simp]:
+  "degree (primitive_part_fract p) = degree p"
+proof -
+  have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))"
+    by (simp add: content_times_primitive_part_fract)
+  also have "degree \<dots> = degree (primitive_part_fract p)"
+    by (auto simp: degree_map_poly)
+  finally show ?thesis ..
+qed
+
+lemma irreducible_primitive_part_fract:
+  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
+  assumes "irreducible p"
+  shows   "irreducible (primitive_part_fract p)"
+proof -
+  from assms have deg: "degree (primitive_part_fract p) \<noteq> 0"
+    by (intro notI) 
+       (auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff)
+  hence [simp]: "p \<noteq> 0" by auto
+
+  note \<open>irreducible p\<close>
+  also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" 
+    by (simp add: content_times_primitive_part_fract)
+  also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))"
+    by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff)
+  finally show ?thesis using deg
+    by (simp add: nonconst_poly_irreducible_iff)
+qed
+
+lemma prime_elem_primitive_part_fract:
+  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
+  shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)"
+  by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract)
+
+lemma irreducible_linear_field_poly:
+  fixes a b :: "'a::field"
+  assumes "b \<noteq> 0"
+  shows "irreducible [:a,b:]"
+proof (rule irreducibleI)
+  fix p q assume pq: "[:a,b:] = p * q"
+  also from pq assms have "degree \<dots> = degree p + degree q" 
+    by (intro degree_mult_eq) auto
+  finally have "degree p = 0 \<or> degree q = 0" using assms by auto
+  with assms pq show "is_unit p \<or> is_unit q"
+    by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE)
+qed (insert assms, auto simp: is_unit_poly_iff)
+
+lemma prime_elem_linear_field_poly:
+  "(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]"
+  by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly)
+
+lemma irreducible_linear_poly:
+  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
+  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]"
+  by (auto intro!: irreducible_linear_field_poly 
+           simp:   nonconst_poly_irreducible_iff content_def map_poly_pCons)
+
+lemma prime_elem_linear_poly:
+  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
+  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]"
+  by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly)
+
+  
+subsection \<open>Prime factorisation of polynomials\<close>   
+
+private lemma poly_prime_factorization_exists_content_1:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
+  assumes "p \<noteq> 0" "content p = 1"
+  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize p"
+proof -
+  let ?P = "field_poly.prime_factorization (fract_poly p)"
+  define c where "c = msetprod (image_mset fract_content ?P)"
+  define c' where "c' = c * to_fract (lead_coeff p)"
+  define e where "e = msetprod (image_mset primitive_part_fract ?P)"
+  define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P"
+  have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). 
+                      content (primitive_part_fract x))"
+    by (simp add: e_def content_msetprod multiset.map_comp o_def)
+  also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P"
+    by (intro image_mset_cong content_primitive_part_fract) auto
+  finally have content_e: "content e = 1" by (simp add: msetprod_const)    
+  
+  have "fract_poly p = unit_factor_field_poly (fract_poly p) * 
+          normalize_field_poly (fract_poly p)" by simp
+  also have "unit_factor_field_poly (fract_poly p) = [:to_fract (lead_coeff p):]" 
+    by (simp add: unit_factor_field_poly_def lead_coeff_def monom_0 degree_map_poly coeff_map_poly)
+  also from assms have "normalize_field_poly (fract_poly p) = msetprod ?P" 
+    by (subst field_poly_msetprod_prime_factorization) simp_all
+  also have "\<dots> = msetprod (image_mset id ?P)" by simp
+  also have "image_mset id ?P = 
+               image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P"
+    by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract)
+  also have "msetprod \<dots> = smult c (fract_poly e)"
+    by (subst msetprod_mult) (simp_all add: msetprod_fract_poly msetprod_const_poly c_def e_def)
+  also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)"
+    by (simp add: c'_def)
+  finally have eq: "fract_poly p = smult c' (fract_poly e)" .
+  also obtain b where b: "c' = to_fract b" "is_unit b"
+  proof -
+    from fract_poly_smult_eqE[OF eq] guess a b . note ab = this
+    from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: )
+    with assms content_e have "a = normalize b" by (simp add: ab(4))
+    with ab have ab': "a = 1" "is_unit b" by (simp_all add: normalize_1_iff)
+    with ab ab' have "c' = to_fract b" by auto
+    from this and \<open>is_unit b\<close> show ?thesis by (rule that)
+  qed
+  hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp
+  finally have "p = smult b e" by (simp only: fract_poly_eq_iff)
+  hence "p = [:b:] * e" by simp
+  with b have "normalize p = normalize e" 
+    by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff)
+  also have "normalize e = msetprod A"
+    by (simp add: multiset.map_comp e_def A_def normalize_msetprod)
+  finally have "msetprod A = normalize p" ..
+  
+  have "prime_elem p" if "p \<in># A" for p
+    using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible 
+                        dest!: field_poly_in_prime_factorization_imp_prime )
+  from this and \<open>msetprod A = normalize p\<close> show ?thesis
+    by (intro exI[of _ A]) blast
+qed
+
+lemma poly_prime_factorization_exists:
+  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
+  assumes "p \<noteq> 0"
+  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize p"
+proof -
+  define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))"
+  have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize (primitive_part p)"
+    by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all)
+  then guess A by (elim exE conjE) note A = this
+  moreover from assms have "msetprod B = [:content p:]"
+    by (simp add: B_def msetprod_const_poly msetprod_prime_factorization)
+  moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p"
+    by (auto simp: B_def intro: lift_prime_elem_poly dest: in_prime_factorization_imp_prime)
+  ultimately show ?thesis by (intro exI[of _ "B + A"]) auto
+qed
+
+end
+
+
+subsection \<open>Typeclass instances\<close>
+
+instance poly :: (factorial_ring_gcd) factorial_semiring
+  by standard (rule poly_prime_factorization_exists)  
+
+instantiation poly :: (factorial_ring_gcd) factorial_ring_gcd
+begin
+
+definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
+  [code del]: "gcd_poly = gcd_factorial"
+
+definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
+  [code del]: "lcm_poly = lcm_factorial"
+  
+definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where
+ [code del]: "Gcd_poly = Gcd_factorial"
+
+definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where
+ [code del]: "Lcm_poly = Lcm_factorial"
+ 
+instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def)
+
+end
+
+instantiation poly :: ("{field,factorial_ring_gcd}") euclidean_ring
+begin
+
+definition euclidean_size_poly :: "'a poly \<Rightarrow> nat" where
+  "euclidean_size_poly p = (if p = 0 then 0 else 2 ^ degree p)"
+
+instance 
+  by standard (auto simp: euclidean_size_poly_def intro!: degree_mod_less' degree_mult_right_le)
+end
+
+
+instance poly :: ("{field,factorial_ring_gcd}") euclidean_ring_gcd
+  by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def eucl_eq_factorial)
+
+  
+subsection \<open>Polynomial GCD\<close>
+
+lemma gcd_poly_decompose:
+  fixes p q :: "'a :: factorial_ring_gcd poly"
+  shows "gcd p q = 
+           smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
+proof (rule sym, rule gcdI)
+  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
+          [:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all
+  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p"
+    by simp
+next
+  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
+          [:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all
+  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q"
+    by simp
+next
+  fix d assume "d dvd p" "d dvd q"
+  hence "[:content d:] * primitive_part d dvd 
+           [:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)"
+    by (intro mult_dvd_mono) auto
+  thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
+    by simp
+qed (auto simp: normalize_smult)
+  
+
+lemma gcd_poly_pseudo_mod:
+  fixes p q :: "'a :: factorial_ring_gcd poly"
+  assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1"
+  shows   "gcd p q = gcd q (primitive_part (pseudo_mod p q))"
+proof -
+  define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)"
+  define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]"
+  have [simp]: "primitive_part a = unit_factor a"
+    by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0)
+  from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def)
+  
+  have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def)
+  have "gcd (q * r + s) q = gcd q s"
+    using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac)
+  with pseudo_divmod(1)[OF nz rs]
+    have "gcd (p * a) q = gcd q s" by (simp add: a_def)
+  also from prim have "gcd (p * a) q = gcd p q"
+    by (subst gcd_poly_decompose)
+       (auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim 
+             simp del: mult_pCons_right )
+  also from prim have "gcd q s = gcd q (primitive_part s)"
+    by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim)
+  also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def)
+  finally show ?thesis .
+qed
+
+lemma degree_pseudo_mod_less:
+  assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0"
+  shows   "degree (pseudo_mod p q) < degree q"
+  using pseudo_mod(2)[of q p] assms by auto
+
+function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
+  "gcd_poly_code_aux p q = 
+     (if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" 
+by auto
+termination
+  by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)")
+     (auto simp: degree_primitive_part degree_pseudo_mod_less)
+
+declare gcd_poly_code_aux.simps [simp del]
+
+lemma gcd_poly_code_aux_correct:
+  assumes "content p = 1" "q = 0 \<or> content q = 1"
+  shows   "gcd_poly_code_aux p q = gcd p q"
+  using assms
+proof (induction p q rule: gcd_poly_code_aux.induct)
+  case (1 p q)
+  show ?case
+  proof (cases "q = 0")
+    case True
+    thus ?thesis by (subst gcd_poly_code_aux.simps) auto
+  next
+    case False
+    hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))"
+      by (subst gcd_poly_code_aux.simps) simp_all
+    also from "1.prems" False 
+      have "primitive_part (pseudo_mod p q) = 0 \<or> 
+              content (primitive_part (pseudo_mod p q)) = 1"
+      by (cases "pseudo_mod p q = 0") auto
+    with "1.prems" False 
+      have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = 
+              gcd q (primitive_part (pseudo_mod p q))"
+      by (intro 1) simp_all
+    also from "1.prems" False 
+      have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto
+    finally show ?thesis .
