--- a/src/HOLCF/CompactBasis.thy Mon Jun 30 22:24:27 2008 +0200
+++ b/src/HOLCF/CompactBasis.thy Tue Jul 01 00:52:46 2008 +0200
@@ -6,476 +6,9 @@
header {* Compact bases of domains *}
theory CompactBasis
-imports Bifinite
-begin
-
-subsection {* Ideals over a preorder *}
-
-locale preorder =
- fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50)
- assumes r_refl: "x \<preceq> x"
- assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z"
-begin
-
-definition
- ideal :: "'a set \<Rightarrow> bool" where
- "ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and>
- (\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))"
-
-lemma idealI:
- assumes "\<exists>x. x \<in> A"
- assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
- assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
- shows "ideal A"
-unfolding ideal_def using prems by fast
-
-lemma idealD1:
- "ideal A \<Longrightarrow> \<exists>x. x \<in> A"
-unfolding ideal_def by fast
-
-lemma idealD2:
- "\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
-unfolding ideal_def by fast
-
-lemma idealD3:
- "\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
-unfolding ideal_def by fast
-
-lemma ideal_directed_finite:
- assumes A: "ideal A"
- shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z"
-apply (induct U set: finite)
-apply (simp add: idealD1 [OF A])
-apply (simp, clarify, rename_tac y)
-apply (drule (1) idealD2 [OF A])
-apply (clarify, erule_tac x=z in rev_bexI)
-apply (fast intro: r_trans)
-done
-
-lemma ideal_principal: "ideal {x. x \<preceq> z}"
-apply (rule idealI)
-apply (rule_tac x=z in exI)
-apply (fast intro: r_refl)
-apply (rule_tac x=z in bexI, fast)
-apply (fast intro: r_refl)
-apply (fast intro: r_trans)
-done
-
-lemma ex_ideal: "\<exists>A. ideal A"
-by (rule exI, rule ideal_principal)
-
-lemma directed_image_ideal:
- assumes A: "ideal A"
- assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
- shows "directed (f ` A)"
-apply (rule directedI)
-apply (cut_tac idealD1 [OF A], fast)
-apply (clarify, rename_tac a b)
-apply (drule (1) idealD2 [OF A])
-apply (clarify, rename_tac c)
-apply (rule_tac x="f c" in rev_bexI)
-apply (erule imageI)
-apply (simp add: f)
-done
-
-lemma lub_image_principal:
- assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
- shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y"
-apply (rule thelubI)
-apply (rule is_lub_maximal)
-apply (rule ub_imageI)
-apply (simp add: f)
-apply (rule imageI)
-apply (simp add: r_refl)
-done
-
-text {* The set of ideals is a cpo *}
-
-lemma ideal_UN:
- fixes A :: "nat \<Rightarrow> 'a set"
- assumes ideal_A: "\<And>i. ideal (A i)"
- assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j"
- shows "ideal (\<Union>i. A i)"
- apply (rule idealI)
- apply (cut_tac idealD1 [OF ideal_A], fast)
- apply (clarify, rename_tac i j)
- apply (drule subsetD [OF chain_A [OF le_maxI1]])
- apply (drule subsetD [OF chain_A [OF le_maxI2]])
- apply (drule (1) idealD2 [OF ideal_A])
- apply blast
- apply clarify
- apply (drule (1) idealD3 [OF ideal_A])
- apply fast
-done
-
-lemma typedef_ideal_po:
- fixes Abs :: "'a set \<Rightarrow> 'b::sq_ord"
- assumes type: "type_definition Rep Abs {S. ideal S}"
- assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
- shows "OFCLASS('b, po_class)"
- apply (intro_classes, unfold less)
- apply (rule subset_refl)
- apply (erule (1) subset_trans)
- apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
- apply (erule (1) subset_antisym)
-done
-
-lemma
- fixes Abs :: "'a set \<Rightarrow> 'b::po"
- assumes type: "type_definition Rep Abs {S. ideal S}"
- assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
- assumes S: "chain S"
- shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
- and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
-proof -
- have 1: "ideal (\<Union>i. Rep (S i))"
- apply (rule ideal_UN)
- apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
- apply (subst less [symmetric])
- apply (erule chain_mono [OF S])
- done
- hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
- by (simp add: type_definition.Abs_inverse [OF type])
- show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
- apply (rule is_lubI)
- apply (rule is_ubI)
- apply (simp add: less 2, fast)
- apply (simp add: less 2 is_ub_def, fast)
- done
- hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
- by (rule thelubI)
- show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
- by (simp add: 4 2)
-qed
-
-lemma typedef_ideal_cpo:
- fixes Abs :: "'a set \<Rightarrow> 'b::po"
- assumes type: "type_definition Rep Abs {S. ideal S}"
- assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
- shows "OFCLASS('b, cpo_class)"
-by (default, rule exI, erule typedef_ideal_lub [OF type less])
-
-end
-
-interpretation sq_le: preorder ["sq_le :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"]
-apply unfold_locales
-apply (rule refl_less)
-apply (erule (1) trans_less)
-done
-
-subsection {* Defining functions in terms of basis elements *}
-
-lemma finite_directed_contains_lub:
- "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u"
-apply (drule (1) directed_finiteD, rule subset_refl)
-apply (erule bexE)
-apply (rule rev_bexI, assumption)
-apply (erule (1) is_lub_maximal)
-done
-
-lemma lub_finite_directed_in_self:
- "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S"
-apply (drule (1) finite_directed_contains_lub, clarify)
-apply (drule thelubI, simp)
-done
-
-lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u"
-by (drule (1) finite_directed_contains_lub, fast)
-
-lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S"
-apply (erule exE, drule lubI)
-apply (drule is_lubD1)
-apply (erule (1) is_ubD)
-done
-
-lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x"
-by (erule exE, drule lubI, erule is_lub_lub)
-
-locale basis_take = preorder +
- fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a"
- assumes take_less: "take n a \<preceq> a"
- assumes take_take: "take n (take n a) = take n a"
- assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b"
- assumes take_chain: "take n a \<preceq> take (Suc n) a"
- assumes finite_range_take: "finite (range (take n))"
- assumes take_covers: "\<exists>n. take n a = a"
-begin
-
-lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a"
-by (erule less_Suc_induct, rule take_chain, erule (1) r_trans)
-
-lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a"
-by (cases "m = n", simp add: r_refl, simp add: take_chain_less)
-
-end
-
-locale ideal_completion = basis_take +
- fixes principal :: "'a::type \<Rightarrow> 'b::cpo"
- fixes rep :: "'b::cpo \<Rightarrow> 'a::type set"
- assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)"
- assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))"
- assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
- assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y"
+imports Completion
begin
-lemma finite_take_rep: "finite (take n ` rep x)"
-by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take])
-
-lemma basis_fun_lemma0:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "\<exists>u. f ` take i ` rep x <<| u"
-apply (rule finite_directed_has_lub)
-apply (rule finite_imageI)
-apply (rule finite_take_rep)
-apply (subst image_image)
-apply (rule directed_image_ideal)
-apply (rule ideal_rep)
-apply (rule f_mono)
-apply (erule take_mono)
-done
-
-lemma basis_fun_lemma1:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "chain (\<lambda>i. lub (f ` take i ` rep x))"
- apply (rule chainI)
- apply (rule is_lub_thelub0)
- apply (rule basis_fun_lemma0, erule f_mono)
- apply (rule is_ubI, clarsimp, rename_tac a)
- apply (rule sq_le.trans_less [OF f_mono [OF take_chain]])
- apply (rule is_ub_thelub0)
