merged
authorhaftmann
Tue, 21 Jul 2009 17:02:18 +0200
changeset 32127 631546213601
parent 32112 6da9c2a49fed (current diff)
parent 32126 a5042f260440 (diff)
child 32128 59be4804c9ae
merged
src/HOLCF/Tools/domain/domain_axioms.ML
src/HOLCF/Tools/domain/domain_extender.ML
src/HOLCF/Tools/domain/domain_library.ML
src/HOLCF/Tools/domain/domain_syntax.ML
src/HOLCF/Tools/domain/domain_theorems.ML
--- a/src/HOL/Auth/Message.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Auth/Message.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -856,6 +856,8 @@
   Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
   DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
 
+fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
+
 (*Apply rules to break down assumptions of the form
   Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
 *)
--- a/src/HOL/HOL.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/HOL.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -107,7 +107,6 @@
 notation (xsymbols)
   iff  (infixr "\<longleftrightarrow>" 25)
 
-
 nonterminals
   letbinds  letbind
   case_syn  cases_syn
@@ -198,96 +197,9 @@
 axiomatization
   undefined :: 'a
 
-
-subsubsection {* Generic classes and algebraic operations *}
-
 class default =
   fixes default :: 'a
 
-class zero = 
-  fixes zero :: 'a  ("0")
-
-class one =
-  fixes one  :: 'a  ("1")
-
-hide (open) const zero one
-
-class plus =
-  fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 65)
-
-class minus =
-  fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "-" 65)
-
-class uminus =
-  fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
-
-class times =
-  fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "*" 70)
-
-class inverse =
-  fixes inverse :: "'a \<Rightarrow> 'a"
-    and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
-
-class abs =
-  fixes abs :: "'a \<Rightarrow> 'a"
-begin
-
-notation (xsymbols)
-  abs  ("\<bar>_\<bar>")
-
-notation (HTML output)
-  abs  ("\<bar>_\<bar>")
-
-end
-
-class sgn =
-  fixes sgn :: "'a \<Rightarrow> 'a"
-
-class ord =
-  fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
-    and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
-begin
-
-notation
-  less_eq  ("op <=") and
-  less_eq  ("(_/ <= _)" [51, 51] 50) and
-  less  ("op <") and
-  less  ("(_/ < _)"  [51, 51] 50)
-  
-notation (xsymbols)
-  less_eq  ("op \<le>") and
-  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
-
-notation (HTML output)
-  less_eq  ("op \<le>") and
-  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
-
-abbreviation (input)
-  greater_eq  (infix ">=" 50) where
-  "x >= y \<equiv> y <= x"
-
-notation (input)
-  greater_eq  (infix "\<ge>" 50)
-
-abbreviation (input)
-  greater  (infix ">" 50) where
-  "x > y \<equiv> y < x"
-
-end
-
-syntax
-  "_index1"  :: index    ("\<^sub>1")
-translations
-  (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
-
-typed_print_translation {*
-let
-  fun tr' c = (c, fn show_sorts => fn T => fn ts =>
-    if (not o null) ts orelse T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
-    else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
-in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
-*} -- {* show types that are presumably too general *}
-
 
 subsection {* Fundamental rules *}
 
@@ -1605,25 +1517,9 @@
 
 setup ReorientProc.init
 
-setup {*
-  ReorientProc.add
-    (fn Const(@{const_name HOL.zero}, _) => true
-      | Const(@{const_name HOL.one}, _) => true
-      | _ => false)
-*}
-
-simproc_setup reorient_zero ("0 = x") = ReorientProc.proc
-simproc_setup reorient_one ("1 = x") = ReorientProc.proc
-
 
 subsection {* Other simple lemmas and lemma duplicates *}
 
-lemma Let_0 [simp]: "Let 0 f = f 0"
-  unfolding Let_def ..
-
-lemma Let_1 [simp]: "Let 1 f = f 1"
-  unfolding Let_def ..
-
 lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x"
   by blast+
 
@@ -1643,13 +1539,6 @@
   apply (drule_tac [3] x = x in fun_cong, simp_all)
   done
 
-lemma mk_left_commute:
-  fixes f (infix "\<otimes>" 60)
-  assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and
-          c: "\<And>x y. x \<otimes> y = y \<otimes> x"
-  shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
-  by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]])
-
 lemmas eq_sym_conv = eq_commute
 
 lemma nnf_simps:
@@ -1659,6 +1548,118 @@
 by blast+
 
 
+subsection {* Generic classes and algebraic operations *}
+
+class zero = 
+  fixes zero :: 'a  ("0")
+
+class one =
+  fixes one  :: 'a  ("1")
+
+lemma Let_0 [simp]: "Let 0 f = f 0"
+  unfolding Let_def ..
+
+lemma Let_1 [simp]: "Let 1 f = f 1"
+  unfolding Let_def ..
+
+setup {*
+  ReorientProc.add
+    (fn Const(@{const_name HOL.zero}, _) => true
+      | Const(@{const_name HOL.one}, _) => true
+      | _ => false)
+*}
+
+simproc_setup reorient_zero ("0 = x") = ReorientProc.proc
+simproc_setup reorient_one ("1 = x") = ReorientProc.proc
+
+typed_print_translation {*
+let
+  fun tr' c = (c, fn show_sorts => fn T => fn ts =>
+    if (not o null) ts orelse T = dummyT
+      orelse not (! show_types) andalso can Term.dest_Type T
+    then raise Match
+    else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
+in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
+*} -- {* show types that are presumably too general *}
+
+hide (open) const zero one
+
+class plus =
+  fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 65)
+
+class minus =
+  fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "-" 65)
+
+class uminus =
+  fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
+
+class times =
+  fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "*" 70)
+
+class inverse =
+  fixes inverse :: "'a \<Rightarrow> 'a"
+    and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
+
+class abs =
+  fixes abs :: "'a \<Rightarrow> 'a"
+begin
+
+notation (xsymbols)
+  abs  ("\<bar>_\<bar>")
+
+notation (HTML output)
+  abs  ("\<bar>_\<bar>")
+
+end
+
+class sgn =
+  fixes sgn :: "'a \<Rightarrow> 'a"
+
+class ord =
+  fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+    and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+begin
+
+notation
+  less_eq  ("op <=") and
+  less_eq  ("(_/ <= _)" [51, 51] 50) and
+  less  ("op <") and
+  less  ("(_/ < _)"  [51, 51] 50)
+  
+notation (xsymbols)
+  less_eq  ("op \<le>") and
+  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
+
+notation (HTML output)
+  less_eq  ("op \<le>") and
+  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
+
+abbreviation (input)
+  greater_eq  (infix ">=" 50) where
+  "x >= y \<equiv> y <= x"
+
+notation (input)
+  greater_eq  (infix "\<ge>" 50)
+
+abbreviation (input)
+  greater  (infix ">" 50) where
+  "x > y \<equiv> y < x"
+
+end
+
+syntax
+  "_index1"  :: index    ("\<^sub>1")
+translations
+  (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
+
+lemma mk_left_commute:
+  fixes f (infix "\<otimes>" 60)
+  assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and
+          c: "\<And>x y. x \<otimes> y = y \<otimes> x"
+  shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
+  by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]])
+
+
 subsection {* Basic ML bindings *}
 
 ML {*
--- a/src/HOL/NatTransfer.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/NatTransfer.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -380,12 +380,16 @@
     "(even (int x)) = (even x)"
   by (auto simp add: zdvd_int even_nat_def)
 
+lemma UNIV_apply:
+  "UNIV x = True"
+  by (simp add: top_set_eq [symmetric] top_fun_eq top_bool_eq)
+
 declare TransferMorphism_int_nat[transfer add return:
   transfer_int_nat_numerals
   transfer_int_nat_functions
   transfer_int_nat_function_closures
   transfer_int_nat_relations
-  UNIV_code
+  UNIV_apply
 ]
 
 
--- a/src/HOL/Nominal/nominal_datatype.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Nominal/nominal_datatype.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -815,7 +815,7 @@
         val (thy', defs', eqns') = Library.foldl (make_constr_def tname T T')
           ((Sign.add_path tname thy, defs, []), constrs ~~ constrs' ~~ constr_syntax)
       in
-        (parent_path (#flat_names config) thy', defs', eqns @ [eqns'], dist_lemmas @ [dist])
+        (Sign.parent_path thy', defs', eqns @ [eqns'], dist_lemmas @ [dist])
       end;
 
     val (thy8, constr_defs, constr_rep_eqns, dist_lemmas) = Library.foldl dt_constr_defs
--- a/src/HOL/PReal.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/PReal.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -52,7 +52,7 @@
 
 definition
   psup :: "preal set => preal" where
-  "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
+  [code del]: "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
 
 definition
   add_set :: "[rat set,rat set] => rat set" where
--- a/src/HOL/SET-Protocol/MessageSET.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/SET-Protocol/MessageSET.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -854,6 +854,8 @@
   Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
   DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
 
+fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
+
 (*Apply rules to break down assumptions of the form
   Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
 *)
--- a/src/HOL/Set.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Set.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -80,12 +80,30 @@
 lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
   by simp
 
+text {*
+Simproc for pulling @{text "x=t"} in @{text "{x. \<dots> & x=t & \<dots>}"}
+to the front (and similarly for @{text "t=x"}):
+*}
+
+setup {*
+let
+  val Coll_perm_tac = rtac @{thm Collect_cong} 1 THEN rtac @{thm iffI} 1 THEN
+    ALLGOALS(EVERY'[REPEAT_DETERM o (etac @{thm conjE}),
+                    DEPTH_SOLVE_1 o (ares_tac [@{thm conjI}])])
+  val defColl_regroup = Simplifier.simproc @{theory}
+    "defined Collect" ["{x. P x & Q x}"]
+    (Quantifier1.rearrange_Coll Coll_perm_tac)
+in
+  Simplifier.map_simpset (fn ss => ss addsimprocs [defColl_regroup])
+end
+*}
+
 lemmas CollectE = CollectD [elim_format]
 
 text {* Set enumerations *}
 
 definition empty :: "'a set" ("{}") where
-  "empty \<equiv> {x. False}"
+  "empty = {x. False}"
 
 definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
   insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
@@ -273,14 +291,10 @@
   in [("@SetCompr", setcompr_tr)] end;
 *}
 
-(* To avoid eta-contraction of body: *)
-print_translation {*
-let
-  fun btr' syn [A, Abs abs] =
-    let val (x, t) = atomic_abs_tr' abs
-    in Syntax.const syn $ x $ A $ t end
-in [(@{const_syntax Ball}, btr' "_Ball"), (@{const_syntax Bex}, btr' "_Bex")] end
-*}
+print_translation {* [
+Syntax.preserve_binder_abs2_tr' @{const_syntax Ball} "_Ball",
+Syntax.preserve_binder_abs2_tr' @{const_syntax Bex} "_Bex"
+] *} -- {* to avoid eta-contraction of body *}
 
 print_translation {*
 let
@@ -311,6 +325,23 @@
   in [("Collect", setcompr_tr')] end;
 *}
 
+setup {*
+let
+  val unfold_bex_tac = unfold_tac @{thms "Bex_def"};
+  fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac;
+  val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
+  val unfold_ball_tac = unfold_tac @{thms "Ball_def"};
+  fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac;
+  val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
+  val defBEX_regroup = Simplifier.simproc @{theory}
+    "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
+  val defBALL_regroup = Simplifier.simproc @{theory}
+    "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
+in
+  Simplifier.map_simpset (fn ss => ss addsimprocs [defBALL_regroup, defBEX_regroup])
+end
+*}
+
 lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
   by (simp add: Ball_def)
 
@@ -319,20 +350,6 @@
 lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
   by (simp add: Ball_def)
 
-lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
-  by (unfold Ball_def) blast
-
-ML {* bind_thm ("rev_ballE", Thm.permute_prems 1 1 @{thm ballE}) *}
-
-text {*
-  \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
-  @{prop "a:A"}; creates assumption @{prop "P a"}.
-*}
-
-ML {*
-  fun ball_tac i = etac @{thm ballE} i THEN contr_tac (i + 1)
-*}
-
 text {*
   Gives better instantiation for bound:
 *}
@@ -341,6 +358,26 @@
   Classical.map_cs (fn cs => cs addbefore ("bspec", datac @{thm bspec} 1))
 *}
 
+ML {*
+structure Simpdata =
+struct
+
+open Simpdata;
+
+val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
+
+end;
+
+open Simpdata;
+*}
+
+declaration {* fn _ =>
+  Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs))
+*}
+
+lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
+  by (unfold Ball_def) blast
+
 lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
   -- {* Normally the best argument order: @{prop "P x"} constrains the
     choice of @{prop "x:A"}. *}
@@ -382,24 +419,6 @@
 lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
   by blast
 
-ML {*
-  local
-    val unfold_bex_tac = unfold_tac @{thms "Bex_def"};
-    fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac;
-    val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
-
-    val unfold_ball_tac = unfold_tac @{thms "Ball_def"};
-    fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac;
-    val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
-  in
-    val defBEX_regroup = Simplifier.simproc @{theory}
-      "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
-    val defBALL_regroup = Simplifier.simproc @{theory}
-      "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
-  end;
-
-  Addsimprocs [defBALL_regroup, defBEX_regroup];
-*}
 
 text {* Congruence rules *}
 
@@ -450,25 +469,12 @@
   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 *}
 
-ML {*
-  fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
-*}
-
 lemma subsetCE [elim]: "A \<subseteq>  B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
   -- {* Classical elimination rule. *}
   by (unfold mem_def) blast
 
 lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
 
-text {*
-  \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
-  creates the assumption @{prop "c \<in> B"}.
-*}
-
-ML {*
-  fun set_mp_tac i = etac @{thm subsetCE} i THEN mp_tac i
-*}
-
 lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
   by blast
 
@@ -538,7 +544,7 @@
 subsubsection {* The universal set -- UNIV *}
 
 definition UNIV :: "'a set" where
-  "UNIV \<equiv> {x. True}"
+  "UNIV = {x. True}"
 
 lemma UNIV_I [simp]: "x : UNIV"
   by (simp add: UNIV_def)
@@ -647,7 +653,7 @@
 subsubsection {* Binary union -- Un *}
 
 definition Un :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where
-  "A Un B \<equiv> {x. x \<in> A \<or> x \<in> B}"
+  "A Un B = {x. x \<in> A \<or> x \<in> B}"
 
 notation (xsymbols)
   "Un"  (infixl "\<union>" 65)
@@ -678,7 +684,7 @@
 lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
   by (unfold Un_def) blast
 
-lemma insert_def: "insert a B \<equiv> {x. x = a} \<union> B"
+lemma insert_def: "insert a B = {x. x = a} \<union> B"
   by (simp add: Collect_def mem_def insert_compr Un_def)
 
 lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
@@ -690,7 +696,7 @@
 subsubsection {* Binary intersection -- Int *}
 
 definition Int :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where
-  "A Int B \<equiv> {x. x \<in> A \<and> x \<in> B}"
+  "A Int B = {x. x \<in> A \<and> x \<in> B}"
 
 notation (xsymbols)
   "Int"  (infixl "\<inter>" 70)
@@ -883,34 +889,15 @@
   by blast
 
 
-subsubsection {* Some proof tools *}
+subsubsection {* Some rules with @{text "if"} *}
 
 text{* Elimination of @{text"{x. \<dots> & x=t & \<dots>}"}. *}
 
 lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})"
-by auto
+  by auto
 
 lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})"
-by auto
-
-text {*
-Simproc for pulling @{text "x=t"} in @{text "{x. \<dots> & x=t & \<dots>}"}
-to the front (and similarly for @{text "t=x"}):
-*}
-
-ML{*
-  local
-    val Coll_perm_tac = rtac @{thm Collect_cong} 1 THEN rtac @{thm iffI} 1 THEN
-    ALLGOALS(EVERY'[REPEAT_DETERM o (etac @{thm conjE}),
-                    DEPTH_SOLVE_1 o (ares_tac [@{thm conjI}])])
-  in
-    val defColl_regroup = Simplifier.simproc @{theory}
-      "defined Collect" ["{x. P x & Q x}"]
-      (Quantifier1.rearrange_Coll Coll_perm_tac)
-  end;
-
-  Addsimprocs [defColl_regroup];
-*}
+  by auto
 
 text {*
   Rewrite rules for boolean case-splitting: faster than @{text
@@ -945,13 +932,6 @@
    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
  *)
 
-ML {*
-  val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
-*}
-declaration {* fn _ =>
-  Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs))
-*}
-
 
 subsection {* Complete lattices *}
 
@@ -1029,10 +1009,10 @@
   using top_greatest [of x] by (simp add: le_iff_inf inf_commute)
 
 definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
-  "SUPR A f == \<Squnion> (f ` A)"
+  "SUPR A f = \<Squnion> (f ` A)"
 
 definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
-  "INFI A f == \<Sqinter> (f ` A)"
+  "INFI A f = \<Sqinter> (f ` A)"
 
 end
 
@@ -1052,17 +1032,10 @@
   "INF x. B"     == "INF x:CONST UNIV. B"
   "INF x:A. B"   == "CONST INFI A (%x. B)"
 
-(* To avoid eta-contraction of body: *)
-print_translation {*
-let
-  fun btr' syn (A :: Abs abs :: ts) =
-    let val (x,t) = atomic_abs_tr' abs
-    in list_comb (Syntax.const syn $ x $ A $ t, ts) end
-  val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
-in
-[(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
-end
-*}
+print_translation {* [
+Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} "_SUP",
+Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} "_INF"
+] *} -- {* to avoid eta-contraction of body *}
 
 context complete_lattice
 begin
@@ -1112,6 +1085,24 @@
   "\<not> \<Squnion>{}"
   unfolding Sup_bool_def by auto
 
+lemma INFI_bool_eq:
+  "INFI = Ball"
+proof (rule ext)+
+  fix A :: "'a set"
+  fix P :: "'a \<Rightarrow> bool"
+  show "(INF x:A. P x) \<longleftrightarrow> (\<forall>x \<in> A. P x)"
+    by (auto simp add: Ball_def INFI_def Inf_bool_def)
+qed
+
+lemma SUPR_bool_eq:
+  "SUPR = Bex"
+proof (rule ext)+
+  fix A :: "'a set"
+  fix P :: "'a \<Rightarrow> bool"
+  show "(SUP x:A. P x) \<longleftrightarrow> (\<exists>x \<in> A. P x)"
+    by (auto simp add: Bex_def SUPR_def Sup_bool_def)
+qed
+
 instantiation "fun" :: (type, complete_lattice) complete_lattice
 begin
 
@@ -1136,10 +1127,43 @@
   by rule (simp add: Sup_fun_def, simp add: empty_def)
 