+  qed
+qed
+
+definition gcd_poly_code 
+    :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" 
+  where "gcd_poly_code p q = 
+           (if p = 0 then normalize q else if q = 0 then normalize p else
+              smult (gcd (content p) (content q)) 
+                (gcd_poly_code_aux (primitive_part p) (primitive_part q)))"
+
+lemma lcm_poly_code [code]: 
+  fixes p q :: "'a :: factorial_ring_gcd poly"
+  shows "lcm p q = normalize (p * q) div gcd p q"
+  by (rule lcm_gcd)
+
+lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q"
+  by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric])
+
+declare Gcd_set
+  [where ?'a = "'a :: factorial_ring_gcd poly", code]
+
+declare Lcm_set
+  [where ?'a = "'a :: factorial_ring_gcd poly", code]
+  
+value [code] "Lcm {[:1,2,3:], [:2,3,4::int poly:]}"
+
+end
--- a/src/HOL/Library/Polynomial_GCD_euclidean.thy	Sun Aug 14 23:35:16 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,140 +0,0 @@
-(*  Title:      HOL/Library/Polynomial_GCD_euclidean.thy
-    Author:     Brian Huffman
-    Author:     Clemens Ballarin
-    Author:     Amine Chaieb
-    Author:     Florian Haftmann
-*)
-
-section \<open>GCD and LCM on polynomials over a field\<close>
-
-theory Polynomial_GCD_euclidean
-imports Main "~~/src/HOL/GCD" "~~/src/HOL/Library/Polynomial"
-begin
-
-subsection \<open>GCD of polynomials\<close>
-
-instantiation poly :: (field) gcd
-begin
-
-function gcd_poly :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
-where
-  "gcd (x::'a poly) 0 = smult (inverse (coeff x (degree x))) x"
-| "y \<noteq> 0 \<Longrightarrow> gcd (x::'a poly) y = gcd y (x mod y)"
-by auto
-
-termination "gcd :: _ poly \<Rightarrow> _"
-by (relation "measure (\<lambda>(x, y). if y = 0 then 0 else Suc (degree y))")
-   (auto dest: degree_mod_less)
-
-declare gcd_poly.simps [simp del]
-
-definition lcm_poly :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
-where
-  "lcm_poly a b = a * b div smult (coeff a (degree a) * coeff b (degree b)) (gcd a b)"
-
-instance ..
-
-end
-
-lemma
-  fixes x y :: "_ poly"
-  shows poly_gcd_dvd1 [iff]: "gcd x y dvd x"
-    and poly_gcd_dvd2 [iff]: "gcd x y dvd y"
-  apply (induct x y rule: gcd_poly.induct)
-  apply (simp_all add: gcd_poly.simps)
-  apply (fastforce simp add: smult_dvd_iff dest: inverse_zero_imp_zero)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-lemma poly_gcd_greatest:
-  fixes k x y :: "_ poly"
-  shows "k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd gcd x y"
-  by (induct x y rule: gcd_poly.induct)
-     (simp_all add: gcd_poly.simps dvd_mod dvd_smult)
-
-lemma dvd_poly_gcd_iff [iff]:
-  fixes k x y :: "_ poly"
-  shows "k dvd gcd x y \<longleftrightarrow> k dvd x \<and> k dvd y"
-  by (auto intro!: poly_gcd_greatest intro: dvd_trans [of _ "gcd x y"])
-
-lemma poly_gcd_monic:
-  fixes x y :: "_ poly"
-  shows "coeff (gcd x y) (degree (gcd x y)) =
-    (if x = 0 \<and> y = 0 then 0 else 1)"
-  by (induct x y rule: gcd_poly.induct)
-     (simp_all add: gcd_poly.simps nonzero_imp_inverse_nonzero)
-
-lemma poly_gcd_zero_iff [simp]:
-  fixes x y :: "_ poly"
-  shows "gcd x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
-  by (simp only: dvd_0_left_iff [symmetric] dvd_poly_gcd_iff)
-
-lemma poly_gcd_0_0 [simp]:
-  "gcd (0::_ poly) 0 = 0"
-  by simp
-
-lemma poly_dvd_antisym:
-  fixes p q :: "'a::idom poly"
-  assumes coeff: "coeff p (degree p) = coeff q (degree q)"
-  assumes dvd1: "p dvd q" and dvd2: "q dvd p" shows "p = q"
-proof (cases "p = 0")
-  case True with coeff show "p = q" by simp
-next
-  case False with coeff have "q \<noteq> 0" by auto
-  have degree: "degree p = degree q"
-    using \<open>p dvd q\<close> \<open>q dvd p\<close> \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close>
-    by (intro order_antisym dvd_imp_degree_le)
-
-  from \<open>p dvd q\<close> obtain a where a: "q = p * a" ..
-  with \<open>q \<noteq> 0\<close> have "a \<noteq> 0" by auto
-  with degree a \<open>p \<noteq> 0\<close> have "degree a = 0"
-    by (simp add: degree_mult_eq)
-  with coeff a show "p = q"
-    by (cases a, auto split: if_splits)
-qed
-
-lemma poly_gcd_unique:
-  fixes d x y :: "_ poly"
-  assumes dvd1: "d dvd x" and dvd2: "d dvd y"
-    and greatest: "\<And>k. k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd d"
-    and monic: "coeff d (degree d) = (if x = 0 \<and> y = 0 then 0 else 1)"
-  shows "gcd x y = d"
-proof -
-  have "coeff (gcd x y) (degree (gcd x y)) = coeff d (degree d)"
-    by (simp_all add: poly_gcd_monic monic)
-  moreover have "gcd x y dvd d"
-    using poly_gcd_dvd1 poly_gcd_dvd2 by (rule greatest)
-  moreover have "d dvd gcd x y"
-    using dvd1 dvd2 by (rule poly_gcd_greatest)
-  ultimately show ?thesis
-    by (rule poly_dvd_antisym)
-qed
-
-instance poly :: (field) semiring_gcd
-proof
-  fix p q :: "'a::field poly"
-  show "normalize (gcd p q) = gcd p q"
-    by (induct p q rule: gcd_poly.induct)
-      (simp_all add: gcd_poly.simps normalize_poly_def)
-  show "lcm p q = normalize (p * q) div gcd p q"
-    by (simp add: coeff_degree_mult div_smult_left div_smult_right lcm_poly_def normalize_poly_def)
-      (metis (no_types, lifting) div_smult_right inverse_mult_distrib inverse_zero mult.commute pdivmod_rel pdivmod_rel_def smult_eq_0_iff)
-qed simp_all
-
-lemma poly_gcd_1_left [simp]: "gcd 1 y = (1 :: _ poly)"
-by (rule poly_gcd_unique) simp_all
-
-lemma poly_gcd_1_right [simp]: "gcd x 1 = (1 :: _ poly)"
-by (rule poly_gcd_unique) simp_all
-
-lemma poly_gcd_minus_left [simp]: "gcd (- x) y = gcd x (y :: _ poly)"
-by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic)
-
-lemma poly_gcd_minus_right [simp]: "gcd x (- y) = gcd x (y :: _ poly)"
-by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic)
-
-lemma poly_gcd_code [code]:
-  "gcd x y = (if y = 0 then normalize x else gcd y (x mod (y :: _ poly)))"
-  by (simp add: gcd_poly.simps)
-
-end
--- a/src/HOL/Number_Theory/Polynomial_Factorial.thy	Sun Aug 14 23:35:16 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1468 +0,0 @@
-theory Polynomial_Factorial
-imports 
-  Complex_Main
-  Euclidean_Algorithm 
-  "~~/src/HOL/Library/Polynomial"
-  "~~/src/HOL/Library/Normalized_Fraction"
-begin
-
-subsection \<open>Prelude\<close>
-
-lemma msetprod_mult: 
-  "msetprod (image_mset (\<lambda>x. f x * g x) A) = msetprod (image_mset f A) * msetprod (image_mset g A)"
-  by (induction A) (simp_all add: mult_ac)
-  
-lemma msetprod_const: "msetprod (image_mset (\<lambda>_. c) A) = c ^ size A"
-  by (induction A) (simp_all add: mult_ac)
-  
-lemma dvd_field_iff: "x dvd y \<longleftrightarrow> (x = 0 \<longrightarrow> y = (0::'a::field))"
-proof safe
-  assume "x \<noteq> 0"
-  hence "y = x * (y / x)" by (simp add: field_simps)
-  thus "x dvd y" by (rule dvdI)
-qed auto
-
-lemma nat_descend_induct [case_names base descend]:
-  assumes "\<And>k::nat. k > n \<Longrightarrow> P k"
-  assumes "\<And>k::nat. k \<le> n \<Longrightarrow> (\<And>i. i > k \<Longrightarrow> P i) \<Longrightarrow> P k"
-  shows   "P m"
-  using assms by induction_schema (force intro!: wf_measure[of "\<lambda>k. Suc n - k"])+
-
-lemma GreatestI_ex: "\<exists>k::nat. P k \<Longrightarrow> \<forall>y. P y \<longrightarrow> y < b \<Longrightarrow> P (GREATEST x. P x)"
-  by (metis GreatestI)
-
-
-context field
-begin
-
-subclass idom_divide ..