- apply (rule basis_fun_lemma0, erule f_mono)
- apply simp
-done
-
-lemma basis_fun_lemma2:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))"
- apply (rule is_lubI)
- apply (rule ub_imageI, rename_tac a)
- apply (cut_tac a=a in take_covers, erule exE, rename_tac i)
- apply (erule subst)
- apply (rule rev_trans_less)
- apply (rule_tac x=i in is_ub_thelub)
- apply (rule basis_fun_lemma1, erule f_mono)
- apply (rule is_ub_thelub0)
- apply (rule basis_fun_lemma0, erule f_mono)
- apply simp
- apply (rule is_lub_thelub [OF _ ub_rangeI])
- apply (rule basis_fun_lemma1, erule f_mono)
- apply (rule is_lub_thelub0)
- apply (rule basis_fun_lemma0, erule f_mono)
- apply (rule is_ubI, clarsimp, rename_tac a)
- apply (rule sq_le.trans_less [OF f_mono [OF take_less]])
- apply (erule (1) ub_imageD)
-done
-
-lemma basis_fun_lemma:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "\<exists>u. f ` rep x <<| u"
-by (rule exI, rule basis_fun_lemma2, erule f_mono)
-
-lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y"
-apply (frule bin_chain)
-apply (drule rep_contlub)
-apply (simp only: thelubI [OF lub_bin_chain])
-apply (rule subsetI, rule UN_I [where a=0], simp_all)
-done
-
-lemma less_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
-by (rule iffI [OF rep_mono subset_repD])
-
-lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
-unfolding less_def rep_principal
-apply safe
-apply (erule (1) idealD3 [OF ideal_rep])
-apply (erule subsetD, simp add: r_refl)
-done
-
-lemma mem_rep_iff_principal_less: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x"
-by (simp add: rep_eq)
-
-lemma principal_less_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
-by (simp add: rep_eq)
-
-lemma principal_less_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
-by (simp add: principal_less_iff_mem_rep rep_principal)
-
-lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
-unfolding po_eq_conv [where 'a='b] principal_less_iff ..
-
-lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x"
-by (simp add: rep_eq)
-
-lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
-by (simp only: principal_less_iff)
-
-lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"
-unfolding principal_less_iff_mem_rep
-by (simp add: less_def subset_eq)
-
-lemma lub_principal_rep: "principal ` rep x <<| x"
-apply (rule is_lubI)
-apply (rule ub_imageI)
-apply (erule repD)
-apply (subst less_def)
-apply (rule subsetI)
-apply (drule (1) ub_imageD)
-apply (simp add: rep_eq)
-done
-
-definition
- basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
- "basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))"
-
-lemma basis_fun_beta:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "basis_fun f\<cdot>x = lub (f ` rep x)"
-unfolding basis_fun_def
-proof (rule beta_cfun)
- have lub: "\<And>x. \<exists>u. f ` rep x <<| u"
- using f_mono by (rule basis_fun_lemma)
- show cont: "cont (\<lambda>x. lub (f ` rep x))"
- apply (rule contI2)
- apply (rule monofunI)
- apply (rule is_lub_thelub0 [OF lub ub_imageI])
- apply (rule is_ub_thelub0 [OF lub imageI])
- apply (erule (1) subsetD [OF rep_mono])
- apply (rule is_lub_thelub0 [OF lub ub_imageI])
- apply (simp add: rep_contlub, clarify)
- apply (erule rev_trans_less [OF is_ub_thelub])
- apply (erule is_ub_thelub0 [OF lub imageI])
- done
-qed
-
-lemma basis_fun_principal:
- fixes f :: "'a::type \<Rightarrow> 'c::cpo"
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- shows "basis_fun f\<cdot>(principal a) = f a"
-apply (subst basis_fun_beta, erule f_mono)
-apply (subst rep_principal)
-apply (rule lub_image_principal, erule f_mono)
-done
-
-lemma basis_fun_mono:
- assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
- assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
- assumes less: "\<And>a. f a \<sqsubseteq> g a"
- shows "basis_fun f \<sqsubseteq> basis_fun g"