 
+subsubsection {* Union *}
+
+definition Union :: "'a set set \<Rightarrow> 'a set" where
+  Union_eq [code del]: "Union A = {x. \<exists>B \<in> A. x \<in> B}"
+
+notation (xsymbols)
+  Union  ("\<Union>_" [90] 90)
+
+lemma Sup_set_eq:
+  "\<Squnion>S = \<Union>S"
+proof (rule set_ext)
+  fix x
+  have "(\<exists>Q\<in>{P. \<exists>A\<in>S. P \<longleftrightarrow> x \<in> A}. Q) \<longleftrightarrow> (\<exists>A\<in>S. x \<in> A)"
+    by auto
+  then show "x \<in> \<Squnion>S \<longleftrightarrow> x \<in> \<Union>S"
+    by (simp add: Sup_fun_def Sup_bool_def Union_eq) (simp add: mem_def)
+qed
+
+lemma Union_iff [simp, noatp]:
+  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
+  by (unfold Union_eq) blast
+
+lemma UnionI [intro]:
+  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
+  -- {* The order of the premises presupposes that @{term C} is rigid;
+    @{term A} may be flexible. *}
+  by auto
+
+lemma UnionE [elim!]:
+  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A\<in>X \<Longrightarrow> X\<in>C \<Longrightarrow> R) \<Longrightarrow> R"
+  by auto
+
+
 subsubsection {* Unions of families *}
 
 definition UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
-  "UNION A B \<equiv> {y. \<exists>x\<in>A. y \<in> B x}"
+  UNION_eq_Union_image: "UNION A B = \<Union>(B`A)"
 
 syntax
   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
@@ -1168,17 +1192,26 @@
   subscripts in Proof General.
 *}
 
-(* To avoid eta-contraction of body: *)
-print_translation {*
-let
-  fun btr' syn [A, Abs abs] =
-    let val (x, t) = atomic_abs_tr' abs
-    in Syntax.const syn $ x $ A $ t end
-in [(@{const_syntax UNION}, btr' "@UNION")] end
-*}
-
-declare UNION_def [noatp]
-
+print_translation {* [
+Syntax.preserve_binder_abs2_tr' @{const_syntax UNION} "@UNION"
+] *} -- {* to avoid eta-contraction of body *}
+
+lemma SUPR_set_eq:
+  "(SUP x:S. f x) = (\<Union>x\<in>S. f x)"
+  by (simp add: SUPR_def UNION_eq_Union_image Sup_set_eq)
+
+lemma Union_def:
+  "\<Union>S = (\<Union>x\<in>S. x)"
+  by (simp add: UNION_eq_Union_image image_def)
+
+lemma UNION_def [noatp]:
+  "UNION A B = {y. \<exists>x\<in>A. y \<in> B x}"
+  by (auto simp add: UNION_eq_Union_image Union_eq)
+  
+lemma Union_image_eq [simp]:
+  "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
+  by (rule sym) (fact UNION_eq_Union_image)
+  
 lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
   by (unfold UNION_def) blast
 
@@ -1202,10 +1235,49 @@
   by blast
 
 
+subsubsection {* Inter *}
+
+definition Inter :: "'a set set \<Rightarrow> 'a set" where
+  Inter_eq [code del]: "Inter A = {x. \<forall>B \<in> A. x \<in> B}"
+
+notation (xsymbols)
+  Inter  ("\<Inter>_" [90] 90)
+
+lemma Inf_set_eq:
+  "\<Sqinter>S = \<Inter>S"
+proof (rule set_ext)
+  fix x
+  have "(\<forall>Q\<in>{P. \<exists>A\<in>S. P \<longleftrightarrow> x \<in> A}. Q) \<longleftrightarrow> (\<forall>A\<in>S. x \<in> A)"
+    by auto
+  then show "x \<in> \<Sqinter>S \<longleftrightarrow> x \<in> \<Inter>S"
+    by (simp add: Inter_eq Inf_fun_def Inf_bool_def) (simp add: mem_def)
+qed
+
+lemma Inter_iff [simp,noatp]: "(A : Inter C) = (ALL X:C. A:X)"
+  by (unfold Inter_eq) blast
+
+lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
+  by (simp add: Inter_eq)
+
+text {*
+  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
+  contains @{term A} as an element, but @{prop "A:X"} can hold when
+  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
+*}
+
+lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
+  by auto
+
+lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
+  -- {* ``Classical'' elimination rule -- does not require proving
+    @{prop "X:C"}. *}
+  by (unfold Inter_eq) blast
+
+
 subsubsection {* Intersections of families *}
 
 definition INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
-  "INTER A B \<equiv> {y. \<forall>x\<in>A. y \<in> B x}"
+  INTER_eq_Inter_image: "INTER A B = \<Inter>(B`A)"
 
 syntax
   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
@@ -1225,14 +1297,25 @@
   "INT x. B"    == "INT x:CONST UNIV. B"
   "INT x:A. B"  == "CONST INTER A (%x. B)"
 
-(* To avoid eta-contraction of body: *)
-print_translation {*
-let
-  fun btr' syn [A, Abs abs] =
-    let val (x, t) = atomic_abs_tr' abs
-    in Syntax.const syn $ x $ A $ t end
-in [(@{const_syntax INTER}, btr' "@INTER")] end
-*}
+print_translation {* [
+Syntax.preserve_binder_abs2_tr' @{const_syntax INTER} "@INTER"
+] *} -- {* to avoid eta-contraction of body *}
+
+lemma INFI_set_eq:
+  "(INF x:S. f x) = (\<Inter>x\<in>S. f x)"
+  by (simp add: INFI_def INTER_eq_Inter_image Inf_set_eq)
+
+lemma Inter_def:
+  "Inter S = INTER S (\<lambda>x. x)"
+  by (simp add: INTER_eq_Inter_image image_def)
+
+lemma INTER_def:
+  "INTER A B = {y. \<forall>x\<in>A. y \<in> B x}"
+  by (auto simp add: INTER_eq_Inter_image Inter_eq)
+
+lemma Inter_image_eq [simp]:
+  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
+  by (rule sym) (fact INTER_eq_Inter_image)
 
 lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
   by (unfold INTER_def) blast
@@ -1252,99 +1335,6 @@
   by (simp add: INTER_def)
 
 
-subsubsection {* Union *}
-
-definition Union :: "'a set set \<Rightarrow> 'a set" where
-  "Union S \<equiv> UNION S (\<lambda>x. x)"
-
-notation (xsymbols)
-  Union  ("\<Union>_" [90] 90)
-
-lemma Union_image_eq [simp]:
-  "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
-  by (auto simp add: Union_def UNION_def image_def)
-
-lemma Union_eq:
-  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
-  by (simp add: Union_def UNION_def)
-
-lemma Sup_set_eq:
-  "\<Squnion>S = \<Union>S"
-proof (rule set_ext)
-  fix x
-  have "(\<exists>Q\<in>{P. \<exists>A\<in>S. P \<longleftrightarrow> x \<in> A}. Q) \<longleftrightarrow> (\<exists>A\<in>S. x \<in> A)"
-    by auto
-  then show "x \<in> \<Squnion>S \<longleftrightarrow> x \<in> \<Union>S"
-    by (simp add: Union_eq Sup_fun_def Sup_bool_def) (simp add: mem_def)
-qed
-
-lemma SUPR_set_eq:
-  "(SUP x:S. f x) = (\<Union>x\<in>S. f x)"
-  by (simp add: SUPR_def Sup_set_eq)
-
-lemma Union_iff [simp,noatp]: "(A : Union C) = (EX X:C. A:X)"
-  by (unfold Union_def) blast
-
-lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C"
-  -- {* The order of the premises presupposes that @{term C} is rigid;
-    @{term A} may be flexible. *}
-  by auto
-
-lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R"
-  by (unfold Union_def) blast
-
-
-subsubsection {* Inter *}
-
-definition Inter :: "'a set set \<Rightarrow> 'a set" where
-  "Inter S \<equiv> INTER S (\<lambda>x. x)"
-
-notation (xsymbols)
-  Inter  ("\<Inter>_" [90] 90)
-
-lemma Inter_image_eq [simp]:
-  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
-  by (auto simp add: Inter_def INTER_def image_def)
-
-lemma Inter_eq:
-  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
-  by (simp add: Inter_def INTER_def)
-
-lemma Inf_set_eq:
-  "\<Sqinter>S = \<Inter>S"
-proof (rule set_ext)
-  fix x
-  have "(\<forall>Q\<in>{P. \<exists>A\<in>S. P \<longleftrightarrow> x \<in> A}. Q) \<longleftrightarrow> (\<forall>A\<in>S. x \<in> A)"
-    by auto
-  then show "x \<in> \<Sqinter>S \<longleftrightarrow> x \<in> \<Inter>S"
-    by (simp add: Inter_eq Inf_fun_def Inf_bool_def) (simp add: mem_def)
-qed
-
-lemma INFI_set_eq:
-  "(INF x:S. f x) = (\<Inter>x\<in>S. f x)"
-  by (simp add: INFI_def Inf_set_eq)
-
-lemma Inter_iff [simp,noatp]: "(A : Inter C) = (ALL X:C. A:X)"
-  by (unfold Inter_def) blast
-
-lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
-  by (simp add: Inter_def)
-
-text {*
-  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
-  contains @{term A} as an element, but @{prop "A:X"} can hold when
-  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
-*}
-
-lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
-  by auto
-
-lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
-  -- {* ``Classical'' elimination rule -- does not require proving
-    @{prop "X:C"}. *}
-  by (unfold Inter_def) blast
-
-
 no_notation
   less_eq  (infix "\<sqsubseteq>" 50) and
   less (infix "\<sqsubset>" 50) and
@@ -2467,23 +2457,24 @@
 
 text {* Rudimentary code generation *}
 
-lemma empty_code [code]: "{} x \<longleftrightarrow> False"
-  unfolding empty_def Collect_def ..
-
-lemma UNIV_code [code]: "UNIV x \<longleftrightarrow> True"
-  unfolding UNIV_def Collect_def ..
+lemma [code]: "{} = bot"
+  by (rule sym) (fact bot_set_eq)
+
+lemma [code]: "UNIV = top"
+  by (rule sym) (fact top_set_eq)
+
+lemma [code]: "op \<inter> = inf"
+  by (rule ext)+ (simp add: inf_set_eq)
+
+lemma [code]: "op \<union> = sup"
+  by (rule ext)+ (simp add: sup_set_eq)
 
 lemma insert_code [code]: "insert y A x \<longleftrightarrow> y = x \<or> A x"
-  unfolding insert_def Collect_def mem_def Un_def by auto
-
-lemma inter_code [code]: "(A \<inter> B) x \<longleftrightarrow> A x \<and> B x"
-  unfolding Int_def Collect_def mem_def ..
-
-lemma union_code [code]: "(A \<union> B) x \<longleftrightarrow> A x \<or> B x"
-  unfolding Un_def Collect_def mem_def ..
+  by (auto simp add: insert_compr Collect_def mem_def)
 
 lemma vimage_code [code]: "(f -` A) x = A (f x)"
-  unfolding vimage_def Collect_def mem_def ..
+  by (simp add: vimage_def Collect_def mem_def)
+
 
 text {* Misc theorem and ML bindings *}
 
--- a/src/HOL/Tools/Datatype/datatype.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -552,8 +552,7 @@
             val _ = (case fold (curry OldTerm.add_typ_tfree_names) cargs' [] \\ tvs of
                 [] => ()
               | vs => error ("Extra type variables on rhs: " ^ commas vs))
-          in (constrs @ [((if #flat_names config then Sign.full_name tmp_thy else
-                Sign.full_name_path tmp_thy tname')
+          in (constrs @ [(Sign.full_name_path tmp_thy tname'
                   (Binding.map_name (Syntax.const_name mx') cname),
                    map (dtyp_of_typ new_dts) cargs')],
               constr_syntax' @ [(cname, mx')], sorts'')
--- a/src/HOL/Tools/Datatype/datatype_abs_proofs.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype_abs_proofs.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -93,7 +93,7 @@
     val _ = message config "Constructing primrec combinators ...";
 
     val big_name = space_implode "_" new_type_names;
-    val thy0 = add_path (#flat_names config) big_name thy;
+    val thy0 = Sign.add_path big_name thy;
 
     val descr' = List.concat descr;
     val recTs = get_rec_types descr' sorts;
@@ -243,7 +243,7 @@
            Const ("The", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
              set $ Free ("x", T) $ Free ("y", T'))))))
                (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts))
-      ||> parent_path (#flat_names config) 
+      ||> Sign.parent_path
       ||> Theory.checkpoint;
 
 
@@ -277,7 +277,7 @@
   let
     val _ = message config "Proving characteristic theorems for case combinators ...";
 
-    val thy1 = add_path (#flat_names config) (space_implode "_" new_type_names) thy;
+    val thy1 = Sign.add_path (space_implode "_" new_type_names) thy;
 
     val descr' = List.concat descr;
     val recTs = get_rec_types descr' sorts;
@@ -339,7 +339,7 @@
     thy2
     |> Context.the_theory o fold (fold Nitpick_Const_Simps.add_thm) case_thms
        o Context.Theory
-    |> parent_path (#flat_names config)
+    |> Sign.parent_path
     |> store_thmss "cases" new_type_names case_thms
     |-> (fn thmss => pair (thmss, case_names))
   end;
--- a/src/HOL/Tools/Datatype/datatype_aux.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype_aux.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -22,9 +22,6 @@
 
   val message : config -> string -> unit
   
-  val add_path : bool -> string -> theory -> theory
-  val parent_path : bool -> theory -> theory
-
   val store_thmss_atts : string -> string list -> attribute list list -> thm list list
     -> theory -> thm list list * theory
   val store_thmss : string -> string list -> thm list list -> theory -> thm list list * theory
@@ -76,15 +73,12 @@
 
 (* datatype option flags *)
 
-type config = { strict: bool, flat_names: bool, quiet: bool };
+type config = { strict: bool, quiet: bool };
 val default_config : config =
-  { strict = true, flat_names = false, quiet = false };
+  { strict = true, quiet = false };
 fun message ({ quiet, ...} : config) s =
   if quiet then () else writeln s;
 
-fun add_path flat_names s = if flat_names then I else Sign.add_path s;
-fun parent_path flat_names = if flat_names then I else Sign.parent_path;
-
 
 (* store theorems in theory *)
 
--- a/src/HOL/Tools/Datatype/datatype_rep_proofs.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype_rep_proofs.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -66,7 +66,7 @@
     val descr' = flat descr;
 
     val big_name = space_implode "_" new_type_names;
-    val thy1 = add_path (#flat_names config) big_name thy;
+    val thy1 = Sign.add_path big_name thy;
     val big_rec_name = big_name ^ "_rep_set";
     val rep_set_names' =
       (if length descr' = 1 then [big_rec_name] else
@@ -187,7 +187,7 @@
     (********************************* typedef ********************************)
 
     val (typedefs, thy3) = thy2 |>
-      parent_path (#flat_names config) |>
+      Sign.parent_path |>
       fold_map (fn ((((name, mx), tvs), c), name') =>
           Typedef.add_typedef false (SOME (Binding.name name')) (name, tvs, mx)
             (Collect $ Const (c, UnivT')) NONE
@@ -196,7 +196,7 @@
               (resolve_tac rep_intrs 1)))
                 (types_syntax ~~ tyvars ~~
                   (Library.take (length newTs, rep_set_names)) ~~ new_type_names) ||>
-      add_path (#flat_names config) big_name;
+      Sign.add_path big_name;
 
     (*********************** definition of constructors ***********************)
 
@@ -254,14 +254,14 @@
         val cong' = standard (cterm_instantiate [(cterm_of thy cong_f, rep_const)] arg_cong);
         val dist = standard (cterm_instantiate [(cterm_of thy distinct_f, rep_const)] distinct_lemma);
         val (thy', defs', eqns', _) = Library.foldl ((make_constr_def tname T) (length constrs))
-          ((add_path (#flat_names config) tname thy, defs, [], 1), constrs ~~ constr_syntax)
+          ((Sign.add_path tname thy, defs, [], 1), constrs ~~ constr_syntax)
       in
-        (parent_path (#flat_names config) thy', defs', eqns @ [eqns'],
+        (Sign.parent_path thy', defs', eqns @ [eqns'],
           rep_congs @ [cong'], dist_lemmas @ [dist])
       end;
 
     val (thy4, constr_defs, constr_rep_eqns, rep_congs, dist_lemmas) = Library.foldl dt_constr_defs
-      ((thy3 |> Sign.add_consts_i iso_decls |> parent_path (#flat_names config), [], [], [], []),
+      ((thy3 |> Sign.add_consts_i iso_decls |> Sign.parent_path, [], [], [], []),
         hd descr ~~ new_type_names ~~ newTs ~~ constr_syntax);
 
     (*********** isomorphisms for new types (introduced by typedef) ***********)
@@ -355,7 +355,7 @@
       in (thy', char_thms' @ char_thms) end;
 
     val (thy5, iso_char_thms) = apfst Theory.checkpoint (List.foldr make_iso_defs
-      (add_path (#flat_names config) big_name thy4, []) (tl descr));
+      (Sign.add_path big_name thy4, []) (tl descr));
 
     (* prove isomorphism properties *)
 
@@ -565,7 +565,7 @@
 
     val ((constr_inject', distinct_thms'), thy6) =
       thy5
-      |> parent_path (#flat_names config)
+      |> Sign.parent_path
       |> store_thmss "inject" new_type_names constr_inject
       ||>> store_thmss "distinct" new_type_names distinct_thms;
 