-
-end
-
-context field
-begin
-
-definition normalize_field :: "'a \<Rightarrow> 'a" 
-  where [simp]: "normalize_field x = (if x = 0 then 0 else 1)"
-definition unit_factor_field :: "'a \<Rightarrow> 'a" 
-  where [simp]: "unit_factor_field x = x"
-definition euclidean_size_field :: "'a \<Rightarrow> nat" 
-  where [simp]: "euclidean_size_field x = (if x = 0 then 0 else 1)"
-definition mod_field :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
-  where [simp]: "mod_field x y = (if y = 0 then x else 0)"
-
-end
-
-instantiation real :: euclidean_ring
-begin
-
-definition [simp]: "normalize_real = (normalize_field :: real \<Rightarrow> _)"
-definition [simp]: "unit_factor_real = (unit_factor_field :: real \<Rightarrow> _)"
-definition [simp]: "euclidean_size_real = (euclidean_size_field :: real \<Rightarrow> _)"
-definition [simp]: "mod_real = (mod_field :: real \<Rightarrow> _)"
-
-instance by standard (simp_all add: dvd_field_iff divide_simps)
-end
-
-instantiation real :: euclidean_ring_gcd
-begin
-
-definition gcd_real :: "real \<Rightarrow> real \<Rightarrow> real" where
-  "gcd_real = gcd_eucl"
-definition lcm_real :: "real \<Rightarrow> real \<Rightarrow> real" where
-  "lcm_real = lcm_eucl"
-definition Gcd_real :: "real set \<Rightarrow> real" where
- "Gcd_real = Gcd_eucl"
-definition Lcm_real :: "real set \<Rightarrow> real" where
- "Lcm_real = Lcm_eucl"
-
-instance by standard (simp_all add: gcd_real_def lcm_real_def Gcd_real_def Lcm_real_def)
-
-end
-
-instantiation rat :: euclidean_ring
-begin
-
-definition [simp]: "normalize_rat = (normalize_field :: rat \<Rightarrow> _)"
-definition [simp]: "unit_factor_rat = (unit_factor_field :: rat \<Rightarrow> _)"
-definition [simp]: "euclidean_size_rat = (euclidean_size_field :: rat \<Rightarrow> _)"
-definition [simp]: "mod_rat = (mod_field :: rat \<Rightarrow> _)"
-
-instance by standard (simp_all add: dvd_field_iff divide_simps)
-end
-
-instantiation rat :: euclidean_ring_gcd
-begin
-
-definition gcd_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" where
-  "gcd_rat = gcd_eucl"
-definition lcm_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" where
-  "lcm_rat = lcm_eucl"
-definition Gcd_rat :: "rat set \<Rightarrow> rat" where
- "Gcd_rat = Gcd_eucl"
-definition Lcm_rat :: "rat set \<Rightarrow> rat" where
- "Lcm_rat = Lcm_eucl"
-
-instance by standard (simp_all add: gcd_rat_def lcm_rat_def Gcd_rat_def Lcm_rat_def)
-
-end
-
-instantiation complex :: euclidean_ring
-begin
-
-definition [simp]: "normalize_complex = (normalize_field :: complex \<Rightarrow> _)"
-definition [simp]: "unit_factor_complex = (unit_factor_field :: complex \<Rightarrow> _)"
-definition [simp]: "euclidean_size_complex = (euclidean_size_field :: complex \<Rightarrow> _)"
-definition [simp]: "mod_complex = (mod_field :: complex \<Rightarrow> _)"
-
-instance by standard (simp_all add: dvd_field_iff divide_simps)
-end
-
-instantiation complex :: euclidean_ring_gcd
-begin
-
-definition gcd_complex :: "complex \<Rightarrow> complex \<Rightarrow> complex" where
-  "gcd_complex = gcd_eucl"
-definition lcm_complex :: "complex \<Rightarrow> complex \<Rightarrow> complex" where
-  "lcm_complex = lcm_eucl"
-definition Gcd_complex :: "complex set \<Rightarrow> complex" where
- "Gcd_complex = Gcd_eucl"
-definition Lcm_complex :: "complex set \<Rightarrow> complex" where
- "Lcm_complex = Lcm_eucl"
-
-instance by standard (simp_all add: gcd_complex_def lcm_complex_def Gcd_complex_def Lcm_complex_def)
-
-end
-
-
-
-subsection \<open>Lifting elements into the field of fractions\<close>
-
-definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" where "to_fract x = Fract x 1"
-
-lemma to_fract_0 [simp]: "to_fract 0 = 0"
-  by (simp add: to_fract_def eq_fract Zero_fract_def)
-
-lemma to_fract_1 [simp]: "to_fract 1 = 1"
-  by (simp add: to_fract_def eq_fract One_fract_def)
-
-lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y"
-  by (simp add: to_fract_def)
-
-lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y"
-  by (simp add: to_fract_def)
-  
-lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x"
-  by (simp add: to_fract_def)
-  
-lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y"
-  by (simp add: to_fract_def)
-
-lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y"
-  by (simp add: to_fract_def eq_fract)
-  
-lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0"
-  by (simp add: to_fract_def Zero_fract_def eq_fract)
-
-lemma snd_quot_of_fract_nonzero [simp]: "snd (quot_of_fract x) \<noteq> 0"
-  by transfer simp
-
-lemma Fract_quot_of_fract [simp]: "Fract (fst (quot_of_fract x)) (snd (quot_of_fract x)) = x"
-  by transfer (simp del: fractrel_iff, subst fractrel_normalize_quot_left, simp)
-
-lemma to_fract_quot_of_fract:
-  assumes "snd (quot_of_fract x) = 1"
-  shows   "to_fract (fst (quot_of_fract x)) = x"
-proof -
-  have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp
-  also note assms
-  finally show ?thesis by (simp add: to_fract_def)
-qed
-
-lemma snd_quot_of_fract_Fract_whole:
-  assumes "y dvd x"
-  shows   "snd (quot_of_fract (Fract x y)) = 1"
-  using assms by transfer (auto simp: normalize_quot_def Let_def gcd_proj2_if_dvd)
-  
-lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b"
-  by (simp add: to_fract_def)
-
-lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)"
-  unfolding to_fract_def by transfer (simp add: normalize_quot_def)
-
-lemma fst_quot_of_fract_eq_0_iff [simp]: "fst (quot_of_fract x) = 0 \<longleftrightarrow> x = 0"
-  by transfer simp
- 
-lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1"
-  unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all
-
-lemma coprime_quot_of_fract:
-  "coprime (fst (quot_of_fract x)) (snd (quot_of_fract x))"
-  by transfer (simp add: coprime_normalize_quot)
-
-lemma unit_factor_snd_quot_of_fract: "unit_factor (snd (quot_of_fract x)) = 1"
-  using quot_of_fract_in_normalized_fracts[of x] 
-  by (simp add: normalized_fracts_def case_prod_unfold)  
-
-lemma unit_factor_1_imp_normalized: "unit_factor x = 1 \<Longrightarrow> normalize x = x"
-  by (subst (2) normalize_mult_unit_factor [symmetric, of x])
-     (simp del: normalize_mult_unit_factor)
-  
-lemma normalize_snd_quot_of_fract: "normalize (snd (quot_of_fract x)) = snd (quot_of_fract x)"
-  by (intro unit_factor_1_imp_normalized unit_factor_snd_quot_of_fract)
-
-  
-subsection \<open>Mapping polynomials\<close>
-
-definition map_poly 
-     :: "('a :: comm_semiring_0 \<Rightarrow> 'b :: comm_semiring_0) \<Rightarrow> 'a poly \<Rightarrow> 'b poly" where
-  "map_poly f p = Poly (map f (coeffs p))"
-
-lemma map_poly_0 [simp]: "map_poly f 0 = 0"
-  by (simp add: map_poly_def)
-
-lemma map_poly_1: "map_poly f 1 = [:f 1:]"
-  by (simp add: map_poly_def)
-
-lemma map_poly_1' [simp]: "f 1 = 1 \<Longrightarrow> map_poly f 1 = 1"
-  by (simp add: map_poly_def one_poly_def)
-
-lemma coeff_map_poly:
-  assumes "f 0 = 0"
-  shows   "coeff (map_poly f p) n = f (coeff p n)"
-  by (auto simp: map_poly_def nth_default_def coeffs_def assms
-        not_less Suc_le_eq coeff_eq_0 simp del: upt_Suc)
-
-lemma coeffs_map_poly [code abstract]: 
-    "coeffs (map_poly f p) = strip_while (op = 0) (map f (coeffs p))"
-  by (simp add: map_poly_def)
-
-lemma set_coeffs_map_poly:
-  "(\<And>x. f x = 0 \<longleftrightarrow> x = 0) \<Longrightarrow> set (coeffs (map_poly f p)) = f ` set (coeffs p)"
-  by (cases "p = 0") (auto simp: coeffs_map_poly last_map last_coeffs_not_0)
-
-lemma coeffs_map_poly': 
-  assumes "(\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0)"
-  shows   "coeffs (map_poly f p) = map f (coeffs p)"
-  by (cases "p = 0") (auto simp: coeffs_map_poly last_map last_coeffs_not_0 assms 
-                           intro!: strip_while_not_last split: if_splits)
-
-lemma degree_map_poly:
-  assumes "\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
-  shows   "degree (map_poly f p) = degree p"
-  by (simp add: degree_eq_length_coeffs coeffs_map_poly' assms)
-
-lemma map_poly_eq_0_iff:
-  assumes "f 0 = 0" "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
-  shows   "map_poly f p = 0 \<longleftrightarrow> p = 0"
-proof -
-  {
-    fix n :: nat
-    have "coeff (map_poly f p) n = f (coeff p n)" by (simp add: coeff_map_poly assms)
-    also have "\<dots> = 0 \<longleftrightarrow> coeff p n = 0"
-    proof (cases "n < length (coeffs p)")
-      case True
-      hence "coeff p n \<in> set (coeffs p)" by (auto simp: coeffs_def simp del: upt_Suc)
-      with assms show "f (coeff p n) = 0 \<longleftrightarrow> coeff p n = 0" by auto
-    qed (auto simp: assms length_coeffs nth_default_coeffs_eq [symmetric] nth_default_def)
-    finally have "(coeff (map_poly f p) n = 0) = (coeff p n = 0)" .