- apply (rule less_cfun_ext)
- apply (simp only: basis_fun_beta f_mono g_mono)
- apply (rule is_lub_thelub0)
- apply (rule basis_fun_lemma, erule f_mono)
- apply (rule ub_imageI, rename_tac a)
- apply (rule sq_le.trans_less [OF less])
- apply (rule is_ub_thelub0)
- apply (rule basis_fun_lemma, erule g_mono)
- apply (erule imageI)
-done
-
-lemma compact_principal [simp]: "compact (principal a)"
-by (rule compactI2, simp add: principal_less_iff_mem_rep rep_contlub)
-
-definition
- completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where
- "completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))"
-
-lemma completion_approx_beta:
- "completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))"
-unfolding completion_approx_def
-by (simp add: basis_fun_beta principal_mono take_mono)
-
-lemma completion_approx_principal:
- "completion_approx i\<cdot>(principal a) = principal (take i a)"
-unfolding completion_approx_def
-by (simp add: basis_fun_principal principal_mono take_mono)
-
-lemma chain_completion_approx: "chain completion_approx"
-unfolding completion_approx_def
-apply (rule chainI)
-apply (rule basis_fun_mono)
-apply (erule principal_mono [OF take_mono])
-apply (erule principal_mono [OF take_mono])
-apply (rule principal_mono [OF take_chain])
-done
-
-lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x"
-unfolding completion_approx_beta
- apply (subst image_image [where f=principal, symmetric])
- apply (rule unique_lub [OF _ lub_principal_rep])
- apply (rule basis_fun_lemma2, erule principal_mono)
-done
-
-lemma completion_approx_eq_principal:
- "\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)"
-unfolding completion_approx_beta
- apply (subst image_image [where f=principal, symmetric])
- apply (subgoal_tac "finite (principal ` take i ` rep x)")
- apply (subgoal_tac "directed (principal ` take i ` rep x)")
- apply (drule (1) lub_finite_directed_in_self, fast)
- apply (subst image_image)
- apply (rule directed_image_ideal)
- apply (rule ideal_rep)
- apply (erule principal_mono [OF take_mono])
- apply (rule finite_imageI)
- apply (rule finite_take_rep)
-done
-
-lemma completion_approx_idem:
- "completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x"
-using completion_approx_eq_principal [where i=i and x=x]
-by (auto simp add: completion_approx_principal take_take)
-
-lemma finite_fixes_completion_approx:
- "finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S")
-apply (subgoal_tac "?S \<subseteq> principal ` range (take i)")
-apply (erule finite_subset)
-apply (rule finite_imageI)
-apply (rule finite_range_take)
-apply (clarify, erule subst)
-apply (cut_tac x=x and i=i in completion_approx_eq_principal)
-apply fast
-done
-
-lemma principal_induct:
- assumes adm: "adm P"
- assumes P: "\<And>a. P (principal a)"
- shows "P x"
- apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)")
- apply (simp add: lub_completion_approx)
- apply (rule admD [OF adm])
- apply (simp add: chain_completion_approx)
- apply (cut_tac x=x and i=i in completion_approx_eq_principal)
- apply (clarify, simp add: P)
-done
-
-lemma principal_induct2:
- "\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y);
- \<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y"
-apply (rule_tac x=y in spec)
-apply (rule_tac x=x in principal_induct, simp)
-apply (rule allI, rename_tac y)
-apply (rule_tac x=y in principal_induct, simp)
-apply simp
-done
-
-lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a"
-apply (drule adm_compact_neq [OF _ cont_id])
-apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"])
-apply (simp add: chain_completion_approx)
-apply (simp add: lub_completion_approx)
-apply (erule exE, erule ssubst)
-apply (cut_tac i=i and x=x in completion_approx_eq_principal)
-apply (clarify, erule exI)
-done
-
-end
-
-
subsection {* Compact bases of bifinite domains *}