--- a/src/HOL/Tools/inductive_realizer.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOL/Tools/inductive_realizer.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -308,7 +308,7 @@
     val ((dummies, some_dt_names), thy2) =
       thy1
       |> add_dummies (Datatype.add_datatype
-           { strict = false, flat_names = false, quiet = false } (map (Binding.name_of o #2) dts))
+           { strict = false, quiet = false } (map (Binding.name_of o #2) dts))
            (map (pair false) dts) []
       ||> Extraction.add_typeof_eqns_i ty_eqs
       ||> Extraction.add_realizes_eqns_i rlz_eqs;
--- a/src/HOLCF/Domain.thy	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOLCF/Domain.thy	Tue Jul 21 17:02:18 2009 +0200
@@ -9,11 +9,11 @@
 uses
   ("Tools/cont_consts.ML")
   ("Tools/cont_proc.ML")
-  ("Tools/domain/domain_library.ML")
-  ("Tools/domain/domain_syntax.ML")
-  ("Tools/domain/domain_axioms.ML")
-  ("Tools/domain/domain_theorems.ML")
-  ("Tools/domain/domain_extender.ML")
+  ("Tools/Domain/domain_library.ML")
+  ("Tools/Domain/domain_syntax.ML")
+  ("Tools/Domain/domain_axioms.ML")
+  ("Tools/Domain/domain_theorems.ML")
+  ("Tools/Domain/domain_extender.ML")
 begin
 
 defaultsort pcpo
@@ -274,10 +274,10 @@
 
 use "Tools/cont_consts.ML"
 use "Tools/cont_proc.ML"
-use "Tools/domain/domain_library.ML"
-use "Tools/domain/domain_syntax.ML"
-use "Tools/domain/domain_axioms.ML"
-use "Tools/domain/domain_theorems.ML"
-use "Tools/domain/domain_extender.ML"
+use "Tools/Domain/domain_library.ML"
+use "Tools/Domain/domain_syntax.ML"
+use "Tools/Domain/domain_axioms.ML"
+use "Tools/Domain/domain_theorems.ML"
+use "Tools/Domain/domain_extender.ML"
 