-  }
-  thus ?thesis by (auto simp: poly_eq_iff)
-qed
-
-lemma map_poly_smult:
-  assumes "f 0 = 0""\<And>c x. f (c * x) = f c * f x"
-  shows   "map_poly f (smult c p) = smult (f c) (map_poly f p)"
-  by (intro poly_eqI) (simp_all add: assms coeff_map_poly)
-
-lemma map_poly_pCons:
-  assumes "f 0 = 0"
-  shows   "map_poly f (pCons c p) = pCons (f c) (map_poly f p)"
-  by (intro poly_eqI) (simp_all add: assms coeff_map_poly coeff_pCons split: nat.splits)
-
-lemma map_poly_map_poly:
-  assumes "f 0 = 0" "g 0 = 0"
-  shows   "map_poly f (map_poly g p) = map_poly (f \<circ> g) p"
-  by (intro poly_eqI) (simp add: coeff_map_poly assms)
-
-lemma map_poly_id [simp]: "map_poly id p = p"
-  by (simp add: map_poly_def)
-
-lemma map_poly_id' [simp]: "map_poly (\<lambda>x. x) p = p"
-  by (simp add: map_poly_def)
-
-lemma map_poly_cong: 
-  assumes "(\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = g x)"
-  shows   "map_poly f p = map_poly g p"
-proof -
-  from assms have "map f (coeffs p) = map g (coeffs p)" by (intro map_cong) simp_all
-  thus ?thesis by (simp only: coeffs_eq_iff coeffs_map_poly)
-qed
-
-lemma map_poly_monom: "f 0 = 0 \<Longrightarrow> map_poly f (monom c n) = monom (f c) n"
-  by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-lemma map_poly_idI:
-  assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
-  shows   "map_poly f p = p"
-  using map_poly_cong[OF assms, of _ id] by simp
-
-lemma map_poly_idI':
-  assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
-  shows   "p = map_poly f p"
-  using map_poly_cong[OF assms, of _ id] by simp
-
-lemma smult_conv_map_poly: "smult c p = map_poly (\<lambda>x. c * x) p"
-  by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-lemma div_const_poly_conv_map_poly: 
-  assumes "[:c:] dvd p"
-  shows   "p div [:c:] = map_poly (\<lambda>x. x div c) p"
-proof (cases "c = 0")
-  case False
-  from assms obtain q where p: "p = [:c:] * q" by (erule dvdE)
-  moreover {
-    have "smult c q = [:c:] * q" by simp
-    also have "\<dots> div [:c:] = q" by (rule nonzero_mult_divide_cancel_left) (insert False, auto)
-    finally have "smult c q div [:c:] = q" .
-  }
-  ultimately show ?thesis by (intro poly_eqI) (auto simp: coeff_map_poly False)
-qed (auto intro!: poly_eqI simp: coeff_map_poly)
-
-
-
-subsection \<open>Various facts about polynomials\<close>
-
-lemma msetprod_const_poly: "msetprod (image_mset (\<lambda>x. [:f x:]) A) = [:msetprod (image_mset f A):]"
-  by (induction A) (simp_all add: one_poly_def mult_ac)
-
-lemma degree_mod_less': "b \<noteq> 0 \<Longrightarrow> a mod b \<noteq> 0 \<Longrightarrow> degree (a mod b) < degree b"
-  using degree_mod_less[of b a] by auto
-  
-lemma is_unit_const_poly_iff: 
-    "[:c :: 'a :: {comm_semiring_1,semiring_no_zero_divisors}:] dvd 1 \<longleftrightarrow> c dvd 1"
-  by (auto simp: one_poly_def)
-
-lemma is_unit_poly_iff:
-  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
-  shows "p dvd 1 \<longleftrightarrow> (\<exists>c. p = [:c:] \<and> c dvd 1)"
-proof safe
-  assume "p dvd 1"
-  then obtain q where pq: "1 = p * q" by (erule dvdE)
-  hence "degree 1 = degree (p * q)" by simp
-  also from pq have "\<dots> = degree p + degree q" by (intro degree_mult_eq) auto
-  finally have "degree p = 0" by simp
-  from degree_eq_zeroE[OF this] obtain c where c: "p = [:c:]" .
-  with \<open>p dvd 1\<close> show "\<exists>c. p = [:c:] \<and> c dvd 1"
-    by (auto simp: is_unit_const_poly_iff)
-qed (auto simp: is_unit_const_poly_iff)
-
-lemma is_unit_polyE:
-  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
-  assumes "p dvd 1" obtains c where "p = [:c:]" "c dvd 1"
-  using assms by (subst (asm) is_unit_poly_iff) blast
-
-lemma smult_eq_iff:
-  assumes "(b :: 'a :: field) \<noteq> 0"
-  shows   "smult a p = smult b q \<longleftrightarrow> smult (a / b) p = q"
-proof
-  assume "smult a p = smult b q"
-  also from assms have "smult (inverse b) \<dots> = q" by simp
-  finally show "smult (a / b) p = q" by (simp add: field_simps)
-qed (insert assms, auto)
-
-lemma irreducible_const_poly_iff:
-  fixes c :: "'a :: {comm_semiring_1,semiring_no_zero_divisors}"
-  shows "irreducible [:c:] \<longleftrightarrow> irreducible c"
-proof
-  assume A: "irreducible c"
-  show "irreducible [:c:]"
-  proof (rule irreducibleI)
-    fix a b assume ab: "[:c:] = a * b"
-    hence "degree [:c:] = degree (a * b)" by (simp only: )
-    also from A ab have "a \<noteq> 0" "b \<noteq> 0" by auto
-    hence "degree (a * b) = degree a + degree b" by (simp add: degree_mult_eq)
-    finally have "degree a = 0" "degree b = 0" by auto
-    then obtain a' b' where ab': "a = [:a':]" "b = [:b':]" by (auto elim!: degree_eq_zeroE)
-    from ab have "coeff [:c:] 0 = coeff (a * b) 0" by (simp only: )
-    hence "c = a' * b'" by (simp add: ab' mult_ac)
-    from A and this have "a' dvd 1 \<or> b' dvd 1" by (rule irreducibleD)
-    with ab' show "a dvd 1 \<or> b dvd 1" by (auto simp: one_poly_def)
-  qed (insert A, auto simp: irreducible_def is_unit_poly_iff)
-next
-  assume A: "irreducible [:c:]"
-  show "irreducible c"
-  proof (rule irreducibleI)
-    fix a b assume ab: "c = a * b"
-    hence "[:c:] = [:a:] * [:b:]" by (simp add: mult_ac)
-    from A and this have "[:a:] dvd 1 \<or> [:b:] dvd 1" by (rule irreducibleD)
-    thus "a dvd 1 \<or> b dvd 1" by (simp add: one_poly_def)
-  qed (insert A, auto simp: irreducible_def one_poly_def)
-qed
-
-lemma lead_coeff_monom [simp]: "lead_coeff (monom c n) = c"
-  by (cases "c = 0") (simp_all add: lead_coeff_def degree_monom_eq)
-
-  
-subsection \<open>Normalisation of polynomials\<close>
-
-instantiation poly :: ("{normalization_semidom,idom_divide}") normalization_semidom
-begin
-
-definition unit_factor_poly :: "'a poly \<Rightarrow> 'a poly"
-  where "unit_factor_poly p = monom (unit_factor (lead_coeff p)) 0"
-
-definition normalize_poly :: "'a poly \<Rightarrow> 'a poly"
-  where "normalize_poly p = map_poly (\<lambda>x. x div unit_factor (lead_coeff p)) p"
-
-lemma normalize_poly_altdef:
-  "normalize p = p div [:unit_factor (lead_coeff p):]"
-proof (cases "p = 0")
-  case False
-  thus ?thesis
-    by (subst div_const_poly_conv_map_poly)
-       (auto simp: normalize_poly_def const_poly_dvd_iff lead_coeff_def )
-qed (auto simp: normalize_poly_def)
-
-instance
-proof
-  fix p :: "'a poly"
-  show "unit_factor p * normalize p = p"
-    by (cases "p = 0")
-       (simp_all add: unit_factor_poly_def normalize_poly_def monom_0 
-          smult_conv_map_poly map_poly_map_poly o_def)
-next
-  fix p :: "'a poly"
-  assume "is_unit p"
-  then obtain c where p: "p = [:c:]" "is_unit c" by (auto simp: is_unit_poly_iff)
-  thus "normalize p = 1"
-    by (simp add: normalize_poly_def map_poly_pCons is_unit_normalize one_poly_def)
-next
-  fix p :: "'a poly" assume "p \<noteq> 0"
-  thus "is_unit (unit_factor p)"
-    by (simp add: unit_factor_poly_def monom_0 is_unit_poly_iff)
-qed (simp_all add: normalize_poly_def unit_factor_poly_def monom_0 lead_coeff_mult unit_factor_mult)
-
-end
-
-lemma unit_factor_pCons:
-  "unit_factor (pCons a p) = (if p = 0 then monom (unit_factor a) 0 else unit_factor p)"
-  by (simp add: unit_factor_poly_def)
-
-lemma normalize_monom [simp]:
-  "normalize (monom a n) = monom (normalize a) n"
-  by (simp add: map_poly_monom normalize_poly_def)
-
-lemma unit_factor_monom [simp]:
-  "unit_factor (monom a n) = monom (unit_factor a) 0"
-  by (simp add: unit_factor_poly_def )
-
-lemma normalize_const_poly: "normalize [:c:] = [:normalize c:]"
-  by (simp add: normalize_poly_def map_poly_pCons)
-
-lemma normalize_smult: "normalize (smult c p) = smult (normalize c) (normalize p)"
-proof -
-  have "smult c p = [:c:] * p" by simp
-  also have "normalize \<dots> = smult (normalize c) (normalize p)"
-    by (subst normalize_mult) (simp add: normalize_const_poly)
-  finally show ?thesis .