defaultsort profinite
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Completion.thy Tue Jul 01 00:52:46 2008 +0200
@@ -0,0 +1,478 @@
+(* Title: HOLCF/Completion.thy
+ ID: $Id$
+ Author: Brian Huffman
+*)
+
+header {* Defining bifinite domains by ideal completion *}
+
+theory Completion
+imports Bifinite
+begin
+
+subsection {* Ideals over a preorder *}
+
+locale preorder =
+ fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50)
+ assumes r_refl: "x \<preceq> x"
+ assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z"
+begin
+
+definition
+ ideal :: "'a set \<Rightarrow> bool" where
+ "ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and>
+ (\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))"
+
+lemma idealI:
+ assumes "\<exists>x. x \<in> A"
+ assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
+ assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
+ shows "ideal A"
+unfolding ideal_def using prems by fast
+
+lemma idealD1:
+ "ideal A \<Longrightarrow> \<exists>x. x \<in> A"
+unfolding ideal_def by fast
+
+lemma idealD2:
+ "\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
+unfolding ideal_def by fast
+
+lemma idealD3:
+ "\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
+unfolding ideal_def by fast
+
+lemma ideal_directed_finite:
+ assumes A: "ideal A"
+ shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z"
+apply (induct U set: finite)
+apply (simp add: idealD1 [OF A])
+apply (simp, clarify, rename_tac y)
+apply (drule (1) idealD2 [OF A])
+apply (clarify, erule_tac x=z in rev_bexI)
+apply (fast intro: r_trans)
+done
+
+lemma ideal_principal: "ideal {x. x \<preceq> z}"
+apply (rule idealI)
+apply (rule_tac x=z in exI)
+apply (fast intro: r_refl)
+apply (rule_tac x=z in bexI, fast)
+apply (fast intro: r_refl)
+apply (fast intro: r_trans)
+done
+
+lemma ex_ideal: "\<exists>A. ideal A"
+by (rule exI, rule ideal_principal)
+
+lemma directed_image_ideal:
+ assumes A: "ideal A"
+ assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
+ shows "directed (f ` A)"
+apply (rule directedI)
+apply (cut_tac idealD1 [OF A], fast)
+apply (clarify, rename_tac a b)
+apply (drule (1) idealD2 [OF A])
+apply (clarify, rename_tac c)
+apply (rule_tac x="f c" in rev_bexI)
+apply (erule imageI)
+apply (simp add: f)
+done
+
+lemma lub_image_principal:
+ assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
+ shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y"
+apply (rule thelubI)
+apply (rule is_lub_maximal)
+apply (rule ub_imageI)
+apply (simp add: f)
+apply (rule imageI)
+apply (simp add: r_refl)
+done
+
+text {* The set of ideals is a cpo *}
+
+lemma ideal_UN:
+ fixes A :: "nat \<Rightarrow> 'a set"
+ assumes ideal_A: "\<And>i. ideal (A i)"
+ assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j"
+ shows "ideal (\<Union>i. A i)"
+ apply (rule idealI)
+ apply (cut_tac idealD1 [OF ideal_A], fast)
+ apply (clarify, rename_tac i j)
+ apply (drule subsetD [OF chain_A [OF le_maxI1]])
+ apply (drule subsetD [OF chain_A [OF le_maxI2]])
+ apply (drule (1) idealD2 [OF ideal_A])
+ apply blast
+ apply clarify
+ apply (drule (1) idealD3 [OF ideal_A])
+ apply fast
+done
+
+lemma typedef_ideal_po:
+ fixes Abs :: "'a set \<Rightarrow> 'b::sq_ord"
+ assumes type: "type_definition Rep Abs {S. ideal S}"
+ assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
+ shows "OFCLASS('b, po_class)"
+ apply (intro_classes, unfold less)
+ apply (rule subset_refl)
+ apply (erule (1) subset_trans)
+ apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
+ apply (erule (1) subset_antisym)
+done
+
+lemma
+ fixes Abs :: "'a set \<Rightarrow> 'b::po"
+ assumes type: "type_definition Rep Abs {S. ideal S}"
+ assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
+ assumes S: "chain S"
+ shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
+ and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