 end
--- a/src/HOLCF/IsaMakefile	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/HOLCF/IsaMakefile	Tue Jul 21 17:02:18 2009 +0200
@@ -62,11 +62,11 @@
   Tools/adm_tac.ML \
   Tools/cont_consts.ML \
   Tools/cont_proc.ML \
-  Tools/domain/domain_extender.ML \
-  Tools/domain/domain_axioms.ML \
-  Tools/domain/domain_library.ML \
-  Tools/domain/domain_syntax.ML \
-  Tools/domain/domain_theorems.ML \
+  Tools/Domain/domain_extender.ML \
+  Tools/Domain/domain_axioms.ML \
+  Tools/Domain/domain_library.ML \
+  Tools/Domain/domain_syntax.ML \
+  Tools/Domain/domain_theorems.ML \
   Tools/fixrec.ML \
   Tools/pcpodef.ML \
   holcf_logic.ML \
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_axioms.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -0,0 +1,235 @@
+(*  Title:      HOLCF/Tools/Domain/domain_axioms.ML
+    Author:     David von Oheimb
+
+Syntax generator for domain command.
+*)
+
+signature DOMAIN_AXIOMS =
+sig
+  val copy_of_dtyp : (int -> term) -> Datatype.dtyp -> term
+
+  val calc_axioms :
+      string -> Domain_Library.eq list -> int -> Domain_Library.eq ->
+      string * (string * term) list * (string * term) list
+
+  val add_axioms :
+      bstring -> Domain_Library.eq list -> theory -> theory
+end;
+
+
+structure Domain_Axioms :> DOMAIN_AXIOMS =
+struct
+
+open Domain_Library;
+
+infixr 0 ===>;infixr 0 ==>;infix 0 == ; 
+infix 1 ===; infix 1 ~= ; infix 1 <<; infix 1 ~<<;
+infix 9 `   ; infix 9 `% ; infix 9 `%%; infixr 9 oo;
+
+(* FIXME: use theory data for this *)
+val copy_tab : string Symtab.table =
+    Symtab.make [(@{type_name "->"}, @{const_name "cfun_fun"}),
+                 (@{type_name "++"}, @{const_name "ssum_fun"}),
+                 (@{type_name "**"}, @{const_name "sprod_fun"}),
+                 (@{type_name "*"}, @{const_name "cprod_fun"}),
+                 (@{type_name "u"}, @{const_name "u_fun"})];
+
+fun copy_of_dtyp r dt = if DatatypeAux.is_rec_type dt then copy r dt else ID
+and copy r (DatatypeAux.DtRec i) = r i
+  | copy r (DatatypeAux.DtTFree a) = ID
+  | copy r (DatatypeAux.DtType (c, ds)) =
+    case Symtab.lookup copy_tab c of
+      SOME f => list_ccomb (%%:f, map (copy_of_dtyp r) ds)
+    | NONE => (warning ("copy_of_dtyp: unknown type constructor " ^ c); ID);
+
+fun calc_axioms
+      (comp_dname : string)
+      (eqs : eq list)
+      (n : int)
+      (eqn as ((dname,_),cons) : eq)
+    : string * (string * term) list * (string * term) list =
+    let
+
+      (* ----- axioms and definitions concerning the isomorphism ------------------ *)
+
+      val dc_abs = %%:(dname^"_abs");
+      val dc_rep = %%:(dname^"_rep");
+      val x_name'= "x";
+      val x_name = idx_name eqs x_name' (n+1);
+      val dnam = Long_Name.base_name dname;
+
+      val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
+      val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
+
+      val when_def = ("when_def",%%:(dname^"_when") == 
+                                List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
+                                                                                        Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
+          
+      val copy_def =
+          let fun r i = cproj (Bound 0) eqs i;
+          in ("copy_def", %%:(dname^"_copy") ==
+                          /\ "f" (dc_abs oo (copy_of_dtyp r (dtyp_of_eq eqn)) oo dc_rep)) end;
+
+      (* -- definitions concerning the constructors, discriminators and selectors - *)
+
+      fun con_def m n (_,args) = let
+        fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
+        fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
+        fun inj y 1 _ = y
+          | inj y _ 0 = mk_sinl y
+          | inj y i j = mk_sinr (inj y (i-1) (j-1));
+      in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
+          
+      val con_defs = mapn (fn n => fn (con,args) =>
+                                      (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
+          
+      val dis_defs = let
+        fun ddef (con,_) = (dis_name con ^"_def",%%:(dis_name con) == 
+                                                list_ccomb(%%:(dname^"_when"),map 
+                                                                                (fn (con',args) => (List.foldr /\#
+      (if con'=con then TT else FF) args)) cons))
+      in map ddef cons end;
+
+      val mat_defs =
+          let
+            fun mdef (con,_) =
+                let
+                  val k = Bound 0
+                  val x = Bound 1
+                  fun one_con (con', args') =
+                      if con'=con then k else List.foldr /\# mk_fail args'
+                  val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
+                  val rhs = /\ "x" (/\ "k" (w ` x))
+                in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
+          in map mdef cons end;
+
+      val pat_defs =
+          let
+            fun pdef (con,args) =
+                let
+                  val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
+                  val xs = map (bound_arg args) args;
+                  val r = Bound (length args);
+                  val rhs = case args of [] => mk_return HOLogic.unit
+                                       | _ => mk_ctuple_pat ps ` mk_ctuple xs;
+                  fun one_con (con',args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
+                in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) == 
+                                                    list_ccomb(%%:(dname^"_when"), map one_con cons))
+                end
+          in map pdef cons end;
+
+      val sel_defs = let
+        fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel == 
+                                                              list_ccomb(%%:(dname^"_when"),map 
+                                                                                              (fn (con',args) => if con'<>con then UU else
+                                                                                                                 List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
+      in List.mapPartial I (List.concat(map (fn (con,args) => mapn (sdef con) 1 args) cons)) end;
+
+
+      (* ----- axiom and definitions concerning induction ------------------------- *)
+
+      val reach_ax = ("reach", mk_trp(cproj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
+                                            `%x_name === %:x_name));
+      val take_def =
+          ("take_def",
+           %%:(dname^"_take") ==
+              mk_lam("n",cproj
+                           (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
+      val finite_def =
+          ("finite_def",
+           %%:(dname^"_finite") ==
+              mk_lam(x_name,
+                     mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
+
+    in (dnam,
+        [abs_iso_ax, rep_iso_ax, reach_ax],
+        [when_def, copy_def] @
+        con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
+        [take_def, finite_def])
+    end; (* let (calc_axioms) *)
+
+
+(* legacy type inference *)
+
+fun legacy_infer_term thy t =
+    singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
+
+fun legacy_infer_prop thy t = legacy_infer_term thy (TypeInfer.constrain propT t);
+
+fun infer_props thy = map (apsnd (legacy_infer_prop thy));
+
+
+fun add_axioms_i x = snd o PureThy.add_axioms (map (Thm.no_attributes o apfst Binding.name) x);
+fun add_axioms_infer axms thy = add_axioms_i (infer_props thy axms) thy;
+
+fun add_defs_i x = snd o (PureThy.add_defs false) (map (Thm.no_attributes o apfst Binding.name) x);
+fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
+
+fun add_matchers (((dname,_),cons) : eq) thy =
+    let
+      val con_names = map fst cons;
+      val mat_names = map mat_name con_names;
+      fun qualify n = Sign.full_name thy (Binding.name n);
+      val ms = map qualify con_names ~~ map qualify mat_names;
+    in Fixrec.add_matchers ms thy end;
+
+fun add_axioms comp_dnam (eqs : eq list) thy' =
+    let
+      val comp_dname = Sign.full_bname thy' comp_dnam;
+      val dnames = map (fst o fst) eqs;
+      val x_name = idx_name dnames "x"; 
+      fun copy_app dname = %%:(dname^"_copy")`Bound 0;
+      val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
+                                   /\ "f"(mk_ctuple (map copy_app dnames)));
+
+      fun one_con (con,args) = let
+        val nonrec_args = filter_out is_rec args;
+        val    rec_args = List.filter     is_rec args;
+        val    recs_cnt = length rec_args;
+        val allargs     = nonrec_args @ rec_args
+                          @ map (upd_vname (fn s=> s^"'")) rec_args;
+        val allvns      = map vname allargs;
+        fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
+        val vns1        = map (vname_arg "" ) args;
+        val vns2        = map (vname_arg "'") args;
+        val allargs_cnt = length nonrec_args + 2*recs_cnt;
+        val rec_idxs    = (recs_cnt-1) downto 0;
+        val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
+                                               (allargs~~((allargs_cnt-1) downto 0)));
+        fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
+                                Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
+        val capps =
+            List.foldr mk_conj
+                       (mk_conj(
+                        Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
+                        Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
+                       (mapn rel_app 1 rec_args);
+      in List.foldr mk_ex
+                    (Library.foldr mk_conj
+                                   (map (defined o Bound) nonlazy_idxs,capps)) allvns
+      end;
+      fun one_comp n (_,cons) =
+          mk_all(x_name(n+1),
+                 mk_all(x_name(n+1)^"'",
+                        mk_imp(proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
+                               foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
+                                               ::map one_con cons))));
+      val bisim_def =
+          ("bisim_def",
+           %%:(comp_dname^"_bisim")==mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs)));
+          
+      fun add_one (thy,(dnam,axs,dfs)) =
+          thy |> Sign.add_path dnam
+              |> add_defs_infer dfs
+              |> add_axioms_infer axs
+              |> Sign.parent_path;
+
+      val thy = Library.foldl add_one (thy', mapn (calc_axioms comp_dname eqs) 0 eqs);
+
+    in thy |> Sign.add_path comp_dnam  
+           |> add_defs_infer (bisim_def::(if length eqs>1 then [copy_def] else []))
+           |> Sign.parent_path
+           |> fold add_matchers eqs
+    end; (* let (add_axioms) *)
+
+end; (* struct *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_extender.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -0,0 +1,204 @@
+(*  Title:      HOLCF/Tools/Domain/domain_extender.ML
+    Author:     David von Oheimb
+
+Theory extender for domain command, including theory syntax.
+*)
+
+signature DOMAIN_EXTENDER =
+sig
+  val add_domain_cmd: string ->
+                      ((string * string option) list * binding * mixfix *
+                       (binding * (bool * binding option * string) list * mixfix) list) list
+                      -> theory -> theory
+  val add_domain: string ->
+                  ((string * string option) list * binding * mixfix *
+                   (binding * (bool * binding option * typ) list * mixfix) list) list
+                  -> theory -> theory
+end;
+
+structure Domain_Extender :> DOMAIN_EXTENDER =
+struct
+
+open Domain_Library;
+
+(* ----- general testing and preprocessing of constructor list -------------- *)
+fun check_and_sort_domain
+      (dtnvs : (string * typ list) list)
+      (cons'' : (binding * (bool * binding option * typ) list * mixfix) list list)
+      (sg : theory)
+    : ((string * typ list) *
+       (binding * (bool * binding option * typ) list * mixfix) list) list =
+    let
+      val defaultS = Sign.defaultS sg;
+      val test_dupl_typs = (case duplicates (op =) (map fst dtnvs) of 
+                              [] => false | dups => error ("Duplicate types: " ^ commas_quote dups));
+      val test_dupl_cons =
+          (case duplicates (op =) (map (Binding.name_of o first) (List.concat cons'')) of 
+             [] => false | dups => error ("Duplicate constructors: " 
+                                          ^ commas_quote dups));
+      val test_dupl_sels =
+          (case duplicates (op =) (map Binding.name_of (List.mapPartial second
+                                                                        (List.concat (map second (List.concat cons''))))) of
+             [] => false | dups => error("Duplicate selectors: "^commas_quote dups));
+      val test_dupl_tvars =
+          exists(fn s=>case duplicates (op =) (map(fst o dest_TFree)s)of
+                         [] => false | dups => error("Duplicate type arguments: " 
+                                                     ^commas_quote dups)) (map snd dtnvs);
+      (* test for free type variables, illegal sort constraints on rhs,
+         non-pcpo-types and invalid use of recursive type;
+         replace sorts in type variables on rhs *)
+      fun analyse_equation ((dname,typevars),cons') = 
+          let
+            val tvars = map dest_TFree typevars;
+            val distinct_typevars = map TFree tvars;
+            fun rm_sorts (TFree(s,_)) = TFree(s,[])
+              | rm_sorts (Type(s,ts)) = Type(s,remove_sorts ts)
+              | rm_sorts (TVar(s,_))  = TVar(s,[])
+            and remove_sorts l = map rm_sorts l;
+            val indirect_ok = ["*","Cfun.->","Ssum.++","Sprod.**","Up.u"]
+            fun analyse indirect (TFree(v,s))  =
+                (case AList.lookup (op =) tvars v of 
+                   NONE => error ("Free type variable " ^ quote v ^ " on rhs.")
+                 | SOME sort => if eq_set_string (s,defaultS) orelse
+                                   eq_set_string (s,sort    )
+                                then TFree(v,sort)
+                                else error ("Inconsistent sort constraint" ^
+                                            " for type variable " ^ quote v))
+              | analyse indirect (t as Type(s,typl)) =
+                (case AList.lookup (op =) dtnvs s of
+                   NONE          => if s mem indirect_ok
+                                    then Type(s,map (analyse false) typl)
+                                    else Type(s,map (analyse true) typl)
+                 | SOME typevars => if indirect 
+                                    then error ("Indirect recursion of type " ^ 
+                                                quote (string_of_typ sg t))
+                                    else if dname <> s orelse
+                                            (** BUG OR FEATURE?:
+                                                mutual recursion may use different arguments **)
+                                            remove_sorts typevars = remove_sorts typl 
+                                    then Type(s,map (analyse true) typl)
+                                    else error ("Direct recursion of type " ^ 
+                                                quote (string_of_typ sg t) ^ 
+                                                " with different arguments"))
+              | analyse indirect (TVar _) = Imposs "extender:analyse";
+            fun check_pcpo lazy T =
+                let val ok = if lazy then cpo_type else pcpo_type
+                in if ok sg T then T else error
+                                            ("Constructor argument type is not of sort pcpo: " ^
+                                             string_of_typ sg T)
+                end;
+            fun analyse_arg (lazy, sel, T) =
+                (lazy, sel, check_pcpo lazy (analyse false T));
+            fun analyse_con (b, args, mx) = (b, map analyse_arg args, mx);
+          in ((dname,distinct_typevars), map analyse_con cons') end; 
+    in ListPair.map analyse_equation (dtnvs,cons'')
+    end; (* let *)
+
+(* ----- calls for building new thy and thms -------------------------------- *)
+
+fun gen_add_domain
+      (prep_typ : theory -> 'a -> typ)
+      (comp_dnam : string)
+      (eqs''' : ((string * string option) list * binding * mixfix *
+                 (binding * (bool * binding option * 'a) list * mixfix) list) list)
+      (thy''' : theory) =
+    let
+      fun readS (SOME s) = Syntax.read_sort_global thy''' s
+        | readS NONE = Sign.defaultS thy''';
+      fun readTFree (a, s) = TFree (a, readS s);
+
+      val dtnvs = map (fn (vs,dname:binding,mx,_) => 
+                          (dname, map readTFree vs, mx)) eqs''';
+      val cons''' = map (fn (_,_,_,cons) => cons) eqs''';
+      fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
+      fun thy_arity (dname,tvars,mx) = (Sign.full_name thy''' dname, map (snd o dest_TFree) tvars, pcpoS);
+      val thy'' = thy''' |> Sign.add_types (map thy_type dtnvs)
+                         |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
+      val cons'' = map (map (upd_second (map (upd_third (prep_typ thy''))))) cons''';
+      val dtnvs' = map (fn (dname,vs,mx) => (Sign.full_name thy''' dname,vs)) dtnvs;
+      val eqs' : ((string * typ list) * (binding * (bool * binding option * typ) list * mixfix) list) list =
+          check_and_sort_domain dtnvs' cons'' thy'';
+      val thy' = thy'' |> Domain_Syntax.add_syntax comp_dnam eqs';
+      val dts  = map (Type o fst) eqs';
+      val new_dts = map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
+      fun strip ss = Library.drop (find_index (fn s => s = "'") ss + 1, ss);
+      fun typid (Type  (id,_)) =
+          let val c = hd (Symbol.explode (Long_Name.base_name id))
+          in if Symbol.is_letter c then c else "t" end
+        | typid (TFree (id,_)   ) = hd (strip (tl (Symbol.explode id)))
+        | typid (TVar ((id,_),_)) = hd (tl (Symbol.explode id));
+      fun one_con (con,args,mx) =
+          ((Syntax.const_name mx (Binding.name_of con)),
+           ListPair.map (fn ((lazy,sel,tp),vn) => mk_arg ((lazy,
+                                                           DatatypeAux.dtyp_of_typ new_dts tp),
+                                                          Option.map Binding.name_of sel,vn))
+                        (args,(mk_var_names(map (typid o third) args)))
+          ) : cons;
+      val eqs = map (fn (dtnvs,cons') => (dtnvs, map one_con cons')) eqs' : eq list;
+      val thy = thy' |> Domain_Axioms.add_axioms comp_dnam eqs;
+      val ((rewss, take_rews), theorems_thy) =
+          thy |> fold_map (fn eq => Domain_Theorems.theorems (eq, eqs)) eqs
+              ||>> Domain_Theorems.comp_theorems (comp_dnam, eqs);
+    in
+      theorems_thy
+        |> Sign.add_path (Long_Name.base_name comp_dnam)
+        |> (snd o (PureThy.add_thmss [((Binding.name "rews", List.concat rewss @ take_rews), [])]))
+        |> Sign.parent_path
+    end;
+
+val add_domain = gen_add_domain Sign.certify_typ;
+val add_domain_cmd = gen_add_domain Syntax.read_typ_global;
+
+
+(** outer syntax **)
+
+local structure P = OuterParse and K = OuterKeyword in
+
+val _ = OuterKeyword.keyword "lazy";
+
+val dest_decl : (bool * binding option * string) parser =
+    P.$$$ "(" |-- Scan.optional (P.$$$ "lazy" >> K true) false --
+      (P.binding >> SOME) -- (P.$$$ "::" |-- P.typ)  --| P.$$$ ")" >> P.triple1
+      || P.$$$ "(" |-- P.$$$ "lazy" |-- P.typ --| P.$$$ ")"
+      >> (fn t => (true,NONE,t))
+      || P.typ >> (fn t => (false,NONE,t));
+
+val cons_decl =
+    P.binding -- Scan.repeat dest_decl -- P.opt_mixfix;
+
+val type_var' : (string * string option) parser =
+    (P.type_ident -- Scan.option (P.$$$ "::" |-- P.!!! P.sort));
+
+val type_args' : (string * string option) list parser =
+    type_var' >> single ||
+              P.$$$ "(" |-- P.!!! (P.list1 type_var' --| P.$$$ ")") ||
+              Scan.succeed [];
+
+val domain_decl =
+    (type_args' -- P.binding -- P.opt_infix) --
+                                             (P.$$$ "=" |-- P.enum1 "|" cons_decl);
+
+val domains_decl =
+    Scan.option (P.$$$ "(" |-- P.name --| P.$$$ ")") --