-qed
-
-lemma is_unit_smult_iff: "smult c p dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
-proof -
-  have "smult c p = [:c:] * p" by simp
-  also have "\<dots> dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
-  proof safe
-    assume A: "[:c:] * p dvd 1"
-    thus "p dvd 1" by (rule dvd_mult_right)
-    from A obtain q where B: "1 = [:c:] * p * q" by (erule dvdE)
-    have "c dvd c * (coeff p 0 * coeff q 0)" by simp
-    also have "\<dots> = coeff ([:c:] * p * q) 0" by (simp add: mult.assoc coeff_mult)
-    also note B [symmetric]
-    finally show "c dvd 1" by simp
-  next
-    assume "c dvd 1" "p dvd 1"
-    from \<open>c dvd 1\<close> obtain d where "1 = c * d" by (erule dvdE)
-    hence "1 = [:c:] * [:d:]" by (simp add: one_poly_def mult_ac)
-    hence "[:c:] dvd 1" by (rule dvdI)
-    from mult_dvd_mono[OF this \<open>p dvd 1\<close>] show "[:c:] * p dvd 1" by simp
-  qed
-  finally show ?thesis .
-qed
-
-
-subsection \<open>Content and primitive part of a polynomial\<close>
-
-definition content :: "('a :: semiring_Gcd poly) \<Rightarrow> 'a" where
-  "content p = Gcd (set (coeffs p))"
-
-lemma content_0 [simp]: "content 0 = 0"
-  by (simp add: content_def)
-
-lemma content_1 [simp]: "content 1 = 1"
-  by (simp add: content_def)
-
-lemma content_const [simp]: "content [:c:] = normalize c"
-  by (simp add: content_def cCons_def)
-
-lemma const_poly_dvd_iff_dvd_content:
-  fixes c :: "'a :: semiring_Gcd"
-  shows "[:c:] dvd p \<longleftrightarrow> c dvd content p"
-proof (cases "p = 0")
-  case [simp]: False
-  have "[:c:] dvd p \<longleftrightarrow> (\<forall>n. c dvd coeff p n)" by (rule const_poly_dvd_iff)
-  also have "\<dots> \<longleftrightarrow> (\<forall>a\<in>set (coeffs p). c dvd a)"
-  proof safe
-    fix n :: nat assume "\<forall>a\<in>set (coeffs p). c dvd a"
-    thus "c dvd coeff p n"
-      by (cases "n \<le> degree p") (auto simp: coeff_eq_0 coeffs_def split: if_splits)
-  qed (auto simp: coeffs_def simp del: upt_Suc split: if_splits)
-  also have "\<dots> \<longleftrightarrow> c dvd content p"
-    by (simp add: content_def dvd_Gcd_iff mult.commute [of "unit_factor x" for x]
-          dvd_mult_unit_iff lead_coeff_nonzero)
-  finally show ?thesis .
-qed simp_all
-
-lemma content_dvd [simp]: "[:content p:] dvd p"
-  by (subst const_poly_dvd_iff_dvd_content) simp_all
-  
-lemma content_dvd_coeff [simp]: "content p dvd coeff p n"
-  by (cases "n \<le> degree p") 
-     (auto simp: content_def coeffs_def not_le coeff_eq_0 simp del: upt_Suc intro: Gcd_dvd)
-
-lemma content_dvd_coeffs: "c \<in> set (coeffs p) \<Longrightarrow> content p dvd c"
-  by (simp add: content_def Gcd_dvd)
-
-lemma normalize_content [simp]: "normalize (content p) = content p"
-  by (simp add: content_def)
-
-lemma is_unit_content_iff [simp]: "is_unit (content p) \<longleftrightarrow> content p = 1"
-proof
-  assume "is_unit (content p)"
-  hence "normalize (content p) = 1" by (simp add: is_unit_normalize del: normalize_content)
-  thus "content p = 1" by simp
-qed auto
-
-lemma content_smult [simp]: "content (smult c p) = normalize c * content p"
-  by (simp add: content_def coeffs_smult Gcd_mult)
-
-lemma content_eq_zero_iff [simp]: "content p = 0 \<longleftrightarrow> p = 0"
-  by (auto simp: content_def simp: poly_eq_iff coeffs_def)
-
-definition primitive_part :: "'a :: {semiring_Gcd,idom_divide} poly \<Rightarrow> 'a poly" where
-  "primitive_part p = (if p = 0 then 0 else map_poly (\<lambda>x. x div content p) p)"
-  
-lemma primitive_part_0 [simp]: "primitive_part 0 = 0"
-  by (simp add: primitive_part_def)
-
-lemma content_times_primitive_part [simp]:
-  fixes p :: "'a :: {idom_divide, semiring_Gcd} poly"
-  shows "smult (content p) (primitive_part p) = p"
-proof (cases "p = 0")
-  case False
-  thus ?thesis
-  unfolding primitive_part_def
-  by (auto simp: smult_conv_map_poly map_poly_map_poly o_def content_dvd_coeffs 
-           intro: map_poly_idI)
-qed simp_all
-
-lemma primitive_part_eq_0_iff [simp]: "primitive_part p = 0 \<longleftrightarrow> p = 0"
-proof (cases "p = 0")
-  case False
-  hence "primitive_part p = map_poly (\<lambda>x. x div content p) p"
-    by (simp add:  primitive_part_def)
-  also from False have "\<dots> = 0 \<longleftrightarrow> p = 0"
-    by (intro map_poly_eq_0_iff) (auto simp: dvd_div_eq_0_iff content_dvd_coeffs)
-  finally show ?thesis using False by simp
-qed simp
-
-lemma content_primitive_part [simp]:
-  assumes "p \<noteq> 0"
-  shows   "content (primitive_part p) = 1"
-proof -
-  have "p = smult (content p) (primitive_part p)" by simp
-  also have "content \<dots> = content p * content (primitive_part p)" 
-    by (simp del: content_times_primitive_part)
-  finally show ?thesis using assms by simp
-qed
-
-lemma content_decompose:
-  fixes p :: "'a :: semiring_Gcd poly"
-  obtains p' where "p = smult (content p) p'" "content p' = 1"
-proof (cases "p = 0")
-  case True
-  thus ?thesis by (intro that[of 1]) simp_all
-next
-  case False
-  from content_dvd[of p] obtain r where r: "p = [:content p:] * r" by (erule dvdE)
-  have "content p * 1 = content p * content r" by (subst r) simp
-  with False have "content r = 1" by (subst (asm) mult_left_cancel) simp_all
-  with r show ?thesis by (intro that[of r]) simp_all
-qed
-
-lemma smult_content_normalize_primitive_part [simp]:
-  "smult (content p) (normalize (primitive_part p)) = normalize p"
-proof -
-  have "smult (content p) (normalize (primitive_part p)) = 
-          normalize ([:content p:] * primitive_part p)" 
-    by (subst normalize_mult) (simp_all add: normalize_const_poly)
-  also have "[:content p:] * primitive_part p = p" by simp
-  finally show ?thesis .
-qed
-
-lemma content_dvd_contentI [intro]:
-  "p dvd q \<Longrightarrow> content p dvd content q"
-  using const_poly_dvd_iff_dvd_content content_dvd dvd_trans by blast
-  
-lemma primitive_part_const_poly [simp]: "primitive_part [:x:] = [:unit_factor x:]"
-  by (simp add: primitive_part_def map_poly_pCons)
- 
-lemma primitive_part_prim: "content p = 1 \<Longrightarrow> primitive_part p = p"
-  by (auto simp: primitive_part_def)
-  
-lemma degree_primitive_part [simp]: "degree (primitive_part p) = degree p"
-proof (cases "p = 0")
-  case False
-  have "p = smult (content p) (primitive_part p)" by simp
-  also from False have "degree \<dots> = degree (primitive_part p)"
-    by (subst degree_smult_eq) simp_all
-  finally show ?thesis ..