+proof -
+ have 1: "ideal (\<Union>i. Rep (S i))"
+ apply (rule ideal_UN)
+ apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
+ apply (subst less [symmetric])
+ apply (erule chain_mono [OF S])
+ done
+ hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
+ by (simp add: type_definition.Abs_inverse [OF type])
+ show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
+ apply (rule is_lubI)
+ apply (rule is_ubI)
+ apply (simp add: less 2, fast)
+ apply (simp add: less 2 is_ub_def, fast)
+ done
+ hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
+ by (rule thelubI)
+ show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
+ by (simp add: 4 2)
+qed
+
+lemma typedef_ideal_cpo:
+ fixes Abs :: "'a set \<Rightarrow> 'b::po"
+ assumes type: "type_definition Rep Abs {S. ideal S}"
+ assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
+ shows "OFCLASS('b, cpo_class)"
+by (default, rule exI, erule typedef_ideal_lub [OF type less])
+
+end
+
+interpretation sq_le: preorder ["sq_le :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"]
+apply unfold_locales
+apply (rule refl_less)
+apply (erule (1) trans_less)
+done
+
+subsection {* Defining functions in terms of basis elements *}
+
+lemma finite_directed_contains_lub:
+ "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u"
+apply (drule (1) directed_finiteD, rule subset_refl)
+apply (erule bexE)
+apply (rule rev_bexI, assumption)
+apply (erule (1) is_lub_maximal)
+done
+
+lemma lub_finite_directed_in_self:
+ "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S"
+apply (drule (1) finite_directed_contains_lub, clarify)
+apply (drule thelubI, simp)
+done
+
+lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u"
+by (drule (1) finite_directed_contains_lub, fast)
+
+lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S"
+apply (erule exE, drule lubI)
+apply (drule is_lubD1)
+apply (erule (1) is_ubD)
+done
+
+lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x"
+by (erule exE, drule lubI, erule is_lub_lub)
+
+locale basis_take = preorder +
+ fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a"
+ assumes take_less: "take n a \<preceq> a"
+ assumes take_take: "take n (take n a) = take n a"
+ assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b"
+ assumes take_chain: "take n a \<preceq> take (Suc n) a"
+ assumes finite_range_take: "finite (range (take n))"
+ assumes take_covers: "\<exists>n. take n a = a"
+begin
+
+lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a"
+by (erule less_Suc_induct, rule take_chain, erule (1) r_trans)
+
+lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a"
+by (cases "m = n", simp add: r_refl, simp add: take_chain_less)
+
+end
+
+locale ideal_completion = basis_take +
+ fixes principal :: "'a::type \<Rightarrow> 'b::cpo"
+ fixes rep :: "'b::cpo \<Rightarrow> 'a::type set"
+ assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)"
+ assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))"
+ assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
+ assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y"
+begin
+
+lemma finite_take_rep: "finite (take n ` rep x)"
+by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take])
+
+lemma basis_fun_lemma0:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "\<exists>u. f ` take i ` rep x <<| u"
+apply (rule finite_directed_has_lub)
+apply (rule finite_imageI)
+apply (rule finite_take_rep)
+apply (subst image_image)
+apply (rule directed_image_ideal)
+apply (rule ideal_rep)
+apply (rule f_mono)
+apply (erule take_mono)
+done
+
+lemma basis_fun_lemma1:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "chain (\<lambda>i. lub (f ` take i ` rep x))"
+ apply (rule chainI)
+ apply (rule is_lub_thelub0)
+ apply (rule basis_fun_lemma0, erule f_mono)
+ apply (rule is_ubI, clarsimp, rename_tac a)
+ apply (rule sq_le.trans_less [OF f_mono [OF take_chain]])
