stripped dependency on pragmatic type class semiring_div
authorhaftmann
Tue, 11 Oct 2016 16:44:13 +0200
changeset 64163 62c9e5c05928
parent 64162 03057a8fdd1f
child 64164 38c407446400
stripped dependency on pragmatic type class semiring_div
src/HOL/Number_Theory/Euclidean_Algorithm.thy
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Wed Oct 12 11:31:08 2016 +0200
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Tue Oct 11 16:44:13 2016 +0200
@@ -6,6 +6,39 @@
 imports "~~/src/HOL/GCD" Factorial_Ring
 begin
 
+class divide_modulo = semidom_divide + modulo +
+  assumes div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
+begin
+
+lemma zero_mod_left [simp]: "0 mod a = 0"
+  using div_mod_equality[of 0 a 0] by simp
+
+lemma dvd_mod_iff [simp]: 
+  assumes "k dvd n"
+  shows   "(k dvd m mod n) = (k dvd m)"
+proof -
+  thm div_mod_equality
+  from assms have "(k dvd m mod n) \<longleftrightarrow> (k dvd ((m div n) * n + m mod n))" 
+    by (simp add: dvd_add_right_iff)
+  also have "(m div n) * n + m mod n = m"
+    using div_mod_equality[of m n 0] by simp
+  finally show ?thesis .
+qed
+
+lemma mod_0_imp_dvd: 
+  assumes "a mod b = 0"
+  shows   "b dvd a"
+proof -
+  have "b dvd ((a div b) * b)" by simp
+  also have "(a div b) * b = a"
+    using div_mod_equality[of a b 0] by (simp add: assms)
+  finally show ?thesis .
+qed
+
+end
+
+
+
 text \<open>
   A Euclidean semiring is a semiring upon which the Euclidean algorithm can be
   implemented. It must provide:
@@ -17,7 +50,7 @@
   The existence of these functions makes it possible to derive gcd and lcm functions 
   for any Euclidean semiring.
 \<close> 
-class euclidean_semiring = semiring_div + normalization_semidom + 
+class euclidean_semiring = divide_modulo + normalization_semidom + 
   fixes euclidean_size :: "'a \<Rightarrow> nat"
   assumes size_0 [simp]: "euclidean_size 0 = 0"
   assumes mod_size_less: 
@@ -53,13 +86,39 @@
   with that and assms show ?thesis by (auto simp add: mod_size_less)
 qed
 
+lemma zero_mod_left [simp]: "0 mod a = 0"
+  using div_mod_equality[of 0 a 0] by simp
+
+lemma dvd_mod_iff [simp]: 
+  assumes "k dvd n"
+  shows   "(k dvd m mod n) = (k dvd m)"
+proof -
+  thm div_mod_equality
+  from assms have "(k dvd m mod n) \<longleftrightarrow> (k dvd ((m div n) * n + m mod n))" 
+    by (simp add: dvd_add_right_iff)
+  also have "(m div n) * n + m mod n = m"
+    using div_mod_equality[of m n 0] by simp
+  finally show ?thesis .
+qed
+
+lemma mod_0_imp_dvd: 
+  assumes "a mod b = 0"
+  shows   "b dvd a"
+proof -
+  have "b dvd ((a div b) * b)" by simp
+  also have "(a div b) * b = a"
+    using div_mod_equality[of a b 0] by (simp add: assms)
+  finally show ?thesis .
+qed
+
 lemma dvd_euclidean_size_eq_imp_dvd:
   assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b"
   shows "a dvd b"
 proof (rule ccontr)
   assume "\<not> a dvd b"
+  hence "b mod a \<noteq> 0" using mod_0_imp_dvd[of b a] by blast
   then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
-  from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff)
+  from b_dvd_a have b_dvd_mod: "b dvd b mod a" by simp
   from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast
     with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
   with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
@@ -434,8 +493,6 @@
 class euclidean_ring = euclidean_semiring + idom
 begin
 
-subclass ring_div ..
-
 function euclid_ext_aux :: "'a \<Rightarrow> _" where
   "euclid_ext_aux r' r s' s t' t = (
      if r = 0 then let c = 1 div unit_factor r' in (s' * c, t' * c, normalize r')
@@ -484,7 +541,7 @@
               (s' * x + t' * y) - r' div r * (s * x + t * y)" by (simp add: algebra_simps)
       also have "s' * x + t' * y = r'" by fact
       also have "s * x + t * y = r" by fact
-      also have "r' - r' div r * r = r' mod r" using mod_div_equality[of r' r]
+      also have "r' - r' div r * r = r' mod r" using div_mod_equality[of r' r]
         by (simp add: algebra_simps)
       finally show "(s' - r' div r * s) * x + (t' - r' div r * t) * y = r' mod r" .
     qed (auto simp: gcd_eucl_non_0 algebra_simps div_mod_equality')