-qed simp_all
-
-
-subsection \<open>Lifting polynomial coefficients to the field of fractions\<close>
-
-abbreviation (input) fract_poly 
-  where "fract_poly \<equiv> map_poly to_fract"
-
-abbreviation (input) unfract_poly 
-  where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)"
-  
-lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)"
-  by (simp add: smult_conv_map_poly map_poly_map_poly o_def)
-
-lemma fract_poly_0 [simp]: "fract_poly 0 = 0"
-  by (simp add: poly_eqI coeff_map_poly)
-
-lemma fract_poly_1 [simp]: "fract_poly 1 = 1"
-  by (simp add: one_poly_def map_poly_pCons)
-
-lemma fract_poly_add [simp]:
-  "fract_poly (p + q) = fract_poly p + fract_poly q"
-  by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-lemma fract_poly_diff [simp]:
-  "fract_poly (p - q) = fract_poly p - fract_poly q"
-  by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-lemma to_fract_setsum [simp]: "to_fract (setsum f A) = setsum (\<lambda>x. to_fract (f x)) A"
-  by (cases "finite A", induction A rule: finite_induct) simp_all 
-
-lemma fract_poly_mult [simp]:
-  "fract_poly (p * q) = fract_poly p * fract_poly q"
-  by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult)
-
-lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q"
-  by (auto simp: poly_eq_iff coeff_map_poly)
-
-lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0"
-  using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff)
-
-lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q"
-  by (auto elim!: dvdE)
-
-lemma msetprod_fract_poly: 
-  "msetprod (image_mset (\<lambda>x. fract_poly (f x)) A) = fract_poly (msetprod (image_mset f A))"
-  by (induction A) (simp_all add: mult_ac)
-  
-lemma is_unit_fract_poly_iff:
-  "p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1"
-proof safe
-  assume A: "p dvd 1"
-  with fract_poly_dvd[of p 1] show "is_unit (fract_poly p)" by simp
-  from A show "content p = 1"
-    by (auto simp: is_unit_poly_iff normalize_1_iff)
-next
-  assume A: "fract_poly p dvd 1" and B: "content p = 1"
-  from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff)
-  {
-    fix n :: nat assume "n > 0"
-    have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly)
-    also note c
-    also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits)
-    finally have "coeff p n = 0" by simp
-  }
-  hence "degree p \<le> 0" by (intro degree_le) simp_all
-  with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE)
-qed
-  
-lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1"
-  using fract_poly_dvd[of p 1] by simp
-
-lemma fract_poly_smult_eqE:
-  fixes c :: "'a :: {idom_divide,ring_gcd} fract"
-  assumes "fract_poly p = smult c (fract_poly q)"
-  obtains a b 
-    where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a"
-proof -
-  define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)"
-  have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)"
-    by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms)
-  hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff)
-  hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff)
-  moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b"
-    by (simp_all add: a_def b_def coprime_quot_of_fract gcd.commute
-          normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric])
-  ultimately show ?thesis by (intro that[of a b])
-qed
-
-
-subsection \<open>Fractional content\<close>
-
-abbreviation (input) Lcm_coeff_denoms 
-    :: "'a :: {semiring_Gcd,idom_divide,ring_gcd} fract poly \<Rightarrow> 'a"
-  where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))"
-  
-definition fract_content :: 
-      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a fract" where
-  "fract_content p = 
-     (let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" 
-
-definition primitive_part_fract :: 
-      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a poly" where
-  "primitive_part_fract p = 
-     primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))"
-
-lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0"
-  by (simp add: primitive_part_fract_def)
-
-lemma fract_content_eq_0_iff [simp]:
-  "fract_content p = 0 \<longleftrightarrow> p = 0"
-  unfolding fract_content_def Let_def Zero_fract_def
-  by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff)
-
-lemma content_primitive_part_fract [simp]: "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1"
-  unfolding primitive_part_fract_def
-  by (rule content_primitive_part)
-     (auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff)  
-
-lemma content_times_primitive_part_fract:
-  "smult (fract_content p) (fract_poly (primitive_part_fract p)) = p"
-proof -
-  define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)"
-  have "fract_poly p' = 
-          map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)"
-    unfolding primitive_part_fract_def p'_def 
-    by (subst map_poly_map_poly) (simp_all add: o_assoc)
-  also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p"
-  proof (intro map_poly_idI, unfold o_apply)
-    fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))"
-    then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'"
-      by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits)
-    note c(2)
-    also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))"
-      by simp
-    also have "to_fract (Lcm_coeff_denoms p) * \<dots> = 
-                 Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))"
-      unfolding to_fract_def by (subst mult_fract) simp_all
-    also have "snd (quot_of_fract \<dots>) = 1"
-      by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto)
-    finally show "to_fract (fst (quot_of_fract c)) = c"
-      by (rule to_fract_quot_of_fract)
-  qed
-  also have "p' = smult (content p') (primitive_part p')" 
-    by (rule content_times_primitive_part [symmetric])
-  also have "primitive_part p' = primitive_part_fract p"
-    by (simp add: primitive_part_fract_def p'_def)
-  also have "fract_poly (smult (content p') (primitive_part_fract p)) = 
-               smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp
-  finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) =
-                      smult (to_fract (Lcm_coeff_denoms p)) p" .
-  thus ?thesis
-    by (subst (asm) smult_eq_iff)
-       (auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def)
-qed
-
-lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)"
-proof -
-  have "Lcm_coeff_denoms (fract_poly p) = 1"
-    by (auto simp: Lcm_1_iff set_coeffs_map_poly)
-  hence "fract_content (fract_poly p) = 
-           to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))"
-    by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff)
-  also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p"
-    by (intro map_poly_idI) simp_all
-  finally show ?thesis .
-qed
-
-lemma content_decompose_fract:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly"
-  obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1"
-proof (cases "p = 0")
-  case True
-  hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all
-  thus ?thesis ..
-next
-  case False
-  thus ?thesis
-    by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract])
-qed
-
-
-subsection \<open>More properties of content and primitive part\<close>
-
-lemma lift_prime_elem_poly:
-  assumes "prime_elem (c :: 'a :: semidom)"
-  shows   "prime_elem [:c:]"
-proof (rule prime_elemI)
-  fix a b assume *: "[:c:] dvd a * b"
-  from * have dvd: "c dvd coeff (a * b) n" for n
-    by (subst (asm) const_poly_dvd_iff) blast
-  {
-    define m where "m = (GREATEST m. \<not>c dvd coeff b m)"
-    assume "\<not>[:c:] dvd b"
-    hence A: "\<exists>i. \<not>c dvd coeff b i" by (subst (asm) const_poly_dvd_iff) blast
-    have B: "\<forall>i. \<not>c dvd coeff b i \<longrightarrow> i < Suc (degree b)"
-      by (auto intro: le_degree simp: less_Suc_eq_le)
-    have coeff_m: "\<not>c dvd coeff b m" unfolding m_def by (rule GreatestI_ex[OF A B])
-    have "i \<le> m" if "\<not>c dvd coeff b i" for i
-      unfolding m_def by (rule Greatest_le[OF that B])
-    hence dvd_b: "c dvd coeff b i" if "i > m" for i using that by force
-
-    have "c dvd coeff a i" for i
-    proof (induction i rule: nat_descend_induct[of "degree a"])
-      case (base i)
-      thus ?case by (simp add: coeff_eq_0)
-    next
-      case (descend i)
-      let ?A = "{..i+m} - {i}"
-      have "c dvd coeff (a * b) (i + m)" by (rule dvd)
-      also have "coeff (a * b) (i + m) = (\<Sum>k\<le>i + m. coeff a k * coeff b (i + m - k))"
-        by (simp add: coeff_mult)
-      also have "{..i+m} = insert i ?A" by auto
-      also have "(\<Sum>k\<in>\<dots>. coeff a k * coeff b (i + m - k)) =
-                   coeff a i * coeff b m + (\<Sum>k\<in>?A. coeff a k * coeff b (i + m - k))"
-        (is "_ = _ + ?S")
-        by (subst setsum.insert) simp_all
-      finally have eq: "c dvd coeff a i * coeff b m + ?S" .
-      moreover have "c dvd ?S"
-      proof (rule dvd_setsum)
-        fix k assume k: "k \<in> {..i+m} - {i}"
-        show "c dvd coeff a k * coeff b (i + m - k)"
-        proof (cases "k < i")
-          case False
-          with k have "c dvd coeff a k" by (intro descend.IH) simp
-          thus ?thesis by simp
-        next
-          case True
-          hence "c dvd coeff b (i + m - k)" by (intro dvd_b) simp
-          thus ?thesis by simp
-        qed
-      qed
-      ultimately have "c dvd coeff a i * coeff b m"
-        by (simp add: dvd_add_left_iff)
-      with assms coeff_m show "c dvd coeff a i"
-        by (simp add: prime_elem_dvd_mult_iff)
-    qed
-    hence "[:c:] dvd a" by (subst const_poly_dvd_iff) blast
-  }
-  thus "[:c:] dvd a \<or> [:c:] dvd b" by blast
-qed (insert assms, simp_all add: prime_elem_def one_poly_def)
-
-lemma prime_elem_const_poly_iff:
-  fixes c :: "'a :: semidom"
-  shows   "prime_elem [:c:] \<longleftrightarrow> prime_elem c"
-proof
-  assume A: "prime_elem [:c:]"
-  show "prime_elem c"
-  proof (rule prime_elemI)
-    fix a b assume "c dvd a * b"
-    hence "[:c:] dvd [:a:] * [:b:]" by (simp add: mult_ac)
-    from A and this have "[:c:] dvd [:a:] \<or> [:c:] dvd [:b:]" by (rule prime_elem_dvd_multD)
-    thus "c dvd a \<or> c dvd b" by simp
-  qed (insert A, auto simp: prime_elem_def is_unit_poly_iff)
-qed (auto intro: lift_prime_elem_poly)
-
-context
-begin
-
-private lemma content_1_mult:
-  fixes f g :: "'a :: {semiring_Gcd,factorial_semiring} poly"
-  assumes "content f = 1" "content g = 1"
-  shows   "content (f * g) = 1"
-proof (cases "f * g = 0")
-  case False
-  from assms have "f \<noteq> 0" "g \<noteq> 0" by auto
-
-  hence "f * g \<noteq> 0" by auto
-  {
-    assume "\<not>is_unit (content (f * g))"
-    with False have "\<exists>p. p dvd content (f * g) \<and> prime p"
-      by (intro prime_divisor_exists) simp_all
-    then obtain p where "p dvd content (f * g)" "prime p" by blast
-    from \<open>p dvd content (f * g)\<close> have "[:p:] dvd f * g"
-      by (simp add: const_poly_dvd_iff_dvd_content)
-    moreover from \<open>prime p\<close> have "prime_elem [:p:]" by (simp add: lift_prime_elem_poly)
-    ultimately have "[:p:] dvd f \<or> [:p:] dvd g"
-      by (simp add: prime_elem_dvd_mult_iff)
-    with assms have "is_unit p" by (simp add: const_poly_dvd_iff_dvd_content)
-    with \<open>prime p\<close> have False by simp
-  }
-  hence "is_unit (content (f * g))" by blast
-  hence "normalize (content (f * g)) = 1" by (simp add: is_unit_normalize del: normalize_content)
-  thus ?thesis by simp
-qed (insert assms, auto)
-
-lemma content_mult:
-  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
-  shows "content (p * q) = content p * content q"
-proof -
-  from content_decompose[of p] guess p' . note p = this
-  from content_decompose[of q] guess q' . note q = this
-  have "content (p * q) = content p * content q * content (p' * q')"
-    by (subst p, subst q) (simp add: mult_ac normalize_mult)
-  also from p q have "content (p' * q') = 1" by (intro content_1_mult)
-  finally show ?thesis by simp
-qed
-
-lemma primitive_part_mult:
-  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
-  shows "primitive_part (p * q) = primitive_part p * primitive_part q"
-proof -
-  have "primitive_part (p * q) = p * q div [:content (p * q):]"
-    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
-  also have "\<dots> = (p div [:content p:]) * (q div [:content q:])"
-    by (subst div_mult_div_if_dvd) (simp_all add: content_mult mult_ac)
-  also have "\<dots> = primitive_part p * primitive_part q"
-    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
-  finally show ?thesis .