+ apply (rule is_ub_thelub0)
+ apply (rule basis_fun_lemma0, erule f_mono)
+ apply simp
+done
+
+lemma basis_fun_lemma2:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))"
+ apply (rule is_lubI)
+ apply (rule ub_imageI, rename_tac a)
+ apply (cut_tac a=a in take_covers, erule exE, rename_tac i)
+ apply (erule subst)
+ apply (rule rev_trans_less)
+ apply (rule_tac x=i in is_ub_thelub)
+ apply (rule basis_fun_lemma1, erule f_mono)
+ apply (rule is_ub_thelub0)
+ apply (rule basis_fun_lemma0, erule f_mono)
+ apply simp
+ apply (rule is_lub_thelub [OF _ ub_rangeI])
+ apply (rule basis_fun_lemma1, erule f_mono)
+ apply (rule is_lub_thelub0)
+ apply (rule basis_fun_lemma0, erule f_mono)
+ apply (rule is_ubI, clarsimp, rename_tac a)
+ apply (rule sq_le.trans_less [OF f_mono [OF take_less]])
+ apply (erule (1) ub_imageD)
+done
+
+lemma basis_fun_lemma:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "\<exists>u. f ` rep x <<| u"
+by (rule exI, rule basis_fun_lemma2, erule f_mono)
+
+lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y"
+apply (frule bin_chain)
+apply (drule rep_contlub)
+apply (simp only: thelubI [OF lub_bin_chain])
+apply (rule subsetI, rule UN_I [where a=0], simp_all)
+done
+
+lemma less_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
+by (rule iffI [OF rep_mono subset_repD])
+
+lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
+unfolding less_def rep_principal
+apply safe
+apply (erule (1) idealD3 [OF ideal_rep])
+apply (erule subsetD, simp add: r_refl)
+done
+
+lemma mem_rep_iff_principal_less: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x"
+by (simp add: rep_eq)
+
+lemma principal_less_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
+by (simp add: rep_eq)
+
+lemma principal_less_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
+by (simp add: principal_less_iff_mem_rep rep_principal)
+
+lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
+unfolding po_eq_conv [where 'a='b] principal_less_iff ..
+
+lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x"
+by (simp add: rep_eq)
+
+lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
+by (simp only: principal_less_iff)
+
+lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"
+unfolding principal_less_iff_mem_rep
+by (simp add: less_def subset_eq)
+
+lemma lub_principal_rep: "principal ` rep x <<| x"
+apply (rule is_lubI)
+apply (rule ub_imageI)
+apply (erule repD)
+apply (subst less_def)
+apply (rule subsetI)
+apply (drule (1) ub_imageD)
+apply (simp add: rep_eq)
+done
+
+definition
+ basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
+ "basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))"
+
+lemma basis_fun_beta:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "basis_fun f\<cdot>x = lub (f ` rep x)"
+unfolding basis_fun_def
+proof (rule beta_cfun)
+ have lub: "\<And>x. \<exists>u. f ` rep x <<| u"
+ using f_mono by (rule basis_fun_lemma)
+ show cont: "cont (\<lambda>x. lub (f ` rep x))"
+ apply (rule contI2)
+ apply (rule monofunI)
+ apply (rule is_lub_thelub0 [OF lub ub_imageI])
+ apply (rule is_ub_thelub0 [OF lub imageI])
+ apply (erule (1) subsetD [OF rep_mono])
+ apply (rule is_lub_thelub0 [OF lub ub_imageI])
+ apply (simp add: rep_contlub, clarify)
+ apply (erule rev_trans_less [OF is_ub_thelub])
+ apply (erule is_ub_thelub0 [OF lub imageI])
+ done
+qed
+
+lemma basis_fun_principal:
+ fixes f :: "'a::type \<Rightarrow> 'c::cpo"
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ shows "basis_fun f\<cdot>(principal a) = f a"
+apply (subst basis_fun_beta, erule f_mono)
+apply (subst rep_principal)
+apply (rule lub_image_principal, erule f_mono)
+done
+
+lemma basis_fun_mono:
+ assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
+ assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
+ assumes less: "\<And>a. f a \<sqsubseteq> g a"