+                P.and_list1 domain_decl;
+
+fun mk_domain (opt_name : string option,
+               doms : ((((string * string option) list * binding) * mixfix) *
+                       ((binding * (bool * binding option * string) list) * mixfix) list) list ) =
+    let
+      val names = map (fn (((_, t), _), _) => Binding.name_of t) doms;
+      val specs : ((string * string option) list * binding * mixfix *
+                   (binding * (bool * binding option * string) list * mixfix) list) list =
+          map (fn (((vs, t), mx), cons) =>
+                  (vs, t, mx, map (fn ((c, ds), mx) => (c, ds, mx)) cons)) doms;
+      val comp_dnam =
+          case opt_name of NONE => space_implode "_" names | SOME s => s;
+    in add_domain_cmd comp_dnam specs end;
+
+val _ =
+    OuterSyntax.command "domain" "define recursive domains (HOLCF)" K.thy_decl
+                        (domains_decl >> (Toplevel.theory o mk_domain));
+
+end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_library.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -0,0 +1,399 @@
+(*  Title:      HOLCF/Tools/Domain/domain_library.ML
+    Author:     David von Oheimb
+
+Library for domain command.
+*)
+
+
+(* ----- general support ---------------------------------------------------- *)
+
+fun mapn f n []      = []
+  | mapn f n (x::xs) = (f n x) :: mapn f (n+1) xs;
+
+fun foldr'' f (l,f2) =
+    let fun itr []  = raise Fail "foldr''" 
+          | itr [a] = f2 a
+          | itr (a::l) = f(a, itr l)
+    in  itr l  end;
+
+fun map_cumulr f start xs =
+    List.foldr (fn (x,(ys,res))=>case f(x,res) of (y,res2) =>
+                                                  (y::ys,res2)) ([],start) xs;
+
+fun first  (x,_,_) = x; fun second (_,x,_) = x; fun third  (_,_,x) = x;
+fun upd_first  f (x,y,z) = (f x,   y,   z);
+fun upd_second f (x,y,z) = (  x, f y,   z);
+fun upd_third  f (x,y,z) = (  x,   y, f z);
+
+fun atomize ctxt thm =
+    let
+      val r_inst = read_instantiate ctxt;
+      fun at thm =
+          case concl_of thm of
+            _$(Const("op &",_)$_$_)       => at(thm RS conjunct1)@at(thm RS conjunct2)
+          | _$(Const("All" ,_)$Abs(s,_,_))=> at(thm RS (r_inst [(("x", 0), "?" ^ s)] spec))
+          | _                             => [thm];
+    in map zero_var_indexes (at thm) end;
+
+(* infix syntax *)
+
+infixr 5 -->;
+infixr 6 ->>;
+infixr 0 ===>;
+infixr 0 ==>;
+infix 0 ==;
+infix 1 ===;
+infix 1 ~=;
+infix 1 <<;
+infix 1 ~<<;
+
+infix 9 `  ;
+infix 9 `% ;
+infix 9 `%%;
+
+
+(* ----- specific support for domain ---------------------------------------- *)
+
+signature DOMAIN_LIBRARY =
+sig
+  val Imposs : string -> 'a;
+  val cpo_type : theory -> typ -> bool;
+  val pcpo_type : theory -> typ -> bool;
+  val string_of_typ : theory -> typ -> string;
+
+  (* Creating HOLCF types *)
+  val mk_cfunT : typ * typ -> typ;
+  val ->> : typ * typ -> typ;
+  val mk_ssumT : typ * typ -> typ;
+  val mk_sprodT : typ * typ -> typ;
+  val mk_uT : typ -> typ;
+  val oneT : typ;
+  val trT : typ;
+  val mk_maybeT : typ -> typ;
+  val mk_ctupleT : typ list -> typ;
+  val mk_TFree : string -> typ;
+  val pcpoS : sort;
+
+  (* Creating HOLCF terms *)
+  val %: : string -> term;
+  val %%: : string -> term;
+  val ` : term * term -> term;
+  val `% : term * string -> term;
+  val /\ : string -> term -> term;
+  val UU : term;
+  val TT : term;
+  val FF : term;
+  val ID : term;
+  val oo : term * term -> term;
+  val mk_up : term -> term;
+  val mk_sinl : term -> term;
+  val mk_sinr : term -> term;
+  val mk_stuple : term list -> term;
+  val mk_ctuple : term list -> term;
+  val mk_fix : term -> term;
+  val mk_iterate : term * term * term -> term;
+  val mk_fail : term;
+  val mk_return : term -> term;
+  val cproj : term -> 'a list -> int -> term;
+  val list_ccomb : term * term list -> term;
+  (*
+   val con_app : string -> ('a * 'b * string) list -> term;
+   *)
+  val con_app2 : string -> ('a -> term) -> 'a list -> term;
+  val proj : term -> 'a list -> int -> term;
+  val prj : ('a -> 'b -> 'a) -> ('a -> 'b -> 'a) -> 'a -> 'b list -> int -> 'a;
+  val mk_ctuple_pat : term list -> term;
+  val mk_branch : term -> term;
+
+  (* Creating propositions *)
+  val mk_conj : term * term -> term;
+  val mk_disj : term * term -> term;
+  val mk_imp : term * term -> term;
+  val mk_lam : string * term -> term;
+  val mk_all : string * term -> term;
+  val mk_ex : string * term -> term;
+  val mk_constrain : typ * term -> term;
+  val mk_constrainall : string * typ * term -> term;
+  val === : term * term -> term;
+  val << : term * term -> term;
+  val ~<< : term * term -> term;
+  val strict : term -> term;
+  val defined : term -> term;
+  val mk_adm : term -> term;
+  val mk_compact : term -> term;
+  val lift : ('a -> term) -> 'a list * term -> term;
+  val lift_defined : ('a -> term) -> 'a list * term -> term;
+
+  (* Creating meta-propositions *)
+  val mk_trp : term -> term; (* HOLogic.mk_Trueprop *)
+  val == : term * term -> term;
+  val ===> : term * term -> term;
+  val ==> : term * term -> term;
+  val mk_All : string * term -> term;
+
+      (* Domain specifications *)
+      eqtype arg;
+  type cons = string * arg list;
+  type eq = (string * typ list) * cons list;
+  val mk_arg : (bool * Datatype.dtyp) * string option * string -> arg;
+  val is_lazy : arg -> bool;
+  val rec_of : arg -> int;
+  val dtyp_of : arg -> Datatype.dtyp;
+  val sel_of : arg -> string option;
+  val vname : arg -> string;
+  val upd_vname : (string -> string) -> arg -> arg;
+  val is_rec : arg -> bool;
+  val is_nonlazy_rec : arg -> bool;
+  val nonlazy : arg list -> string list;
+  val nonlazy_rec : arg list -> string list;
+  val %# : arg -> term;
+  val /\# : arg * term -> term;
+  val when_body : cons list -> (int * int -> term) -> term;
+  val when_funs : 'a list -> string list;
+  val bound_arg : ''a list -> ''a -> term; (* ''a = arg or string *)
+  val idx_name : 'a list -> string -> int -> string;
+  val app_rec_arg : (int -> term) -> arg -> term;
+  val con_app : string -> arg list -> term;
+  val dtyp_of_eq : eq -> Datatype.dtyp;
+
+
+  (* Name mangling *)
+  val strip_esc : string -> string;
+  val extern_name : string -> string;
+  val dis_name : string -> string;
+  val mat_name : string -> string;
+  val pat_name : string -> string;
+  val mk_var_names : string list -> string list;
+end;
+
+structure Domain_Library :> DOMAIN_LIBRARY =
+struct
+
+exception Impossible of string;
+fun Imposs msg = raise Impossible ("Domain:"^msg);
+
+(* ----- name handling ----- *)
+
+val strip_esc =
+    let fun strip ("'" :: c :: cs) = c :: strip cs
+          | strip ["'"] = []
+          | strip (c :: cs) = c :: strip cs
+          | strip [] = [];
+    in implode o strip o Symbol.explode end;
+
+fun extern_name con =
+    case Symbol.explode con of 
+      ("o"::"p"::" "::rest) => implode rest
+    | _ => con;
+fun dis_name  con = "is_"^ (extern_name con);
+fun dis_name_ con = "is_"^ (strip_esc   con);
+fun mat_name  con = "match_"^ (extern_name con);
+fun mat_name_ con = "match_"^ (strip_esc   con);
+fun pat_name  con = (extern_name con) ^ "_pat";
+fun pat_name_ con = (strip_esc   con) ^ "_pat";
+
+(* make distinct names out of the type list, 
+                                       forbidding "o","n..","x..","f..","P.." as names *)
+(* a number string is added if necessary *)
+fun mk_var_names ids : string list =
+    let
+      fun nonreserved s = if s mem ["n","x","f","P"] then s^"'" else s;
+      fun index_vnames(vn::vns,occupied) =
+          (case AList.lookup (op =) occupied vn of
+             NONE => if vn mem vns
+                     then (vn^"1") :: index_vnames(vns,(vn,1)  ::occupied)
+                     else  vn      :: index_vnames(vns,          occupied)
+           | SOME(i) => (vn^(string_of_int (i+1)))
+                        :: index_vnames(vns,(vn,i+1)::occupied))
+        | index_vnames([],occupied) = [];
+    in index_vnames(map nonreserved ids, [("O",0),("o",0)]) end;
+
+fun cpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort cpo});
+fun pcpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort pcpo});
+fun string_of_typ sg = Syntax.string_of_typ_global sg o Sign.certify_typ sg;
+
+(* ----- constructor list handling ----- *)
+
+type arg =
+     (bool * Datatype.dtyp) *   (*  (lazy, recursive element) *)
+     string option *               (*   selector name    *)
+     string;                       (*   argument name    *)
+
+type cons =
+     string *         (* operator name of constr *)
+     arg list;        (* argument list      *)
+
+type eq =
+     (string *        (* name      of abstracted type *)
+      typ list) *     (* arguments of abstracted type *)
+     cons list;       (* represented type, as a constructor list *)
+
+val mk_arg = I;
+
+fun rec_of ((_,dtyp),_,_) =
+    case dtyp of DatatypeAux.DtRec i => i | _ => ~1;
+(* FIXME: what about indirect recursion? *)
+
+fun is_lazy arg = fst (first arg);
+fun dtyp_of arg = snd (first arg);
+val sel_of    =       second;
+val     vname =       third;
+val upd_vname =   upd_third;
+fun is_rec         arg = rec_of arg >=0;
+fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
+fun nonlazy     args   = map vname (filter_out is_lazy    args);
+fun nonlazy_rec args   = map vname (List.filter is_nonlazy_rec args);
+
+
+(* ----- combinators for making dtyps ----- *)
+
+fun mk_uD T = DatatypeAux.DtType(@{type_name "u"}, [T]);
+fun mk_sprodD (T, U) = DatatypeAux.DtType(@{type_name "**"}, [T, U]);
+fun mk_ssumD (T, U) = DatatypeAux.DtType(@{type_name "++"}, [T, U]);
+fun mk_liftD T = DatatypeAux.DtType(@{type_name "lift"}, [T]);
+val unitD = DatatypeAux.DtType(@{type_name "unit"}, []);
+val boolD = DatatypeAux.DtType(@{type_name "bool"}, []);
+val oneD = mk_liftD unitD;
+val trD = mk_liftD boolD;
+fun big_sprodD ds = case ds of [] => oneD | _ => foldr1 mk_sprodD ds;
+fun big_ssumD ds = case ds of [] => unitD | _ => foldr1 mk_ssumD ds;
+
+fun dtyp_of_arg ((lazy, D), _, _) = if lazy then mk_uD D else D;
+fun dtyp_of_cons (_, args) = big_sprodD (map dtyp_of_arg args);
+fun dtyp_of_eq (_, cons) = big_ssumD (map dtyp_of_cons cons);
+
+
+(* ----- support for type and mixfix expressions ----- *)
+
+fun mk_uT T = Type(@{type_name "u"}, [T]);
+fun mk_cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
+fun mk_sprodT (T, U) = Type(@{type_name "**"}, [T, U]);
+fun mk_ssumT (T, U) = Type(@{type_name "++"}, [T, U]);
+val oneT = @{typ one};
+val trT = @{typ tr};
+
+val op ->> = mk_cfunT;
+
+fun mk_TFree s = TFree ("'" ^ s, @{sort pcpo});
+
+(* ----- support for term expressions ----- *)
+
+fun %: s = Free(s,dummyT);
+fun %# arg = %:(vname arg);
+fun %%: s = Const(s,dummyT);
+
+local open HOLogic in
+val mk_trp = mk_Trueprop;
+fun mk_conj (S,T) = conj $ S $ T;
+fun mk_disj (S,T) = disj $ S $ T;
+fun mk_imp  (S,T) = imp  $ S $ T;
+fun mk_lam  (x,T) = Abs(x,dummyT,T);
+fun mk_all  (x,P) = HOLogic.mk_all (x,dummyT,P);
+fun mk_ex   (x,P) = mk_exists (x,dummyT,P);
+val mk_constrain = uncurry TypeInfer.constrain;
+fun mk_constrainall (x,typ,P) = %%:"All" $ (TypeInfer.constrain (typ --> boolT) (mk_lam(x,P)));
+end
+
+fun mk_All  (x,P) = %%:"all" $ mk_lam(x,P); (* meta universal quantification *)
+
+infixr 0 ===>;  fun S ===> T = %%:"==>" $ S $ T;
+infixr 0 ==>;   fun S ==> T = mk_trp S ===> mk_trp T;
+infix 0 ==;     fun S ==  T = %%:"==" $ S $ T;
+infix 1 ===;    fun S === T = %%:"op =" $ S $ T;
+infix 1 ~=;     fun S ~=  T = HOLogic.mk_not (S === T);
+infix 1 <<;     fun S <<  T = %%: @{const_name Porder.below} $ S $ T;
+infix 1 ~<<;    fun S ~<< T = HOLogic.mk_not (S << T);
+
+infix 9 `  ; fun f ` x = %%: @{const_name Rep_CFun} $ f $ x;
+infix 9 `% ; fun f`% s = f` %: s;
+infix 9 `%%; fun f`%%s = f` %%:s;
+
+fun mk_adm t = %%: @{const_name adm} $ t;
+fun mk_compact t = %%: @{const_name compact} $ t;
+val ID = %%: @{const_name ID};
+fun mk_strictify t = %%: @{const_name strictify}`t;
+fun mk_cfst t = %%: @{const_name cfst}`t;
+fun mk_csnd t = %%: @{const_name csnd}`t;
+(*val csplitN    = "Cprod.csplit";*)
+(*val sfstN      = "Sprod.sfst";*)
+(*val ssndN      = "Sprod.ssnd";*)
+fun mk_ssplit t = %%: @{const_name ssplit}`t;
+fun mk_sinl t = %%: @{const_name sinl}`t;
+fun mk_sinr t = %%: @{const_name sinr}`t;
+fun mk_sscase (x, y) = %%: @{const_name sscase}`x`y;
+fun mk_up t = %%: @{const_name up}`t;
+fun mk_fup (t,u) = %%: @{const_name fup} ` t ` u;
+val ONE = @{term ONE};
+val TT = @{term TT};
+val FF = @{term FF};
+fun mk_iterate (n,f,z) = %%: @{const_name iterate} $ n ` f ` z;
+fun mk_fix t = %%: @{const_name fix}`t;
+fun mk_return t = %%: @{const_name Fixrec.return}`t;
+val mk_fail = %%: @{const_name Fixrec.fail};
+
+fun mk_branch t = %%: @{const_name Fixrec.branch} $ t;
+
+val pcpoS = @{sort pcpo};
+
+val list_ccomb = Library.foldl (op `); (* continuous version of list_comb *)
+fun con_app2 con f args = list_ccomb(%%:con,map f args);
+fun con_app con = con_app2 con %#;
+fun if_rec  arg f y   = if is_rec arg then f (rec_of arg) else y;
+fun app_rec_arg p arg = if_rec arg (fn n => fn x => (p n)`x) I (%# arg);
+fun prj _  _  x (   _::[]) _ = x
+  | prj f1 _  x (_::y::ys) 0 = f1 x y
+  | prj f1 f2 x (y::   ys) j = prj f1 f2 (f2 x y) ys (j-1);
+fun  proj x      = prj (fn S => K(%%:"fst" $S)) (fn S => K(%%:"snd" $S)) x;
+fun cproj x      = prj (fn S => K(mk_cfst S)) (fn S => K(mk_csnd S)) x;
+fun lift tfn = Library.foldr (fn (x,t)=> (mk_trp(tfn x) ===> t));
+
+fun /\ v T = %%: @{const_name Abs_CFun} $ mk_lam(v,T);
+fun /\# (arg,T) = /\ (vname arg) T;
+infixr 9 oo; fun S oo T = %%: @{const_name cfcomp}`S`T;
+val UU = %%: @{const_name UU};
+fun strict f = f`UU === UU;
+fun defined t = t ~= UU;
+fun cpair (t,u) = %%: @{const_name cpair}`t`u;
+fun spair (t,u) = %%: @{const_name spair}`t`u;
+fun mk_ctuple [] = HOLogic.unit (* used in match_defs *)
+  | mk_ctuple ts = foldr1 cpair ts;
+fun mk_stuple [] = ONE
+  | mk_stuple ts = foldr1 spair ts;
+fun mk_ctupleT [] = HOLogic.unitT   (* used in match_defs *)
+  | mk_ctupleT Ts = foldr1 HOLogic.mk_prodT Ts;
+fun mk_maybeT T = Type ("Fixrec.maybe",[T]);
+fun cpair_pat (p1,p2) = %%: @{const_name cpair_pat} $ p1 $ p2;
+val mk_ctuple_pat = foldr1 cpair_pat;
+fun lift_defined f = lift (fn x => defined (f x));
+fun bound_arg vns v = Bound (length vns - find_index (fn v' => v' = v) vns - 1);
+
+fun cont_eta_contract (Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body)) = 
+    (case cont_eta_contract body  of
+       body' as (Const("Cfun.Rep_CFun",Ta) $ f $ Bound 0) => 
+       if not (0 mem loose_bnos f) then incr_boundvars ~1 f 
+       else   Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body')
+     | body' => Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body'))
+  | cont_eta_contract(f$t) = cont_eta_contract f $ cont_eta_contract t
+  | cont_eta_contract t    = t;
+
+fun idx_name dnames s n = s^(if length dnames = 1 then "" else string_of_int n);
+fun when_funs cons = if length cons = 1 then ["f"] 
+                     else mapn (fn n => K("f"^(string_of_int n))) 1 cons;
+fun when_body cons funarg =
+    let
+      fun one_fun n (_,[]  ) = /\ "dummy" (funarg(1,n))
+        | one_fun n (_,args) = let
+            val l2 = length args;
+            fun idxs m arg = (if is_lazy arg then (fn t => mk_fup (ID, t))
+                              else I) (Bound(l2-m));
+          in cont_eta_contract
+               (foldr'' 
+                  (fn (a,t) => mk_ssplit (/\# (a,t)))
+                  (args,
+                fn a=> /\#(a,(list_ccomb(funarg(l2,n),mapn idxs 1 args))))
+               ) end;
+    in (if length cons = 1 andalso length(snd(hd cons)) <= 1
+        then mk_strictify else I)
+         (foldr1 mk_sscase (mapn one_fun 1 cons)) end;
+
+end; (* struct *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_syntax.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -0,0 +1,181 @@
+(*  Title:      HOLCF/Tools/Domain/domain_syntax.ML
+    Author:     David von Oheimb
+
+Syntax generator for domain command.
+*)
+
+signature DOMAIN_SYNTAX =
+sig
+  val calc_syntax:
+      typ ->
+      (string * typ list) *
+      (binding * (bool * binding option * typ) list * mixfix) list ->
+      (binding * typ * mixfix) list * ast Syntax.trrule list
+
+  val add_syntax:
+      string ->
+      ((string * typ list) *
+       (binding * (bool * binding option * typ) list * mixfix) list) list ->
+      theory -> theory
+end;
+
+
+structure Domain_Syntax :> DOMAIN_SYNTAX =
+struct
+
+open Domain_Library;
+infixr 5 -->; infixr 6 ->>;
+
+fun calc_syntax
+      (dtypeprod : typ)
+      ((dname : string, typevars : typ list), 
+       (cons': (binding * (bool * binding option * typ) list * mixfix) list))
+    : (binding * typ * mixfix) list * ast Syntax.trrule list =
+    let
+      (* ----- constants concerning the isomorphism ------------------------------- *)
+
+      local
+        fun opt_lazy (lazy,_,t) = if lazy then mk_uT t else t
+        fun prod     (_,args,_) = case args of [] => oneT
+                                             | _ => foldr1 mk_sprodT (map opt_lazy args);
+        fun freetvar s = let val tvar = mk_TFree s in
+                           if tvar mem typevars then freetvar ("t"^s) else tvar end;
+        fun when_type (_,args,_) = List.foldr (op ->>) (freetvar "t") (map third args);
+      in
+      val dtype  = Type(dname,typevars);
+      val dtype2 = foldr1 mk_ssumT (map prod cons');
+      val dnam = Long_Name.base_name dname;
+      fun dbind s = Binding.name (dnam ^ s);
+      val const_rep  = (dbind "_rep" ,              dtype  ->> dtype2, NoSyn);
+      val const_abs  = (dbind "_abs" ,              dtype2 ->> dtype , NoSyn);
+      val const_when = (dbind "_when", List.foldr (op ->>) (dtype ->> freetvar "t") (map when_type cons'), NoSyn);
+      val const_copy = (dbind "_copy", dtypeprod ->> dtype  ->> dtype , NoSyn);
+      end;
+
+      (* ----- constants concerning constructors, discriminators, and selectors --- *)
+
+      local
+        val escape = let
+          fun esc (c::cs) = if c mem ["'","_","(",")","/"] then "'"::c::esc cs
+                            else      c::esc cs
+            |   esc []      = []
+        in implode o esc o Symbol.explode end;
+        fun dis_name_ con     = Binding.name ("is_" ^ strip_esc (Binding.name_of con));
+        fun mat_name_ con     = Binding.name ("match_" ^ strip_esc (Binding.name_of con));
+        fun pat_name_ con     = Binding.name (strip_esc (Binding.name_of con) ^ "_pat");
+        fun con (name,args,mx) = (name, List.foldr (op ->>) dtype (map third args), mx);
+        fun dis (con,args,mx) = (dis_name_ con, dtype->>trT,
+                                 Mixfix(escape ("is_" ^ Binding.name_of con), [], Syntax.max_pri));
+        (* strictly speaking, these constants have one argument,
+         but the mixfix (without arguments) is introduced only
+             to generate parse rules for non-alphanumeric names*)
+        fun freetvar s n      = let val tvar = mk_TFree (s ^ string_of_int n) in
+                                  if tvar mem typevars then freetvar ("t"^s) n else tvar end;
+        fun mk_matT (a,bs,c)  = a ->> foldr (op ->>) (mk_maybeT c) bs ->> mk_maybeT c;
+        fun mat (con,args,mx) = (mat_name_ con,
+                                 mk_matT(dtype, map third args, freetvar "t" 1),
+                                 Mixfix(escape ("match_" ^ Binding.name_of con), [], Syntax.max_pri));
+        fun sel1 (_,sel,typ)  = Option.map (fn s => (s,dtype ->> typ,NoSyn)) sel;
+        fun sel (con,args,mx) = List.mapPartial sel1 args;
+        fun mk_patT (a,b)     = a ->> mk_maybeT b;
+        fun pat_arg_typ n arg = mk_patT (third arg, freetvar "t" n);
+        fun pat (con,args,mx) = (pat_name_ con,
+                                 (mapn pat_arg_typ 1 args)
+                                   --->
+                                   mk_patT (dtype, mk_ctupleT (map (freetvar "t") (1 upto length args))),
+                                 Mixfix(escape (Binding.name_of con ^ "_pat"), [], Syntax.max_pri));
+
+      in
+      val consts_con = map con cons';
+      val consts_dis = map dis cons';
+      val consts_mat = map mat cons';
+      val consts_pat = map pat cons';
+      val consts_sel = List.concat(map sel cons');
+      end;
+
+      (* ----- constants concerning induction ------------------------------------- *)
+
+      val const_take   = (dbind "_take"  , HOLogic.natT-->dtype->>dtype, NoSyn);