-qed
-
-lemma primitive_part_smult:
-  fixes p :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
-  shows "primitive_part (smult a p) = smult (unit_factor a) (primitive_part p)"
-proof -
-  have "smult a p = [:a:] * p" by simp
-  also have "primitive_part \<dots> = smult (unit_factor a) (primitive_part p)"
-    by (subst primitive_part_mult) simp_all
-  finally show ?thesis .
-qed  
-
-lemma primitive_part_dvd_primitive_partI [intro]:
-  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
-  shows "p dvd q \<Longrightarrow> primitive_part p dvd primitive_part q"
-  by (auto elim!: dvdE simp: primitive_part_mult)
-
-lemma content_msetprod: 
-  fixes A :: "'a :: {factorial_semiring, semiring_Gcd} poly multiset"
-  shows "content (msetprod A) = msetprod (image_mset content A)"
-  by (induction A) (simp_all add: content_mult mult_ac)
-
-lemma fract_poly_dvdD:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
-  assumes "fract_poly p dvd fract_poly q" "content p = 1"
-  shows   "p dvd q"
-proof -
-  from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE)
-  from content_decompose_fract[of r] guess c r' . note r' = this
-  from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp  
-  from fract_poly_smult_eqE[OF this] guess a b . note ab = this
-  have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2))
-  hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4))
-  have "1 = gcd a (normalize b)" by (simp add: ab)
-  also note eq'
-  also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4))
-  finally have [simp]: "a = 1" by simp
-  from eq ab have "q = p * ([:b:] * r')" by simp
-  thus ?thesis by (rule dvdI)
-qed
-
-lemma content_prod_eq_1_iff: 
-  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
-  shows "content (p * q) = 1 \<longleftrightarrow> content p = 1 \<and> content q = 1"
-proof safe
-  assume A: "content (p * q) = 1"
-  {
-    fix p q :: "'a poly" assume "content p * content q = 1"
-    hence "1 = content p * content q" by simp
-    hence "content p dvd 1" by (rule dvdI)
-    hence "content p = 1" by simp
-  } note B = this
-  from A B[of p q] B [of q p] show "content p = 1" "content q = 1" 
-    by (simp_all add: content_mult mult_ac)
-qed (auto simp: content_mult)
-
-end
-
-
-subsection \<open>Polynomials over a field are a Euclidean ring\<close>
-
-context
-begin
-
-private definition unit_factor_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
-  "unit_factor_field_poly p = [:lead_coeff p:]"
-
-private definition normalize_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
-  "normalize_field_poly p = smult (inverse (lead_coeff p)) p"
-
-private definition euclidean_size_field_poly :: "'a :: field poly \<Rightarrow> nat" where
-  "euclidean_size_field_poly p = (if p = 0 then 0 else 2 ^ degree p)" 
-
-private lemma dvd_field_poly: "dvd.dvd (op * :: 'a :: field poly \<Rightarrow> _) = op dvd"
-    by (intro ext) (simp_all add: dvd.dvd_def dvd_def)
-
-interpretation field_poly: 
-  euclidean_ring "op div" "op *" "op mod" "op +" "op -" 0 "1 :: 'a :: field poly" 
-    normalize_field_poly unit_factor_field_poly euclidean_size_field_poly uminus
-proof (standard, unfold dvd_field_poly)
-  fix p :: "'a poly"
-  show "unit_factor_field_poly p * normalize_field_poly p = p"
-    by (cases "p = 0") 
-       (simp_all add: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_nonzero)
-next
-  fix p :: "'a poly" assume "is_unit p"
-  thus "normalize_field_poly p = 1"
-    by (elim is_unit_polyE) (auto simp: normalize_field_poly_def monom_0 one_poly_def field_simps)
-next
-  fix p :: "'a poly" assume "p \<noteq> 0"
-  thus "is_unit (unit_factor_field_poly p)"
-    by (simp add: unit_factor_field_poly_def lead_coeff_nonzero is_unit_pCons_iff)
-qed (auto simp: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_mult 
-       euclidean_size_field_poly_def intro!: degree_mod_less' degree_mult_right_le)
-
-private lemma field_poly_irreducible_imp_prime:
-  assumes "irreducible (p :: 'a :: field poly)"
-  shows   "prime_elem p"
-proof -
-  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
-  from field_poly.irreducible_imp_prime_elem[of p] assms
-    show ?thesis unfolding irreducible_def prime_elem_def dvd_field_poly
-      comm_semiring_1.irreducible_def[OF A] comm_semiring_1.prime_elem_def[OF A] by blast
-qed
-
-private lemma field_poly_msetprod_prime_factorization:
-  assumes "(x :: 'a :: field poly) \<noteq> 0"
-  shows   "msetprod (field_poly.prime_factorization x) = normalize_field_poly x"
-proof -
-  have A: "class.comm_monoid_mult op * (1 :: 'a poly)" ..
-  have "comm_monoid_mult.msetprod op * (1 :: 'a poly) = msetprod"
-    by (intro ext) (simp add: comm_monoid_mult.msetprod_def[OF A] msetprod_def)
-  with field_poly.msetprod_prime_factorization[OF assms] show ?thesis by simp
-qed
-
-private lemma field_poly_in_prime_factorization_imp_prime:
-  assumes "(p :: 'a :: field poly) \<in># field_poly.prime_factorization x"
-  shows   "prime_elem p"
-proof -
-  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
-  have B: "class.normalization_semidom op div op + op - (0 :: 'a poly) op * 1 
-             normalize_field_poly unit_factor_field_poly" ..
-  from field_poly.in_prime_factorization_imp_prime[of p x] assms
-    show ?thesis unfolding prime_elem_def dvd_field_poly
-      comm_semiring_1.prime_elem_def[OF A] normalization_semidom.prime_def[OF B] by blast
-qed
-
-
-subsection \<open>Primality and irreducibility in polynomial rings\<close>
-
-lemma nonconst_poly_irreducible_iff:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
-  assumes "degree p \<noteq> 0"
-  shows   "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1"
-proof safe
-  assume p: "irreducible p"
-
-  from content_decompose[of p] guess p' . note p' = this
-  hence "p = [:content p:] * p'" by simp
-  from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD)
-  moreover have "\<not>p' dvd 1"
-  proof
-    assume "p' dvd 1"
-    hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff)
-    with assms show False by contradiction
-  qed
-  ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff)
-  
-  show "irreducible (map_poly to_fract p)"
-  proof (rule irreducibleI)
-    have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto
-    with assms show "map_poly to_fract p \<noteq> 0" by auto
-  next
-    show "\<not>is_unit (fract_poly p)"
-    proof
-      assume "is_unit (map_poly to_fract p)"
-      hence "degree (map_poly to_fract p) = 0"
-        by (auto simp: is_unit_poly_iff)
-      hence "degree p = 0" by (simp add: degree_map_poly)
-      with assms show False by contradiction
-   qed
- next
-   fix q r assume qr: "fract_poly p = q * r"
-   from content_decompose_fract[of q] guess cg q' . note q = this
-   from content_decompose_fract[of r] guess cr r' . note r = this
-   from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto
-   from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))"
-     by (simp add: q r)
-   from fract_poly_smult_eqE[OF this] guess a b . note ab = this
-   hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:)
-   with ab(4) have a: "a = normalize b" by (simp add: content_mult q r)
-   hence "normalize b = gcd a b" by simp
-   also from ab(3) have "\<dots> = 1" .
-   finally have "a = 1" "is_unit b" by (simp_all add: a normalize_1_iff)
-   
-   note eq
-   also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp
-   also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp
-   finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult)
-   from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD)
-   hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left)
-   hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit)
-   with q r show "is_unit q \<or> is_unit r"
-     by (auto simp add: is_unit_smult_iff dvd_field_iff nz)
- qed
-
-next
-
-  assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
-  show "irreducible p"
-  proof (rule irreducibleI)
-    from irred show "p \<noteq> 0" by auto
-  next
-    from irred show "\<not>p dvd 1"
-      by (auto simp: irreducible_def dest: fract_poly_is_unit)
-  next
-    fix q r assume qr: "p = q * r"
-    hence "fract_poly p = fract_poly q * fract_poly r" by simp
-    from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" 
-      by (rule irreducibleD)
-    with primitive qr show "q dvd 1 \<or> r dvd 1"
-      by (auto simp:  content_prod_eq_1_iff is_unit_fract_poly_iff)
-  qed
-qed
-
-private lemma irreducible_imp_prime_poly:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
-  assumes "irreducible p"
-  shows   "prime_elem p"
-proof (cases "degree p = 0")
-  case True
-  with assms show ?thesis
-    by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff
-             intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE)
-next
-  case False
-  from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
-    by (simp_all add: nonconst_poly_irreducible_iff)
-  from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime)
-  show ?thesis
-  proof (rule prime_elemI)
-    fix q r assume "p dvd q * r"
-    hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd)
-    hence "fract_poly p dvd fract_poly q * fract_poly r" by simp
-    from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r"
-      by (rule prime_elem_dvd_multD)
-    with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD)
-  qed (insert assms, auto simp: irreducible_def)
-qed
-
-
-lemma degree_primitive_part_fract [simp]:
-  "degree (primitive_part_fract p) = degree p"
-proof -
-  have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))"
-    by (simp add: content_times_primitive_part_fract)
-  also have "degree \<dots> = degree (primitive_part_fract p)"
-    by (auto simp: degree_map_poly)
-  finally show ?thesis ..