+ shows "basis_fun f \<sqsubseteq> basis_fun g"
+ apply (rule less_cfun_ext)
+ apply (simp only: basis_fun_beta f_mono g_mono)
+ apply (rule is_lub_thelub0)
+ apply (rule basis_fun_lemma, erule f_mono)
+ apply (rule ub_imageI, rename_tac a)
+ apply (rule sq_le.trans_less [OF less])
+ apply (rule is_ub_thelub0)
+ apply (rule basis_fun_lemma, erule g_mono)
+ apply (erule imageI)
+done
+
+lemma compact_principal [simp]: "compact (principal a)"
+by (rule compactI2, simp add: principal_less_iff_mem_rep rep_contlub)
+
+definition
+ completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where
+ "completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))"
+
+lemma completion_approx_beta:
+ "completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))"
+unfolding completion_approx_def
+by (simp add: basis_fun_beta principal_mono take_mono)
+
+lemma completion_approx_principal:
+ "completion_approx i\<cdot>(principal a) = principal (take i a)"
+unfolding completion_approx_def
+by (simp add: basis_fun_principal principal_mono take_mono)
+
+lemma chain_completion_approx: "chain completion_approx"
+unfolding completion_approx_def
+apply (rule chainI)
+apply (rule basis_fun_mono)
+apply (erule principal_mono [OF take_mono])
+apply (erule principal_mono [OF take_mono])
+apply (rule principal_mono [OF take_chain])
+done
+
+lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x"
+unfolding completion_approx_beta
+ apply (subst image_image [where f=principal, symmetric])
+ apply (rule unique_lub [OF _ lub_principal_rep])
+ apply (rule basis_fun_lemma2, erule principal_mono)
+done
+
+lemma completion_approx_eq_principal:
+ "\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)"
+unfolding completion_approx_beta
+ apply (subst image_image [where f=principal, symmetric])
+ apply (subgoal_tac "finite (principal ` take i ` rep x)")
+ apply (subgoal_tac "directed (principal ` take i ` rep x)")
+ apply (drule (1) lub_finite_directed_in_self, fast)
+ apply (subst image_image)
+ apply (rule directed_image_ideal)
+ apply (rule ideal_rep)
+ apply (erule principal_mono [OF take_mono])
+ apply (rule finite_imageI)
+ apply (rule finite_take_rep)
+done
+
+lemma completion_approx_idem:
+ "completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x"
+using completion_approx_eq_principal [where i=i and x=x]
+by (auto simp add: completion_approx_principal take_take)
+
+lemma finite_fixes_completion_approx:
+ "finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S")
+apply (subgoal_tac "?S \<subseteq> principal ` range (take i)")
+apply (erule finite_subset)
+apply (rule finite_imageI)
+apply (rule finite_range_take)
+apply (clarify, erule subst)
+apply (cut_tac x=x and i=i in completion_approx_eq_principal)
+apply fast
+done
+
+lemma principal_induct:
+ assumes adm: "adm P"
+ assumes P: "\<And>a. P (principal a)"
+ shows "P x"
+ apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)")
+ apply (simp add: lub_completion_approx)
+ apply (rule admD [OF adm])
+ apply (simp add: chain_completion_approx)
+ apply (cut_tac x=x and i=i in completion_approx_eq_principal)
+ apply (clarify, simp add: P)
+done
+
+lemma principal_induct2:
+ "\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y);
+ \<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y"
+apply (rule_tac x=y in spec)
+apply (rule_tac x=x in principal_induct, simp)
+apply (rule allI, rename_tac y)
+apply (rule_tac x=y in principal_induct, simp)
+apply simp
+done
+
+lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a"
+apply (drule adm_compact_neq [OF _ cont_id])
+apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"])
+apply (simp add: chain_completion_approx)
+apply (simp add: lub_completion_approx)
+apply (erule exE, erule ssubst)
+apply (cut_tac i=i and x=x in completion_approx_eq_principal)
+apply (clarify, erule exI)
+done
+
+end
+
+end