+      val const_finite = (dbind "_finite", dtype-->HOLogic.boolT       , NoSyn);
+
+      (* ----- case translation --------------------------------------------------- *)
+
+      local open Syntax in
+      local
+        fun c_ast con mx = Constant (Syntax.const_name mx (Binding.name_of con));
+        fun expvar n     = Variable ("e"^(string_of_int n));
+        fun argvar n m _ = Variable ("a"^(string_of_int n)^"_"^
+                                     (string_of_int m));
+        fun argvars n args = mapn (argvar n) 1 args;
+        fun app s (l,r)  = mk_appl (Constant s) [l,r];
+        val cabs = app "_cabs";
+        val capp = app "Rep_CFun";
+        fun con1 n (con,args,mx) = Library.foldl capp (c_ast con mx, argvars n args);
+        fun case1 n (con,args,mx) = app "_case1" (con1 n (con,args,mx), expvar n);
+        fun arg1 n (con,args,_) = List.foldr cabs (expvar n) (argvars n args);
+        fun when1 n m = if n = m then arg1 n else K (Constant "UU");
+
+        fun app_var x = mk_appl (Constant "_variable") [x, Variable "rhs"];
+        fun app_pat x = mk_appl (Constant "_pat") [x];
+        fun args_list [] = Constant "_noargs"
+          |   args_list xs = foldr1 (app "_args") xs;
+      in
+      val case_trans =
+          ParsePrintRule
+            (app "_case_syntax" (Variable "x", foldr1 (app "_case2") (mapn case1 1 cons')),
+             capp (Library.foldl capp (Constant (dnam^"_when"), mapn arg1 1 cons'), Variable "x"));
+
+      fun one_abscon_trans n (con,mx,args) =
+          ParsePrintRule
+            (cabs (con1 n (con,mx,args), expvar n),
+             Library.foldl capp (Constant (dnam^"_when"), mapn (when1 n) 1 cons'));
+      val abscon_trans = mapn one_abscon_trans 1 cons';
+          
+      fun one_case_trans (con,args,mx) =
+          let
+            val cname = c_ast con mx;
+            val pname = Constant (strip_esc (Binding.name_of con) ^ "_pat");
+            val ns = 1 upto length args;
+            val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
+            val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
+            val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
+          in
+            [ParseRule (app_pat (Library.foldl capp (cname, xs)),
+                        mk_appl pname (map app_pat xs)),
+             ParseRule (app_var (Library.foldl capp (cname, xs)),
+                        app_var (args_list xs)),
+             PrintRule (Library.foldl capp (cname, ListPair.map (app "_match") (ps,vs)),
+                        app "_match" (mk_appl pname ps, args_list vs))]
+          end;
+      val Case_trans = List.concat (map one_case_trans cons');
+      end;
+      end;
+
+    in ([const_rep, const_abs, const_when, const_copy] @ 
+        consts_con @ consts_dis @ consts_mat @ consts_pat @ consts_sel @
+        [const_take, const_finite],
+        (case_trans::(abscon_trans @ Case_trans)))
+    end; (* let *)
+
+(* ----- putting all the syntax stuff together ------------------------------ *)
+
+fun add_syntax
+      (comp_dnam : string)
+      (eqs' : ((string * typ list) *
+               (binding * (bool * binding option * typ) list * mixfix) list) list)
+      (thy'' : theory) =
+    let
+      val dtypes  = map (Type o fst) eqs';
+      val boolT   = HOLogic.boolT;
+      val funprod = foldr1 HOLogic.mk_prodT (map (fn tp => tp ->> tp          ) dtypes);
+      val relprod = foldr1 HOLogic.mk_prodT (map (fn tp => tp --> tp --> boolT) dtypes);
+      val const_copy = (Binding.name (comp_dnam^"_copy"), funprod ->> funprod, NoSyn);
+      val const_bisim = (Binding.name (comp_dnam^"_bisim"), relprod --> boolT, NoSyn);
+      val ctt : ((binding * typ * mixfix) list * ast Syntax.trrule list) list = map (calc_syntax funprod) eqs';
+    in thy'' |> ContConsts.add_consts_i (List.concat (map fst ctt) @ 
+                                         (if length eqs'>1 then [const_copy] else[])@
+                                         [const_bisim])
+             |> Sign.add_trrules_i (List.concat(map snd ctt))
+    end; (* let *)
+
+end; (* struct *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_theorems.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -0,0 +1,1053 @@
+(*  Title:      HOLCF/Tools/Domain/domain_theorems.ML
+    Author:     David von Oheimb
+                New proofs/tactics by Brian Huffman
+
+Proof generator for domain command.
+*)
+
+val HOLCF_ss = @{simpset};
+
+signature DOMAIN_THEOREMS =
+sig
+  val theorems: Domain_Library.eq * Domain_Library.eq list -> theory -> thm list * theory;
+  val comp_theorems: bstring * Domain_Library.eq list -> theory -> thm list * theory;
+  val quiet_mode: bool ref;
+  val trace_domain: bool ref;
+end;
+
+structure Domain_Theorems :> DOMAIN_THEOREMS =
+struct
+
+val quiet_mode = ref false;
+val trace_domain = ref false;
+
+fun message s = if !quiet_mode then () else writeln s;
+fun trace s = if !trace_domain then tracing s else ();
+
+local
+
+val adm_impl_admw = @{thm adm_impl_admw};
+val adm_all = @{thm adm_all};
+val adm_conj = @{thm adm_conj};
+val adm_subst = @{thm adm_subst};
+val antisym_less_inverse = @{thm below_antisym_inverse};
+val beta_cfun = @{thm beta_cfun};
+val cfun_arg_cong = @{thm cfun_arg_cong};
+val ch2ch_Rep_CFunL = @{thm ch2ch_Rep_CFunL};
+val ch2ch_Rep_CFunR = @{thm ch2ch_Rep_CFunR};
+val chain_iterate = @{thm chain_iterate};
+val compact_ONE = @{thm compact_ONE};
+val compact_sinl = @{thm compact_sinl};
+val compact_sinr = @{thm compact_sinr};
+val compact_spair = @{thm compact_spair};
+val compact_up = @{thm compact_up};
+val contlub_cfun_arg = @{thm contlub_cfun_arg};
+val contlub_cfun_fun = @{thm contlub_cfun_fun};
+val fix_def2 = @{thm fix_def2};
+val injection_eq = @{thm injection_eq};
+val injection_less = @{thm injection_below};
+val lub_equal = @{thm lub_equal};
+val monofun_cfun_arg = @{thm monofun_cfun_arg};
+val retraction_strict = @{thm retraction_strict};
+val spair_eq = @{thm spair_eq};
+val spair_less = @{thm spair_below};
+val sscase1 = @{thm sscase1};
+val ssplit1 = @{thm ssplit1};
+val strictify1 = @{thm strictify1};
+val wfix_ind = @{thm wfix_ind};
+
+val iso_intro       = @{thm iso.intro};
+val iso_abs_iso     = @{thm iso.abs_iso};
+val iso_rep_iso     = @{thm iso.rep_iso};
+val iso_abs_strict  = @{thm iso.abs_strict};
+val iso_rep_strict  = @{thm iso.rep_strict};
+val iso_abs_defin'  = @{thm iso.abs_defin'};
+val iso_rep_defin'  = @{thm iso.rep_defin'};
+val iso_abs_defined = @{thm iso.abs_defined};
+val iso_rep_defined = @{thm iso.rep_defined};
+val iso_compact_abs = @{thm iso.compact_abs};
+val iso_compact_rep = @{thm iso.compact_rep};
+val iso_iso_swap    = @{thm iso.iso_swap};
+
+val exh_start = @{thm exh_start};
+val ex_defined_iffs = @{thms ex_defined_iffs};
+val exh_casedist0 = @{thm exh_casedist0};
+val exh_casedists = @{thms exh_casedists};
+
+open Domain_Library;
+infixr 0 ===>;
+infixr 0 ==>;
+infix 0 == ; 
+infix 1 ===;
+infix 1 ~= ;
+infix 1 <<;
+infix 1 ~<<;
+infix 9 `   ;
+infix 9 `% ;
+infix 9 `%%;
+infixr 9 oo;
+
+(* ----- general proof facilities ------------------------------------------- *)
+
+fun legacy_infer_term thy t =
+  let val ctxt = ProofContext.set_mode ProofContext.mode_schematic (ProofContext.init thy)
+  in singleton (Syntax.check_terms ctxt) (Sign.intern_term thy t) end;
+
+fun pg'' thy defs t tacs =
+  let
+    val t' = legacy_infer_term thy t;
+    val asms = Logic.strip_imp_prems t';
+    val prop = Logic.strip_imp_concl t';
+    fun tac {prems, context} =
+      rewrite_goals_tac defs THEN
+      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
+  in Goal.prove_global thy [] asms prop tac end;
+
+fun pg' thy defs t tacsf =
+  let
+    fun tacs {prems, context} =
+      if null prems then tacsf context
+      else cut_facts_tac prems 1 :: tacsf context;
+  in pg'' thy defs t tacs end;
+
+fun case_UU_tac ctxt rews i v =
+  InductTacs.case_tac ctxt (v^"=UU") i THEN
+  asm_simp_tac (HOLCF_ss addsimps rews) i;
+
+val chain_tac =
+  REPEAT_DETERM o resolve_tac 
+    [chain_iterate, ch2ch_Rep_CFunR, ch2ch_Rep_CFunL];
+
+(* ----- general proofs ----------------------------------------------------- *)
+
+val all2E = @{lemma "!x y . P x y ==> (P x y ==> R) ==> R" by simp}
+
+val dist_eqI = @{lemma "!!x::'a::po. ~ x << y ==> x ~= y" by (blast dest!: below_antisym_inverse)}
+
+in
+
+fun theorems (((dname, _), cons) : eq, eqs : eq list) thy =
+let
+
+val _ = message ("Proving isomorphism properties of domain "^dname^" ...");
+val pg = pg' thy;
+
+(* ----- getting the axioms and definitions --------------------------------- *)
+
+local
+  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
+in
+  val ax_abs_iso  = ga "abs_iso"  dname;
+  val ax_rep_iso  = ga "rep_iso"  dname;
+  val ax_when_def = ga "when_def" dname;
+  fun get_def mk_name (con,_) = ga (mk_name con^"_def") dname;
+  val axs_con_def = map (get_def extern_name) cons;
+  val axs_dis_def = map (get_def dis_name) cons;
+  val axs_mat_def = map (get_def mat_name) cons;
+  val axs_pat_def = map (get_def pat_name) cons;
+  val axs_sel_def =
+    let
+      fun def_of_sel sel = ga (sel^"_def") dname;
+      fun def_of_arg arg = Option.map def_of_sel (sel_of arg);
+      fun defs_of_con (_, args) = List.mapPartial def_of_arg args;
+    in
+      maps defs_of_con cons
+    end;
+  val ax_copy_def = ga "copy_def" dname;
+end; (* local *)
+
+(* ----- theorems concerning the isomorphism -------------------------------- *)
+
+val dc_abs  = %%:(dname^"_abs");
+val dc_rep  = %%:(dname^"_rep");
+val dc_copy = %%:(dname^"_copy");
+val x_name = "x";
+
+val iso_locale = iso_intro OF [ax_abs_iso, ax_rep_iso];
+val abs_strict = ax_rep_iso RS (allI RS retraction_strict);
+val rep_strict = ax_abs_iso RS (allI RS retraction_strict);
+val abs_defin' = iso_locale RS iso_abs_defin';
+val rep_defin' = iso_locale RS iso_rep_defin';
+val iso_rews = map standard [ax_abs_iso,ax_rep_iso,abs_strict,rep_strict];
+
+(* ----- generating beta reduction rules from definitions-------------------- *)
+
+val _ = trace " Proving beta reduction rules...";
+
+local
+  fun arglist (Const _ $ Abs (s, _, t)) =
+    let
+      val (vars,body) = arglist t;
+    in (s :: vars, body) end
+    | arglist t = ([], t);
+  fun bind_fun vars t = Library.foldr mk_All (vars, t);
+  fun bound_vars 0 = []
+    | bound_vars i = Bound (i-1) :: bound_vars (i - 1);
+in
+  fun appl_of_def def =
+    let
+      val (_ $ con $ lam) = concl_of def;
+      val (vars, rhs) = arglist lam;
+      val lhs = list_ccomb (con, bound_vars (length vars));
+      val appl = bind_fun vars (lhs == rhs);
+      val cs = ContProc.cont_thms lam;
+      val betas = map (fn c => mk_meta_eq (c RS beta_cfun)) cs;
+    in pg (def::betas) appl (K [rtac reflexive_thm 1]) end;
+end;
+
+val _ = trace "Proving when_appl...";
+val when_appl = appl_of_def ax_when_def;
+val _ = trace "Proving con_appls...";
+val con_appls = map appl_of_def axs_con_def;
+
+local
+  fun arg2typ n arg =
+    let val t = TVar (("'a", n), pcpoS)
+    in (n + 1, if is_lazy arg then mk_uT t else t) end;
+
+  fun args2typ n [] = (n, oneT)
+    | args2typ n [arg] = arg2typ n arg
+    | args2typ n (arg::args) =
+    let
+      val (n1, t1) = arg2typ n arg;
+      val (n2, t2) = args2typ n1 args
+    in (n2, mk_sprodT (t1, t2)) end;
+
+  fun cons2typ n [] = (n,oneT)
+    | cons2typ n [con] = args2typ n (snd con)
+    | cons2typ n (con::cons) =
+    let
+      val (n1, t1) = args2typ n (snd con);
+      val (n2, t2) = cons2typ n1 cons
+    in (n2, mk_ssumT (t1, t2)) end;
+in
+  fun cons2ctyp cons = ctyp_of thy (snd (cons2typ 1 cons));
+end;
+
+local 
+  val iso_swap = iso_locale RS iso_iso_swap;
+  fun one_con (con, args) =
+    let
+      val vns = map vname args;
+      val eqn = %:x_name === con_app2 con %: vns;
+      val conj = foldr1 mk_conj (eqn :: map (defined o %:) (nonlazy args));
+    in Library.foldr mk_ex (vns, conj) end;
+
+  val conj_assoc = @{thm conj_assoc};
+  val exh = foldr1 mk_disj ((%:x_name === UU) :: map one_con cons);
+  val thm1 = instantiate' [SOME (cons2ctyp cons)] [] exh_start;
+  val thm2 = rewrite_rule (map mk_meta_eq ex_defined_iffs) thm1;
+  val thm3 = rewrite_rule [mk_meta_eq @{thm conj_assoc}] thm2;
+
+  (* first 3 rules replace "x = UU \/ P" with "rep$x = UU \/ P" *)
+  val tacs = [
+    rtac disjE 1,
+    etac (rep_defin' RS disjI1) 2,
+    etac disjI2 2,
+    rewrite_goals_tac [mk_meta_eq iso_swap],
+    rtac thm3 1];
+in
+  val _ = trace " Proving exhaust...";
+  val exhaust = pg con_appls (mk_trp exh) (K tacs);
+  val _ = trace " Proving casedist...";
+  val casedist =
+    standard (rewrite_rule exh_casedists (exhaust RS exh_casedist0));
+end;
+
+local 
+  fun bind_fun t = Library.foldr mk_All (when_funs cons, t);
+  fun bound_fun i _ = Bound (length cons - i);
+  val when_app = list_ccomb (%%:(dname^"_when"), mapn bound_fun 1 cons);
+in
+  val _ = trace " Proving when_strict...";
+  val when_strict =
+    let
+      val axs = [when_appl, mk_meta_eq rep_strict];
+      val goal = bind_fun (mk_trp (strict when_app));
+      val tacs = [resolve_tac [sscase1, ssplit1, strictify1] 1];
+    in pg axs goal (K tacs) end;
+
+  val _ = trace " Proving when_apps...";
+  val when_apps =
+    let
+      fun one_when n (con,args) =
+        let
+          val axs = when_appl :: con_appls;
+          val goal = bind_fun (lift_defined %: (nonlazy args, 
+                mk_trp (when_app`(con_app con args) ===
+                       list_ccomb (bound_fun n 0, map %# args))));
+          val tacs = [asm_simp_tac (HOLCF_ss addsimps [ax_abs_iso]) 1];
+        in pg axs goal (K tacs) end;
+    in mapn one_when 1 cons end;
+end;
+val when_rews = when_strict :: when_apps;
+
+(* ----- theorems concerning the constructors, discriminators and selectors - *)
+
+local
+  fun dis_strict (con, _) =
+    let
+      val goal = mk_trp (strict (%%:(dis_name con)));
+    in pg axs_dis_def goal (K [rtac when_strict 1]) end;
+
+  fun dis_app c (con, args) =
+    let
+      val lhs = %%:(dis_name c) ` con_app con args;
+      val rhs = if con = c then TT else FF;
+      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
+      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
+    in pg axs_dis_def goal (K tacs) end;
+
+  val _ = trace " Proving dis_apps...";
+  val dis_apps = maps (fn (c,_) => map (dis_app c) cons) cons;
+
+  fun dis_defin (con, args) =
+    let
+      val goal = defined (%:x_name) ==> defined (%%:(dis_name con) `% x_name);
+      val tacs =
+        [rtac casedist 1,
+         contr_tac 1,
+         DETERM_UNTIL_SOLVED (CHANGED
+          (asm_simp_tac (HOLCF_ss addsimps dis_apps) 1))];
+    in pg [] goal (K tacs) end;
+
+  val _ = trace " Proving dis_stricts...";
+  val dis_stricts = map dis_strict cons;
+  val _ = trace " Proving dis_defins...";
+  val dis_defins = map dis_defin cons;
+in
+  val dis_rews = dis_stricts @ dis_defins @ dis_apps;
+end;
+
+local
+  fun mat_strict (con, _) =
+    let
+      val goal = mk_trp (%%:(mat_name con) ` UU ` %:"rhs" === UU);
+      val tacs = [asm_simp_tac (HOLCF_ss addsimps [when_strict]) 1];
+    in pg axs_mat_def goal (K tacs) end;
+
+  val _ = trace " Proving mat_stricts...";
+  val mat_stricts = map mat_strict cons;
+
+  fun one_mat c (con, args) =
+    let
+      val lhs = %%:(mat_name c) ` con_app con args ` %:"rhs";
+      val rhs =
+        if con = c
+        then list_ccomb (%:"rhs", map %# args)
+        else mk_fail;
+      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
+      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
+    in pg axs_mat_def goal (K tacs) end;
+
+  val _ = trace " Proving mat_apps...";
+  val mat_apps =
+    maps (fn (c,_) => map (one_mat c) cons) cons;
+in
+  val mat_rews = mat_stricts @ mat_apps;
+end;
+
+local
+  fun ps args = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
+
+  fun pat_lhs (con,args) = mk_branch (list_comb (%%:(pat_name con), ps args));
+
+  fun pat_rhs (con,[]) = mk_return ((%:"rhs") ` HOLogic.unit)
+    | pat_rhs (con,args) =
+        (mk_branch (mk_ctuple_pat (ps args)))
+          `(%:"rhs")`(mk_ctuple (map %# args));
+
+  fun pat_strict c =
+    let
+      val axs = @{thm branch_def} :: axs_pat_def;
+      val goal = mk_trp (strict (pat_lhs c ` (%:"rhs")));
+      val tacs = [simp_tac (HOLCF_ss addsimps [when_strict]) 1];
+    in pg axs goal (K tacs) end;
+
+  fun pat_app c (con, args) =
+    let
+      val axs = @{thm branch_def} :: axs_pat_def;
+      val lhs = (pat_lhs c)`(%:"rhs")`(con_app con args);
+      val rhs = if con = fst c then pat_rhs c else mk_fail;
+      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
+      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
+    in pg axs goal (K tacs) end;
+
+  val _ = trace " Proving pat_stricts...";
+  val pat_stricts = map pat_strict cons;
+  val _ = trace " Proving pat_apps...";
+  val pat_apps = maps (fn c => map (pat_app c) cons) cons;
+in
+  val pat_rews = pat_stricts @ pat_apps;
+end;
+
+local
+  fun con_strict (con, args) = 
+    let
+      val rules = abs_strict :: @{thms con_strict_rules};
+      fun one_strict vn =
+        let
+          fun f arg = if vname arg = vn then UU else %# arg;
+          val goal = mk_trp (con_app2 con f args === UU);
+          val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
+        in pg con_appls goal (K tacs) end;
+    in map one_strict (nonlazy args) end;
+
+  fun con_defin (con, args) =
+    let
+      fun iff_disj (t, []) = HOLogic.mk_not t
+        | iff_disj (t, ts) = t === foldr1 HOLogic.mk_disj ts;
+      val lhs = con_app con args === UU;
+      val rhss = map (fn x => %:x === UU) (nonlazy args);
+      val goal = mk_trp (iff_disj (lhs, rhss));
+      val rule1 = iso_locale RS @{thm iso.abs_defined_iff};
+      val rules = rule1 :: @{thms con_defined_iff_rules};
+      val tacs = [simp_tac (HOL_ss addsimps rules) 1];
+    in pg con_appls goal (K tacs) end;
+in
+  val _ = trace " Proving con_stricts...";
+  val con_stricts = maps con_strict cons;
+  val _ = trace " Proving con_defins...";
+  val con_defins = map con_defin cons;
+  val con_rews = con_stricts @ con_defins;
+end;
+
+local
+  val rules =
+    [compact_sinl, compact_sinr, compact_spair, compact_up, compact_ONE];
+  fun con_compact (con, args) =
+    let
+      val concl = mk_trp (mk_compact (con_app con args));
+      val goal = lift (fn x => mk_compact (%#x)) (args, concl);
+      val tacs = [
+        rtac (iso_locale RS iso_compact_abs) 1,
+        REPEAT (resolve_tac rules 1 ORELSE atac 1)];
+    in pg con_appls goal (K tacs) end;
+in
+  val _ = trace " Proving con_compacts...";
+  val con_compacts = map con_compact cons;
+end;
+
+local
+  fun one_sel sel =
+    pg axs_sel_def (mk_trp (strict (%%:sel)))
+      (K [simp_tac (HOLCF_ss addsimps when_rews) 1]);
+
+  fun sel_strict (_, args) =
+    List.mapPartial (Option.map one_sel o sel_of) args;
+in
+  val _ = trace " Proving sel_stricts...";
+  val sel_stricts = maps sel_strict cons;
+end;
+
+local
+  fun sel_app_same c n sel (con, args) =
+    let
+      val nlas = nonlazy args;
+      val vns = map vname args;
+      val vnn = List.nth (vns, n);
+      val nlas' = List.filter (fn v => v <> vnn) nlas;
+      val lhs = (%%:sel)`(con_app con args);
+      val goal = lift_defined %: (nlas', mk_trp (lhs === %:vnn));
+      fun tacs1 ctxt =
+        if vnn mem nlas
+        then [case_UU_tac ctxt (when_rews @ con_stricts) 1 vnn]
+        else [];
+      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
+    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
+
+  fun sel_app_diff c n sel (con, args) =
+    let
+      val nlas = nonlazy args;
+      val goal = mk_trp (%%:sel ` con_app con args === UU);
+      fun tacs1 ctxt = map (case_UU_tac ctxt (when_rews @ con_stricts) 1) nlas;
+      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
+    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
+
+  fun sel_app c n sel (con, args) =
+    if con = c
+    then sel_app_same c n sel (con, args)
+    else sel_app_diff c n sel (con, args);
+
+  fun one_sel c n sel = map (sel_app c n sel) cons;
+  fun one_sel' c n arg = Option.map (one_sel c n) (sel_of arg);
+  fun one_con (c, args) =
+    flat (map_filter I (mapn (one_sel' c) 0 args));
+in
+  val _ = trace " Proving sel_apps...";
+  val sel_apps = maps one_con cons;
+end;
+
+local
+  fun sel_defin sel =
+    let