-qed
-
-lemma irreducible_primitive_part_fract:
-  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
-  assumes "irreducible p"
-  shows   "irreducible (primitive_part_fract p)"
-proof -
-  from assms have deg: "degree (primitive_part_fract p) \<noteq> 0"
-    by (intro notI) 
-       (auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff)
-  hence [simp]: "p \<noteq> 0" by auto
-
-  note \<open>irreducible p\<close>
-  also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" 
-    by (simp add: content_times_primitive_part_fract)
-  also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))"
-    by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff)
-  finally show ?thesis using deg
-    by (simp add: nonconst_poly_irreducible_iff)
-qed
-
-lemma prime_elem_primitive_part_fract:
-  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
-  shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)"
-  by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract)
-
-lemma irreducible_linear_field_poly:
-  fixes a b :: "'a::field"
-  assumes "b \<noteq> 0"
-  shows "irreducible [:a,b:]"
-proof (rule irreducibleI)
-  fix p q assume pq: "[:a,b:] = p * q"
-  also from pq assms have "degree \<dots> = degree p + degree q" 
-    by (intro degree_mult_eq) auto
-  finally have "degree p = 0 \<or> degree q = 0" using assms by auto
-  with assms pq show "is_unit p \<or> is_unit q"
-    by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE)
-qed (insert assms, auto simp: is_unit_poly_iff)
-
-lemma prime_elem_linear_field_poly:
-  "(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]"
-  by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly)
-
-lemma irreducible_linear_poly:
-  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
-  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]"
-  by (auto intro!: irreducible_linear_field_poly 
-           simp:   nonconst_poly_irreducible_iff content_def map_poly_pCons)
-
-lemma prime_elem_linear_poly:
-  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
-  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]"
-  by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly)
-
-  
-subsection \<open>Prime factorisation of polynomials\<close>   
-
-private lemma poly_prime_factorization_exists_content_1:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
-  assumes "p \<noteq> 0" "content p = 1"
-  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize p"
-proof -
-  let ?P = "field_poly.prime_factorization (fract_poly p)"
-  define c where "c = msetprod (image_mset fract_content ?P)"
-  define c' where "c' = c * to_fract (lead_coeff p)"
-  define e where "e = msetprod (image_mset primitive_part_fract ?P)"
-  define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P"
-  have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). 
-                      content (primitive_part_fract x))"
-    by (simp add: e_def content_msetprod multiset.map_comp o_def)
-  also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P"
-    by (intro image_mset_cong content_primitive_part_fract) auto
-  finally have content_e: "content e = 1" by (simp add: msetprod_const)    
-  
-  have "fract_poly p = unit_factor_field_poly (fract_poly p) * 
-          normalize_field_poly (fract_poly p)" by simp
-  also have "unit_factor_field_poly (fract_poly p) = [:to_fract (lead_coeff p):]" 
-    by (simp add: unit_factor_field_poly_def lead_coeff_def monom_0 degree_map_poly coeff_map_poly)
-  also from assms have "normalize_field_poly (fract_poly p) = msetprod ?P" 
-    by (subst field_poly_msetprod_prime_factorization) simp_all
-  also have "\<dots> = msetprod (image_mset id ?P)" by simp
-  also have "image_mset id ?P = 
-               image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P"
-    by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract)
-  also have "msetprod \<dots> = smult c (fract_poly e)"
-    by (subst msetprod_mult) (simp_all add: msetprod_fract_poly msetprod_const_poly c_def e_def)
-  also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)"
-    by (simp add: c'_def)
-  finally have eq: "fract_poly p = smult c' (fract_poly e)" .
-  also obtain b where b: "c' = to_fract b" "is_unit b"
-  proof -
-    from fract_poly_smult_eqE[OF eq] guess a b . note ab = this
-    from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: )
-    with assms content_e have "a = normalize b" by (simp add: ab(4))
-    with ab have ab': "a = 1" "is_unit b" by (simp_all add: normalize_1_iff)
-    with ab ab' have "c' = to_fract b" by auto
-    from this and \<open>is_unit b\<close> show ?thesis by (rule that)
-  qed
-  hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp
-  finally have "p = smult b e" by (simp only: fract_poly_eq_iff)
-  hence "p = [:b:] * e" by simp
-  with b have "normalize p = normalize e" 
-    by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff)
-  also have "normalize e = msetprod A"
-    by (simp add: multiset.map_comp e_def A_def normalize_msetprod)
-  finally have "msetprod A = normalize p" ..
-  
-  have "prime_elem p" if "p \<in># A" for p
-    using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible 
-                        dest!: field_poly_in_prime_factorization_imp_prime )
-  from this and \<open>msetprod A = normalize p\<close> show ?thesis
-    by (intro exI[of _ A]) blast
-qed
-
-lemma poly_prime_factorization_exists:
-  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
-  assumes "p \<noteq> 0"
-  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize p"
-proof -
-  define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))"
-  have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> msetprod A = normalize (primitive_part p)"
-    by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all)
-  then guess A by (elim exE conjE) note A = this
-  moreover from assms have "msetprod B = [:content p:]"
-    by (simp add: B_def msetprod_const_poly msetprod_prime_factorization)
-  moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p"
-    by (auto simp: B_def intro: lift_prime_elem_poly dest: in_prime_factorization_imp_prime)
-  ultimately show ?thesis by (intro exI[of _ "B + A"]) auto
-qed
-
-end
-
-
-subsection \<open>Typeclass instances\<close>
-
-instance poly :: (factorial_ring_gcd) factorial_semiring
-  by standard (rule poly_prime_factorization_exists)  
-
-instantiation poly :: (factorial_ring_gcd) factorial_ring_gcd
-begin
-
-definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
-  [code del]: "gcd_poly = gcd_factorial"
-
-definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
-  [code del]: "lcm_poly = lcm_factorial"
-  
-definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where
- [code del]: "Gcd_poly = Gcd_factorial"
-
-definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where
- [code del]: "Lcm_poly = Lcm_factorial"
- 
-instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def)
-
-end
-
-instantiation poly :: ("{field,factorial_ring_gcd}") euclidean_ring
-begin
-
-definition euclidean_size_poly :: "'a poly \<Rightarrow> nat" where
-  "euclidean_size_poly p = (if p = 0 then 0 else 2 ^ degree p)"
-
-instance 
-  by standard (auto simp: euclidean_size_poly_def intro!: degree_mod_less' degree_mult_right_le)
-end
-
-
-instance poly :: ("{field,factorial_ring_gcd}") euclidean_ring_gcd
-  by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def eucl_eq_factorial)
-
-  
-subsection \<open>Polynomial GCD\<close>
-
-lemma gcd_poly_decompose:
-  fixes p q :: "'a :: factorial_ring_gcd poly"
-  shows "gcd p q = 
-           smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
-proof (rule sym, rule gcdI)
-  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
-          [:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all
-  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p"
-    by simp
-next
-  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
-          [:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all
-  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q"
-    by simp
-next
-  fix d assume "d dvd p" "d dvd q"
-  hence "[:content d:] * primitive_part d dvd 
-           [:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)"
-    by (intro mult_dvd_mono) auto
-  thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
-    by simp
-qed (auto simp: normalize_smult)
-  
-
-lemma gcd_poly_pseudo_mod:
-  fixes p q :: "'a :: factorial_ring_gcd poly"
-  assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1"
-  shows   "gcd p q = gcd q (primitive_part (pseudo_mod p q))"
-proof -
-  define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)"
-  define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]"
-  have [simp]: "primitive_part a = unit_factor a"
-    by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0)
-  from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def)
-  
-  have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def)
-  have "gcd (q * r + s) q = gcd q s"
-    using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac)
-  with pseudo_divmod(1)[OF nz rs]
-    have "gcd (p * a) q = gcd q s" by (simp add: a_def)
-  also from prim have "gcd (p * a) q = gcd p q"
-    by (subst gcd_poly_decompose)
-       (auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim 
-             simp del: mult_pCons_right )
-  also from prim have "gcd q s = gcd q (primitive_part s)"
-    by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim)
-  also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def)
-  finally show ?thesis .
-qed
-
-lemma degree_pseudo_mod_less:
-  assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0"
-  shows   "degree (pseudo_mod p q) < degree q"
-  using pseudo_mod(2)[of q p] assms by auto
-
-function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
-  "gcd_poly_code_aux p q = 
-     (if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" 
-by auto
-termination
-  by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)")
-     (auto simp: degree_primitive_part degree_pseudo_mod_less)
-
-declare gcd_poly_code_aux.simps [simp del]
-
-lemma gcd_poly_code_aux_correct:
-  assumes "content p = 1" "q = 0 \<or> content q = 1"
-  shows   "gcd_poly_code_aux p q = gcd p q"
-  using assms
-proof (induction p q rule: gcd_poly_code_aux.induct)
-  case (1 p q)
-  show ?case
-  proof (cases "q = 0")
-    case True
-    thus ?thesis by (subst gcd_poly_code_aux.simps) auto
-  next
-    case False
-    hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))"
-      by (subst gcd_poly_code_aux.simps) simp_all
-    also from "1.prems" False 
-      have "primitive_part (pseudo_mod p q) = 0 \<or> 
-              content (primitive_part (pseudo_mod p q)) = 1"
-      by (cases "pseudo_mod p q = 0") auto
-    with "1.prems" False 
-      have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = 
-              gcd q (primitive_part (pseudo_mod p q))"
-      by (intro 1) simp_all
-    also from "1.prems" False 
-      have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto
-    finally show ?thesis .
-  qed
-qed
-
-definition gcd_poly_code 
-    :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" 
-  where "gcd_poly_code p q = 
-           (if p = 0 then normalize q else if q = 0 then normalize p else
-              smult (gcd (content p) (content q)) 
-                (gcd_poly_code_aux (primitive_part p) (primitive_part q)))"
-
-lemma lcm_poly_code [code]: 
-  fixes p q :: "'a :: factorial_ring_gcd poly"
-  shows "lcm p q = normalize (p * q) div gcd p q"
-  by (rule lcm_gcd)
-
-lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q"
-  by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric])
-
-declare Gcd_set
-  [where ?'a = "'a :: factorial_ring_gcd poly", code]
-
-declare Lcm_set
-  [where ?'a = "'a :: factorial_ring_gcd poly", code]
-  
-value [code] "Lcm {[:1,2,3:], [:2,3,4::int poly:]}"
-
-end