+      val goal = defined (%:x_name) ==> defined (%%:sel`%x_name);
+      val tacs = [
+        rtac casedist 1,
+        contr_tac 1,
+        DETERM_UNTIL_SOLVED (CHANGED
+          (asm_simp_tac (HOLCF_ss addsimps sel_apps) 1))];
+    in pg [] goal (K tacs) end;
+in
+  val _ = trace " Proving sel_defins...";
+  val sel_defins =
+    if length cons = 1
+    then List.mapPartial (fn arg => Option.map sel_defin (sel_of arg))
+                 (filter_out is_lazy (snd (hd cons)))
+    else [];
+end;
+
+val sel_rews = sel_stricts @ sel_defins @ sel_apps;
+
+val _ = trace " Proving dist_les...";
+val distincts_le =
+  let
+    fun dist (con1, args1) (con2, args2) =
+      let
+        val goal = lift_defined %: (nonlazy args1,
+                        mk_trp (con_app con1 args1 ~<< con_app con2 args2));
+        fun tacs ctxt = [
+          rtac @{thm rev_contrapos} 1,
+          eres_inst_tac ctxt [(("f", 0), dis_name con1)] monofun_cfun_arg 1]
+          @ map (case_UU_tac ctxt (con_stricts @ dis_rews) 1) (nonlazy args2)
+          @ [asm_simp_tac (HOLCF_ss addsimps dis_rews) 1];
+      in pg [] goal tacs end;
+
+    fun distinct (con1, args1) (con2, args2) =
+        let
+          val arg1 = (con1, args1);
+          val arg2 =
+            (con2, ListPair.map (fn (arg,vn) => upd_vname (K vn) arg)
+              (args2, Name.variant_list (map vname args1) (map vname args2)));
+        in [dist arg1 arg2, dist arg2 arg1] end;
+    fun distincts []      = []
+      | distincts (c::cs) = (map (distinct c) cs) :: distincts cs;
+  in distincts cons end;
+val dist_les = flat (flat distincts_le);
+
+val _ = trace " Proving dist_eqs...";
+val dist_eqs =
+  let
+    fun distinct (_,args1) ((_,args2), leqs) =
+      let
+        val (le1,le2) = (hd leqs, hd(tl leqs));
+        val (eq1,eq2) = (le1 RS dist_eqI, le2 RS dist_eqI)
+      in
+        if nonlazy args1 = [] then [eq1, eq1 RS not_sym] else
+        if nonlazy args2 = [] then [eq2, eq2 RS not_sym] else
+          [eq1, eq2]
+      end;
+    fun distincts []      = []
+      | distincts ((c,leqs)::cs) =
+        flat
+          (ListPair.map (distinct c) ((map #1 cs),leqs)) @
+        distincts cs;
+  in map standard (distincts (cons ~~ distincts_le)) end;
+
+local 
+  fun pgterm rel con args =
+    let
+      fun append s = upd_vname (fn v => v^s);
+      val (largs, rargs) = (args, map (append "'") args);
+      val concl =
+        foldr1 mk_conj (ListPair.map rel (map %# largs, map %# rargs));
+      val prem = rel (con_app con largs, con_app con rargs);
+      val sargs = case largs of [_] => [] | _ => nonlazy args;
+      val prop = lift_defined %: (sargs, mk_trp (prem === concl));
+    in pg con_appls prop end;
+  val cons' = List.filter (fn (_,args) => args<>[]) cons;
+in
+  val _ = trace " Proving inverts...";
+  val inverts =
+    let
+      val abs_less = ax_abs_iso RS (allI RS injection_less);
+      val tacs =
+        [asm_full_simp_tac (HOLCF_ss addsimps [abs_less, spair_less]) 1];
+    in map (fn (con, args) => pgterm (op <<) con args (K tacs)) cons' end;
+
+  val _ = trace " Proving injects...";
+  val injects =
+    let
+      val abs_eq = ax_abs_iso RS (allI RS injection_eq);
+      val tacs = [asm_full_simp_tac (HOLCF_ss addsimps [abs_eq, spair_eq]) 1];
+    in map (fn (con, args) => pgterm (op ===) con args (K tacs)) cons' end;
+end;
+
+(* ----- theorems concerning one induction step ----------------------------- *)
+
+val copy_strict =
+  let
+    val _ = trace " Proving copy_strict...";
+    val goal = mk_trp (strict (dc_copy `% "f"));
+    val rules = [abs_strict, rep_strict] @ @{thms domain_fun_stricts};
+    val tacs = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
+  in pg [ax_copy_def] goal (K tacs) end;
+
+local
+  fun copy_app (con, args) =
+    let
+      val lhs = dc_copy`%"f"`(con_app con args);
+      fun one_rhs arg =
+          if DatatypeAux.is_rec_type (dtyp_of arg)
+          then Domain_Axioms.copy_of_dtyp (cproj (%:"f") eqs) (dtyp_of arg) ` (%# arg)
+          else (%# arg);
+      val rhs = con_app2 con one_rhs args;
+      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
+      val args' = List.filter (fn a => not (is_rec a orelse is_lazy a)) args;
+      val stricts = abs_strict :: rep_strict :: @{thms domain_fun_stricts};
+      fun tacs1 ctxt = map (case_UU_tac ctxt stricts 1 o vname) args';
+      val rules = [ax_abs_iso] @ @{thms domain_fun_simps};
+      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
+    in pg (ax_copy_def::con_appls) goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
+in
+  val _ = trace " Proving copy_apps...";
+  val copy_apps = map copy_app cons;
+end;
+
+local
+  fun one_strict (con, args) = 
+    let
+      val goal = mk_trp (dc_copy`UU`(con_app con args) === UU);
+      val rews = copy_strict :: copy_apps @ con_rews;
+      fun tacs ctxt = map (case_UU_tac ctxt rews 1) (nonlazy args) @
+        [asm_simp_tac (HOLCF_ss addsimps rews) 1];
+    in pg [] goal tacs end;
+
+  fun has_nonlazy_rec (_, args) = exists is_nonlazy_rec args;
+in
+  val _ = trace " Proving copy_stricts...";
+  val copy_stricts = map one_strict (List.filter has_nonlazy_rec cons);
+end;
+
+val copy_rews = copy_strict :: copy_apps @ copy_stricts;
+
+in
+  thy
+    |> Sign.add_path (Long_Name.base_name dname)
+    |> snd o PureThy.add_thmss [
+        ((Binding.name "iso_rews"  , iso_rews    ), [Simplifier.simp_add]),
+        ((Binding.name "exhaust"   , [exhaust]   ), []),
+        ((Binding.name "casedist"  , [casedist]  ), [Induct.cases_type dname]),
+        ((Binding.name "when_rews" , when_rews   ), [Simplifier.simp_add]),
+        ((Binding.name "compacts"  , con_compacts), [Simplifier.simp_add]),
+        ((Binding.name "con_rews"  , con_rews    ), [Simplifier.simp_add]),
+        ((Binding.name "sel_rews"  , sel_rews    ), [Simplifier.simp_add]),
+        ((Binding.name "dis_rews"  , dis_rews    ), [Simplifier.simp_add]),
+        ((Binding.name "pat_rews"  , pat_rews    ), [Simplifier.simp_add]),
+        ((Binding.name "dist_les"  , dist_les    ), [Simplifier.simp_add]),
+        ((Binding.name "dist_eqs"  , dist_eqs    ), [Simplifier.simp_add]),
+        ((Binding.name "inverts"   , inverts     ), [Simplifier.simp_add]),
+        ((Binding.name "injects"   , injects     ), [Simplifier.simp_add]),
+        ((Binding.name "copy_rews" , copy_rews   ), [Simplifier.simp_add]),
+        ((Binding.name "match_rews", mat_rews    ), [Simplifier.simp_add])]
+    |> Sign.parent_path
+    |> pair (iso_rews @ when_rews @ con_rews @ sel_rews @ dis_rews @
+        pat_rews @ dist_les @ dist_eqs @ copy_rews)
+end; (* let *)
+
+fun comp_theorems (comp_dnam, eqs: eq list) thy =
+let
+val global_ctxt = ProofContext.init thy;
+
+val dnames = map (fst o fst) eqs;
+val conss  = map  snd        eqs;
+val comp_dname = Sign.full_bname thy comp_dnam;
+
+val _ = message ("Proving induction properties of domain "^comp_dname^" ...");
+val pg = pg' thy;
+
+(* ----- getting the composite axiom and definitions ------------------------ *)
+
+local
+  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
+in
+  val axs_reach      = map (ga "reach"     ) dnames;
+  val axs_take_def   = map (ga "take_def"  ) dnames;
+  val axs_finite_def = map (ga "finite_def") dnames;
+  val ax_copy2_def   =      ga "copy_def"  comp_dnam;
+  val ax_bisim_def   =      ga "bisim_def" comp_dnam;
+end;
+
+local
+  fun gt  s dn = PureThy.get_thm  thy (dn ^ "." ^ s);
+  fun gts s dn = PureThy.get_thms thy (dn ^ "." ^ s);
+in
+  val cases = map (gt  "casedist" ) dnames;
+  val con_rews  = maps (gts "con_rews" ) dnames;
+  val copy_rews = maps (gts "copy_rews") dnames;
+end;
+
+fun dc_take dn = %%:(dn^"_take");
+val x_name = idx_name dnames "x"; 
+val P_name = idx_name dnames "P";
+val n_eqs = length eqs;
+
+(* ----- theorems concerning finite approximation and finite induction ------ *)
+
+local
+  val iterate_Cprod_ss = simpset_of @{theory Fix};
+  val copy_con_rews  = copy_rews @ con_rews;
+  val copy_take_defs =
+    (if n_eqs = 1 then [] else [ax_copy2_def]) @ axs_take_def;
+  val _ = trace " Proving take_stricts...";
+  val take_stricts =
+    let
+      fun one_eq ((dn, args), _) = strict (dc_take dn $ %:"n");
+      val goal = mk_trp (foldr1 mk_conj (map one_eq eqs));
+      fun tacs ctxt = [
+        InductTacs.induct_tac ctxt [[SOME "n"]] 1,
+        simp_tac iterate_Cprod_ss 1,
+        asm_simp_tac (iterate_Cprod_ss addsimps copy_rews) 1];
+    in pg copy_take_defs goal tacs end;
+
+  val take_stricts' = rewrite_rule copy_take_defs take_stricts;
+  fun take_0 n dn =
+    let
+      val goal = mk_trp ((dc_take dn $ %%:"HOL.zero") `% x_name n === UU);
+    in pg axs_take_def goal (K [simp_tac iterate_Cprod_ss 1]) end;
+  val take_0s = mapn take_0 1 dnames;
+  fun c_UU_tac ctxt = case_UU_tac ctxt (take_stricts'::copy_con_rews) 1;
+  val _ = trace " Proving take_apps...";
+  val take_apps =
+    let
+      fun mk_eqn dn (con, args) =
+        let
+          fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
+          fun one_rhs arg =
+              if DatatypeAux.is_rec_type (dtyp_of arg)
+              then Domain_Axioms.copy_of_dtyp mk_take (dtyp_of arg) ` (%# arg)
+              else (%# arg);
+          val lhs = (dc_take dn $ (%%:"Suc" $ %:"n"))`(con_app con args);
+          val rhs = con_app2 con one_rhs args;
+        in Library.foldr mk_all (map vname args, lhs === rhs) end;
+      fun mk_eqns ((dn, _), cons) = map (mk_eqn dn) cons;
+      val goal = mk_trp (foldr1 mk_conj (maps mk_eqns eqs));
+      val simps = List.filter (has_fewer_prems 1) copy_rews;
+      fun con_tac ctxt (con, args) =
+        if nonlazy_rec args = []
+        then all_tac
+        else EVERY (map (c_UU_tac ctxt) (nonlazy_rec args)) THEN
+          asm_full_simp_tac (HOLCF_ss addsimps copy_rews) 1;
+      fun eq_tacs ctxt ((dn, _), cons) = map (con_tac ctxt) cons;
+      fun tacs ctxt =
+        simp_tac iterate_Cprod_ss 1 ::
+        InductTacs.induct_tac ctxt [[SOME "n"]] 1 ::
+        simp_tac (iterate_Cprod_ss addsimps copy_con_rews) 1 ::
+        asm_full_simp_tac (HOLCF_ss addsimps simps) 1 ::
+        TRY (safe_tac HOL_cs) ::
+        maps (eq_tacs ctxt) eqs;
+    in pg copy_take_defs goal tacs end;
+in
+  val take_rews = map standard
+    (atomize global_ctxt take_stricts @ take_0s @ atomize global_ctxt take_apps);
+end; (* local *)
+
+local
+  fun one_con p (con,args) =
+    let
+      fun ind_hyp arg = %:(P_name (1 + rec_of arg)) $ bound_arg args arg;
+      val t1 = mk_trp (%:p $ con_app2 con (bound_arg args) args);
+      val t2 = lift ind_hyp (List.filter is_rec args, t1);
+      val t3 = lift_defined (bound_arg (map vname args)) (nonlazy args, t2);
+    in Library.foldr mk_All (map vname args, t3) end;
+
+  fun one_eq ((p, cons), concl) =
+    mk_trp (%:p $ UU) ===> Logic.list_implies (map (one_con p) cons, concl);
+
+  fun ind_term concf = Library.foldr one_eq
+    (mapn (fn n => fn x => (P_name n, x)) 1 conss,
+     mk_trp (foldr1 mk_conj (mapn concf 1 dnames)));
+  val take_ss = HOL_ss addsimps take_rews;
+  fun quant_tac ctxt i = EVERY
+    (mapn (fn n => fn _ => res_inst_tac ctxt [(("x", 0), x_name n)] spec i) 1 dnames);
+
+  fun ind_prems_tac prems = EVERY
+    (maps (fn cons =>
+      (resolve_tac prems 1 ::
+        maps (fn (_,args) => 
+          resolve_tac prems 1 ::
+          map (K(atac 1)) (nonlazy args) @
+          map (K(atac 1)) (List.filter is_rec args))
+        cons))
+      conss);
+  local 
+    (* check whether every/exists constructor of the n-th part of the equation:
+       it has a possibly indirectly recursive argument that isn't/is possibly 
+       indirectly lazy *)
+    fun rec_to quant nfn rfn ns lazy_rec (n,cons) = quant (exists (fn arg => 
+          is_rec arg andalso not(rec_of arg mem ns) andalso
+          ((rec_of arg =  n andalso nfn(lazy_rec orelse is_lazy arg)) orelse 
+            rec_of arg <> n andalso rec_to quant nfn rfn (rec_of arg::ns) 
+              (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
+          ) o snd) cons;
+    fun all_rec_to ns  = rec_to forall not all_rec_to  ns;
+    fun warn (n,cons) =
+      if all_rec_to [] false (n,cons)
+      then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
+      else false;
+    fun lazy_rec_to ns = rec_to exists I  lazy_rec_to ns;
+
+  in
+    val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
+    val is_emptys = map warn n__eqs;
+    val is_finite = forall (not o lazy_rec_to [] false) n__eqs;
+  end;
+in (* local *)
+  val _ = trace " Proving finite_ind...";
+  val finite_ind =
+    let
+      fun concf n dn = %:(P_name n) $ (dc_take dn $ %:"n" `%(x_name n));
+      val goal = ind_term concf;
+
+      fun tacf {prems, context} =
+        let
+          val tacs1 = [
+            quant_tac context 1,
+            simp_tac HOL_ss 1,
+            InductTacs.induct_tac context [[SOME "n"]] 1,
+            simp_tac (take_ss addsimps prems) 1,
+            TRY (safe_tac HOL_cs)];
+          fun arg_tac arg =
+            case_UU_tac context (prems @ con_rews) 1
+              (List.nth (dnames, rec_of arg) ^ "_take n$" ^ vname arg);
+          fun con_tacs (con, args) = 
+            asm_simp_tac take_ss 1 ::
+            map arg_tac (List.filter is_nonlazy_rec args) @
+            [resolve_tac prems 1] @
+            map (K (atac 1))      (nonlazy args) @
+            map (K (etac spec 1)) (List.filter is_rec args);
+          fun cases_tacs (cons, cases) =
+            res_inst_tac context [(("x", 0), "x")] cases 1 ::
+            asm_simp_tac (take_ss addsimps prems) 1 ::
+            maps con_tacs cons;
+        in
+          tacs1 @ maps cases_tacs (conss ~~ cases)
+        end;
+    in pg'' thy [] goal tacf
+       handle ERROR _ => (warning "Proof of finite_ind failed."; TrueI)
+    end;
+
+  val _ = trace " Proving take_lemmas...";
+  val take_lemmas =
+    let
+      fun take_lemma n (dn, ax_reach) =
+        let
+          val lhs = dc_take dn $ Bound 0 `%(x_name n);
+          val rhs = dc_take dn $ Bound 0 `%(x_name n^"'");
+          val concl = mk_trp (%:(x_name n) === %:(x_name n^"'"));
+          val goal = mk_All ("n", mk_trp (lhs === rhs)) ===> concl;
+          fun tacf {prems, context} = [
+            res_inst_tac context [(("t", 0), x_name n    )] (ax_reach RS subst) 1,
+            res_inst_tac context [(("t", 0), x_name n^"'")] (ax_reach RS subst) 1,
+            stac fix_def2 1,
+            REPEAT (CHANGED
+              (rtac (contlub_cfun_arg RS ssubst) 1 THEN chain_tac 1)),
+            stac contlub_cfun_fun 1,
+            stac contlub_cfun_fun 2,
+            rtac lub_equal 3,
+            chain_tac 1,
+            rtac allI 1,
+            resolve_tac prems 1];
+        in pg'' thy axs_take_def goal tacf end;
+    in mapn take_lemma 1 (dnames ~~ axs_reach) end;
+
+(* ----- theorems concerning finiteness and induction ----------------------- *)
+
+  val _ = trace " Proving finites, ind...";
+  val (finites, ind) =
+  (
+    if is_finite
+    then (* finite case *)
+      let 
+        fun take_enough dn = mk_ex ("n",dc_take dn $ Bound 0 ` %:"x" === %:"x");
+        fun dname_lemma dn =
+          let
+            val prem1 = mk_trp (defined (%:"x"));
+            val disj1 = mk_all ("n", dc_take dn $ Bound 0 ` %:"x" === UU);
+            val prem2 = mk_trp (mk_disj (disj1, take_enough dn));
+            val concl = mk_trp (take_enough dn);
+            val goal = prem1 ===> prem2 ===> concl;
+            val tacs = [
+              etac disjE 1,
+              etac notE 1,
+              resolve_tac take_lemmas 1,
+              asm_simp_tac take_ss 1,
+              atac 1];
+          in pg [] goal (K tacs) end;
+        val _ = trace " Proving finite_lemmas1a";
+        val finite_lemmas1a = map dname_lemma dnames;
+ 
+        val _ = trace " Proving finite_lemma1b";
+        val finite_lemma1b =
+          let
+            fun mk_eqn n ((dn, args), _) =
+              let
+                val disj1 = dc_take dn $ Bound 1 ` Bound 0 === UU;
+                val disj2 = dc_take dn $ Bound 1 ` Bound 0 === Bound 0;
+              in
+                mk_constrainall
+                  (x_name n, Type (dn,args), mk_disj (disj1, disj2))
+              end;
+            val goal =
+              mk_trp (mk_all ("n", foldr1 mk_conj (mapn mk_eqn 1 eqs)));
+            fun arg_tacs ctxt vn = [
+              eres_inst_tac ctxt [(("x", 0), vn)] all_dupE 1,
+              etac disjE 1,
+              asm_simp_tac (HOL_ss addsimps con_rews) 1,
+              asm_simp_tac take_ss 1];
+            fun con_tacs ctxt (con, args) =
+              asm_simp_tac take_ss 1 ::
+              maps (arg_tacs ctxt) (nonlazy_rec args);
+            fun foo_tacs ctxt n (cons, cases) =
+              simp_tac take_ss 1 ::
+              rtac allI 1 ::
+              res_inst_tac ctxt [(("x", 0), x_name n)] cases 1 ::
+              asm_simp_tac take_ss 1 ::
+              maps (con_tacs ctxt) cons;
+            fun tacs ctxt =
+              rtac allI 1 ::
+              InductTacs.induct_tac ctxt [[SOME "n"]] 1 ::
+              simp_tac take_ss 1 ::
+              TRY (safe_tac (empty_cs addSEs [conjE] addSIs [conjI])) ::
+              flat (mapn (foo_tacs ctxt) 1 (conss ~~ cases));
+          in pg [] goal tacs end;
+
+        fun one_finite (dn, l1b) =
+          let
+            val goal = mk_trp (%%:(dn^"_finite") $ %:"x");
+            fun tacs ctxt = [
+              case_UU_tac ctxt take_rews 1 "x",
+              eresolve_tac finite_lemmas1a 1,
+              step_tac HOL_cs 1,
+              step_tac HOL_cs 1,
+              cut_facts_tac [l1b] 1,
+              fast_tac HOL_cs 1];
+          in pg axs_finite_def goal tacs end;
+
+        val _ = trace " Proving finites";
+        val finites = map one_finite (dnames ~~ atomize global_ctxt finite_lemma1b);
+        val _ = trace " Proving ind";
+        val ind =
+          let
+            fun concf n dn = %:(P_name n) $ %:(x_name n);
+            fun tacf {prems, context} =
+              let
+                fun finite_tacs (finite, fin_ind) = [
+                  rtac(rewrite_rule axs_finite_def finite RS exE)1,
+                  etac subst 1,
+                  rtac fin_ind 1,
+                  ind_prems_tac prems];
+              in
+                TRY (safe_tac HOL_cs) ::
+                maps finite_tacs (finites ~~ atomize global_ctxt finite_ind)
+              end;
+          in pg'' thy [] (ind_term concf) tacf end;
+      in (finites, ind) end (* let *)
+
+    else (* infinite case *)
+      let
+        fun one_finite n dn =
+          read_instantiate global_ctxt [(("P", 0), dn ^ "_finite " ^ x_name n)] excluded_middle;
+        val finites = mapn one_finite 1 dnames;
+
+        val goal =
+          let
+            fun one_adm n _ = mk_trp (mk_adm (%:(P_name n)));
+            fun concf n dn = %:(P_name n) $ %:(x_name n);
+          in Logic.list_implies (mapn one_adm 1 dnames, ind_term concf) end;
+        fun tacf {prems, context} =
+          map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
+          quant_tac context 1,
+          rtac (adm_impl_admw RS wfix_ind) 1,
+          REPEAT_DETERM (rtac adm_all 1),
+          REPEAT_DETERM (
+            TRY (rtac adm_conj 1) THEN 
+            rtac adm_subst 1 THEN 
+            cont_tacR 1 THEN resolve_tac prems 1),
+          strip_tac 1,
+          rtac (rewrite_rule axs_take_def finite_ind) 1,
+          ind_prems_tac prems];
+        val ind = (pg'' thy [] goal tacf
+          handle ERROR _ =>
+            (warning "Cannot prove infinite induction rule"; refl));
+      in (finites, ind) end
+  )
+      handle THM _ =>
+             (warning "Induction proofs failed (THM raised)."; ([], TrueI))
+           | ERROR _ =>
+             (warning "Induction proofs failed (ERROR raised)."; ([], TrueI));
+
+
+end; (* local *)
+
+(* ----- theorem concerning coinduction ------------------------------------- *)
+
+local
+  val xs = mapn (fn n => K (x_name n)) 1 dnames;
+  fun bnd_arg n i = Bound(2*(n_eqs - n)-i-1);
+  val take_ss = HOL_ss addsimps take_rews;
+  val sproj = prj (fn s => K("fst("^s^")")) (fn s => K("snd("^s^")"));
+  val _ = trace " Proving coind_lemma...";
+  val coind_lemma =
+    let
+      fun mk_prj n _ = proj (%:"R") eqs n $ bnd_arg n 0 $ bnd_arg n 1;
+      fun mk_eqn n dn =
+        (dc_take dn $ %:"n" ` bnd_arg n 0) ===
+        (dc_take dn $ %:"n" ` bnd_arg n 1);
+      fun mk_all2 (x,t) = mk_all (x, mk_all (x^"'", t));
+      val goal =
+        mk_trp (mk_imp (%%:(comp_dname^"_bisim") $ %:"R",
+          Library.foldr mk_all2 (xs,
+            Library.foldr mk_imp (mapn mk_prj 0 dnames,
+              foldr1 mk_conj (mapn mk_eqn 0 dnames)))));
+      fun x_tacs ctxt n x = [
+        rotate_tac (n+1) 1,
+        etac all2E 1,
+        eres_inst_tac ctxt [(("P", 1), sproj "R" eqs n^" "^x^" "^x^"'")] (mp RS disjE) 1,
+        TRY (safe_tac HOL_cs),
+        REPEAT (CHANGED (asm_simp_tac take_ss 1))];
+      fun tacs ctxt = [
+        rtac impI 1,
+        InductTacs.induct_tac ctxt [[SOME "n"]] 1,
+        simp_tac take_ss 1,
+        safe_tac HOL_cs] @
+        flat (mapn (x_tacs ctxt) 0 xs);
+    in pg [ax_bisim_def] goal tacs end;
+in
+  val _ = trace " Proving coind...";
+  val coind = 
+    let
+      fun mk_prj n x = mk_trp (proj (%:"R") eqs n $ %:x $ %:(x^"'"));
+      fun mk_eqn x = %:x === %:(x^"'");
+      val goal =
+        mk_trp (%%:(comp_dname^"_bisim") $ %:"R") ===>
+          Logic.list_implies (mapn mk_prj 0 xs,
+            mk_trp (foldr1 mk_conj (map mk_eqn xs)));
+      val tacs =
+        TRY (safe_tac HOL_cs) ::
+        maps (fn take_lemma => [
+          rtac take_lemma 1,
+          cut_facts_tac [coind_lemma] 1,
+          fast_tac HOL_cs 1])
+        take_lemmas;
+    in pg [] goal (K tacs) end;
+end; (* local *)
+
+val inducts = ProjectRule.projections (ProofContext.init thy) ind;
+fun ind_rule (dname, rule) = ((Binding.empty, [rule]), [Induct.induct_type dname]);
+val induct_failed = (Thm.prop_of ind = Thm.prop_of TrueI);
+
+in thy |> Sign.add_path comp_dnam
+       |> snd o PureThy.add_thmss [
+           ((Binding.name "take_rews"  , take_rews   ), [Simplifier.simp_add]),
+           ((Binding.name "take_lemmas", take_lemmas ), []),
+           ((Binding.name "finites"    , finites     ), []),
+           ((Binding.name "finite_ind" , [finite_ind]), []),
+           ((Binding.name "ind"        , [ind]       ), []),
+           ((Binding.name "coind"      , [coind]     ), [])]
+       |> (if induct_failed then I
+           else snd o PureThy.add_thmss (map ind_rule (dnames ~~ inducts)))
+       |> Sign.parent_path |> pair take_rews
+end; (* let *)
+end; (* local *)
+end; (* struct *)
--- a/src/HOLCF/Tools/domain/domain_axioms.ML	Tue Jul 21 14:08:58 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,235 +0,0 @@
-(*  Title:      HOLCF/Tools/domain/domain_axioms.ML
-    Author:     David von Oheimb
-
-Syntax generator for domain command.
-*)
-
-signature DOMAIN_AXIOMS =
-sig
-  val copy_of_dtyp : (int -> term) -> Datatype.dtyp -> term
-
-  val calc_axioms :
-      string -> Domain_Library.eq list -> int -> Domain_Library.eq ->
-      string * (string * term) list * (string * term) list
-
-  val add_axioms :
-      bstring -> Domain_Library.eq list -> theory -> theory
-end;
-
-
-structure Domain_Axioms :> DOMAIN_AXIOMS =
-struct
-
-open Domain_Library;
-
-infixr 0 ===>;infixr 0 ==>;infix 0 == ; 
-infix 1 ===; infix 1 ~= ; infix 1 <<; infix 1 ~<<;
-infix 9 `   ; infix 9 `% ; infix 9 `%%; infixr 9 oo;
-
-(* FIXME: use theory data for this *)
-val copy_tab : string Symtab.table =
-    Symtab.make [(@{type_name "->"}, @{const_name "cfun_fun"}),
-                 (@{type_name "++"}, @{const_name "ssum_fun"}),
-                 (@{type_name "**"}, @{const_name "sprod_fun"}),
-                 (@{type_name "*"}, @{const_name "cprod_fun"}),
-                 (@{type_name "u"}, @{const_name "u_fun"})];
-
-fun copy_of_dtyp r dt = if DatatypeAux.is_rec_type dt then copy r dt else ID
-and copy r (DatatypeAux.DtRec i) = r i
-  | copy r (DatatypeAux.DtTFree a) = ID
-  | copy r (DatatypeAux.DtType (c, ds)) =
-    case Symtab.lookup copy_tab c of
-      SOME f => list_ccomb (%%:f, map (copy_of_dtyp r) ds)
-    | NONE => (warning ("copy_of_dtyp: unknown type constructor " ^ c); ID);
-
-fun calc_axioms
-      (comp_dname : string)
-      (eqs : eq list)
-      (n : int)
-      (eqn as ((dname,_),cons) : eq)
-    : string * (string * term) list * (string * term) list =
-    let
-
-      (* ----- axioms and definitions concerning the isomorphism ------------------ *)
-
-      val dc_abs = %%:(dname^"_abs");
-      val dc_rep = %%:(dname^"_rep");
-      val x_name'= "x";
-      val x_name = idx_name eqs x_name' (n+1);
-      val dnam = Long_Name.base_name dname;
-
-      val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
-      val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
-
-      val when_def = ("when_def",%%:(dname^"_when") == 
-                                List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
-                                                                                        Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
-          
-      val copy_def =
-          let fun r i = cproj (Bound 0) eqs i;
-          in ("copy_def", %%:(dname^"_copy") ==
-                          /\ "f" (dc_abs oo (copy_of_dtyp r (dtyp_of_eq eqn)) oo dc_rep)) end;
-
-      (* -- definitions concerning the constructors, discriminators and selectors - *)
-
-      fun con_def m n (_,args) = let
-        fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
-        fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
-        fun inj y 1 _ = y
-          | inj y _ 0 = mk_sinl y
-          | inj y i j = mk_sinr (inj y (i-1) (j-1));
-      in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
-          
-      val con_defs = mapn (fn n => fn (con,args) =>
-                                      (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
-          
-      val dis_defs = let
-        fun ddef (con,_) = (dis_name con ^"_def",%%:(dis_name con) == 
-                                                list_ccomb(%%:(dname^"_when"),map 
-                                                                                (fn (con',args) => (List.foldr /\#
-      (if con'=con then TT else FF) args)) cons))
-      in map ddef cons end;
-
-      val mat_defs =
-          let
-            fun mdef (con,_) =
-                let
-                  val k = Bound 0
-                  val x = Bound 1
-                  fun one_con (con', args') =
-                      if con'=con then k else List.foldr /\# mk_fail args'
-                  val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
-                  val rhs = /\ "x" (/\ "k" (w ` x))
-                in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
-          in map mdef cons end;
-
-      val pat_defs =
-          let
-            fun pdef (con,args) =
-                let
-                  val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
-                  val xs = map (bound_arg args) args;
-                  val r = Bound (length args);
-                  val rhs = case args of [] => mk_return HOLogic.unit
-                                       | _ => mk_ctuple_pat ps ` mk_ctuple xs;
-                  fun one_con (con',args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
-                in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) == 
-                                                    list_ccomb(%%:(dname^"_when"), map one_con cons))
-                end
-          in map pdef cons end;
-
-      val sel_defs = let
-        fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel == 
-                                                              list_ccomb(%%:(dname^"_when"),map 
-                                                                                              (fn (con',args) => if con'<>con then UU else
-                                                                                                                 List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
-      in List.mapPartial I (List.concat(map (fn (con,args) => mapn (sdef con) 1 args) cons)) end;
-
-
-      (* ----- axiom and definitions concerning induction ------------------------- *)
-
-      val reach_ax = ("reach", mk_trp(cproj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
-                                            `%x_name === %:x_name));
-      val take_def =
-          ("take_def",
-           %%:(dname^"_take") ==
-              mk_lam("n",cproj
-                           (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
-      val finite_def =
-          ("finite_def",
-           %%:(dname^"_finite") ==
-              mk_lam(x_name,
-                     mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
-
-    in (dnam,
-        [abs_iso_ax, rep_iso_ax, reach_ax],
-        [when_def, copy_def] @
-        con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
-        [take_def, finite_def])
-    end; (* let (calc_axioms) *)
-
-
-(* legacy type inference *)
-
-fun legacy_infer_term thy t =
-    singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
-
-fun legacy_infer_prop thy t = legacy_infer_term thy (TypeInfer.constrain propT t);
-
-fun infer_props thy = map (apsnd (legacy_infer_prop thy));
-
-
-fun add_axioms_i x = snd o PureThy.add_axioms (map (Thm.no_attributes o apfst Binding.name) x);
-fun add_axioms_infer axms thy = add_axioms_i (infer_props thy axms) thy;
-
-fun add_defs_i x = snd o (PureThy.add_defs false) (map (Thm.no_attributes o apfst Binding.name) x);
-fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
-
-fun add_matchers (((dname,_),cons) : eq) thy =
-    let
-      val con_names = map fst cons;
-      val mat_names = map mat_name con_names;
-      fun qualify n = Sign.full_name thy (Binding.name n);
-      val ms = map qualify con_names ~~ map qualify mat_names;
-    in Fixrec.add_matchers ms thy end;
-
-fun add_axioms comp_dnam (eqs : eq list) thy' =
-    let
-      val comp_dname = Sign.full_bname thy' comp_dnam;
-      val dnames = map (fst o fst) eqs;
-      val x_name = idx_name dnames "x"; 
-      fun copy_app dname = %%:(dname^"_copy")`Bound 0;
-      val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
-                                   /\ "f"(mk_ctuple (map copy_app dnames)));
-
-      fun one_con (con,args) = let
-        val nonrec_args = filter_out is_rec args;
-        val    rec_args = List.filter     is_rec args;
-        val    recs_cnt = length rec_args;
-        val allargs     = nonrec_args @ rec_args
-                          @ map (upd_vname (fn s=> s^"'")) rec_args;
-        val allvns      = map vname allargs;
-        fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
-        val vns1        = map (vname_arg "" ) args;
-        val vns2        = map (vname_arg "'") args;
-        val allargs_cnt = length nonrec_args + 2*recs_cnt;
-        val rec_idxs    = (recs_cnt-1) downto 0;
-        val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
-                                               (allargs~~((allargs_cnt-1) downto 0)));
-        fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
-                                Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
-        val capps =
-            List.foldr mk_conj
-                       (mk_conj(
-                        Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
-                        Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
-                       (mapn rel_app 1 rec_args);
-      in List.foldr mk_ex
-                    (Library.foldr mk_conj
-                                   (map (defined o Bound) nonlazy_idxs,capps)) allvns
-      end;
-      fun one_comp n (_,cons) =
-          mk_all(x_name(n+1),
-                 mk_all(x_name(n+1)^"'",
-                        mk_imp(proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
-                               foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
-                                               ::map one_con cons))));
-      val bisim_def =
-          ("bisim_def",
-           %%:(comp_dname^"_bisim")==mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs)));
-          
-      fun add_one (thy,(dnam,axs,dfs)) =
-          thy |> Sign.add_path dnam
-              |> add_defs_infer dfs
-              |> add_axioms_infer axs
-              |> Sign.parent_path;
-
-      val thy = Library.foldl add_one (thy', mapn (calc_axioms comp_dname eqs) 0 eqs);
-
-    in thy |> Sign.add_path comp_dnam  
-           |> add_defs_infer (bisim_def::(if length eqs>1 then [copy_def] else []))
-           |> Sign.parent_path
-           |> fold add_matchers eqs
-    end; (* let (add_axioms) *)
-
-end; (* struct *)
--- a/src/HOLCF/Tools/domain/domain_extender.ML	Tue Jul 21 14:08:58 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,204 +0,0 @@
-(*  Title:      HOLCF/Tools/domain/domain_extender.ML
-    Author:     David von Oheimb
-
-Theory extender for domain command, including theory syntax.
-*)
-
-signature DOMAIN_EXTENDER =
-sig
-  val add_domain_cmd: string ->
-                      ((string * string option) list * binding * mixfix *
-                       (binding * (bool * binding option * string) list * mixfix) list) list
-                      -> theory -> theory
-  val add_domain: string ->
-                  ((string * string option) list * binding * mixfix *
-                   (binding * (bool * binding option * typ) list * mixfix) list) list
-                  -> theory -> theory
-end;
-
-structure Domain_Extender :> DOMAIN_EXTENDER =
-struct
-
-open Domain_Library;
-
-(* ----- general testing and preprocessing of constructor list -------------- *)
-fun check_and_sort_domain
-      (dtnvs : (string * typ list) list)
-      (cons'' : (binding * (bool * binding option * typ) list * mixfix) list list)
-      (sg : theory)
-    : ((string * typ list) *
-       (binding * (bool * binding option * typ) list * mixfix) list) list =
-    let
-      val defaultS = Sign.defaultS sg;
-      val test_dupl_typs = (case duplicates (op =) (map fst dtnvs) of 
-                              [] => false | dups => error ("Duplicate types: " ^ commas_quote dups));
-      val test_dupl_cons =
-          (case duplicates (op =) (map (Binding.name_of o first) (List.concat cons'')) of 
-             [] => false | dups => error ("Duplicate constructors: " 
-                                          ^ commas_quote dups));
-      val test_dupl_sels =
-          (case duplicates (op =) (map Binding.name_of (List.mapPartial second
-                                                                        (List.concat (map second (List.concat cons''))))) of
-             [] => false | dups => error("Duplicate selectors: "^commas_quote dups));
-      val test_dupl_tvars =
-          exists(fn s=>case duplicates (op =) (map(fst o dest_TFree)s)of
-                         [] => false | dups => error("Duplicate type arguments: " 
-                                                     ^commas_quote dups)) (map snd dtnvs);
-      (* test for free type variables, illegal sort constraints on rhs,
-         non-pcpo-types and invalid use of recursive type;
-         replace sorts in type variables on rhs *)
-      fun analyse_equation ((dname,typevars),cons') = 
-          let
-            val tvars = map dest_TFree typevars;
-            val distinct_typevars = map TFree tvars;
-            fun rm_sorts (TFree(s,_)) = TFree(s,[])
-              | rm_sorts (Type(s,ts)) = Type(s,remove_sorts ts)
-              | rm_sorts (TVar(s,_))  = TVar(s,[])
-            and remove_sorts l = map rm_sorts l;
-            val indirect_ok = ["*","Cfun.->","Ssum.++","Sprod.**","Up.u"]
-            fun analyse indirect (TFree(v,s))  =
-                (case AList.lookup (op =) tvars v of 
-                   NONE => error ("Free type variable " ^ quote v ^ " on rhs.")
-                 | SOME sort => if eq_set_string (s,defaultS) orelse
-                                   eq_set_string (s,sort    )
-                                then TFree(v,sort)
-                                else error ("Inconsistent sort constraint" ^
-                                            " for type variable " ^ quote v))
-              | analyse indirect (t as Type(s,typl)) =
-                (case AList.lookup (op =) dtnvs s of
-                   NONE          => if s mem indirect_ok
-                                    then Type(s,map (analyse false) typl)
-                                    else Type(s,map (analyse true) typl)
-                 | SOME typevars => if indirect 
-                                    then error ("Indirect recursion of type " ^ 
-                                                quote (string_of_typ sg t))
-                                    else if dname <> s orelse
-                                            (** BUG OR FEATURE?:
-                                                mutual recursion may use different arguments **)
-                                            remove_sorts typevars = remove_sorts typl 
-                                    then Type(s,map (analyse true) typl)
-                                    else error ("Direct recursion of type " ^ 
-                                                quote (string_of_typ sg t) ^ 
-                                                " with different arguments"))
-              | analyse indirect (TVar _) = Imposs "extender:analyse";
-            fun check_pcpo lazy T =
-                let val ok = if lazy then cpo_type else pcpo_type
-                in if ok sg T then T else error
-                                            ("Constructor argument type is not of sort pcpo: " ^
-                                             string_of_typ sg T)
-                end;
-            fun analyse_arg (lazy, sel, T) =
-                (lazy, sel, check_pcpo lazy (analyse false T));
-            fun analyse_con (b, args, mx) = (b, map analyse_arg args, mx);
-          in ((dname,distinct_typevars), map analyse_con cons') end; 
-    in ListPair.map analyse_equation (dtnvs,cons'')
-    end; (* let *)
-
-(* ----- calls for building new thy and thms -------------------------------- *)
-
-fun gen_add_domain
-      (prep_typ : theory -> 'a -> typ)
-      (comp_dnam : string)
-      (eqs''' : ((string * string option) list * binding * mixfix *
-                 (binding * (bool * binding option * 'a) list * mixfix) list) list)
-      (thy''' : theory) =
-    let
-      fun readS (SOME s) = Syntax.read_sort_global thy''' s
-        | readS NONE = Sign.defaultS thy''';
-      fun readTFree (a, s) = TFree (a, readS s);
-
-      val dtnvs = map (fn (vs,dname:binding,mx,_) => 
-                          (dname, map readTFree vs, mx)) eqs''';
-      val cons''' = map (fn (_,_,_,cons) => cons) eqs''';
-      fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
-      fun thy_arity (dname,tvars,mx) = (Sign.full_name thy''' dname, map (snd o dest_TFree) tvars, pcpoS);
-      val thy'' = thy''' |> Sign.add_types (map thy_type dtnvs)
-                         |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
-      val cons'' = map (map (upd_second (map (upd_third (prep_typ thy''))))) cons''';
-      val dtnvs' = map (fn (dname,vs,mx) => (Sign.full_name thy''' dname,vs)) dtnvs;
-      val eqs' : ((string * typ list) * (binding * (bool * binding option * typ) list * mixfix) list) list =
-          check_and_sort_domain dtnvs' cons'' thy'';
-      val thy' = thy'' |> Domain_Syntax.add_syntax comp_dnam eqs';
-      val dts  = map (Type o fst) eqs';
-      val new_dts = map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
-      fun strip ss = Library.drop (find_index (fn s => s = "'") ss + 1, ss);
-      fun typid (Type  (id,_)) =
-          let val c = hd (Symbol.explode (Long_Name.base_name id))
-          in if Symbol.is_letter c then c else "t" end
-        | typid (TFree (id,_)   ) = hd (strip (tl (Symbol.explode id)))
-        | typid (TVar ((id,_),_)) = hd (tl (Symbol.explode id));
-      fun one_con (con,args,mx) =
-          ((Syntax.const_name mx (Binding.name_of con)),
-           ListPair.map (fn ((lazy,sel,tp),vn) => mk_arg ((lazy,
-                                                           DatatypeAux.dtyp_of_typ new_dts tp),
-                                                          Option.map Binding.name_of sel,vn))
-                        (args,(mk_var_names(map (typid o third) args)))
-          ) : cons;
-      val eqs = map (fn (dtnvs,cons') => (dtnvs, map one_con cons')) eqs' : eq list;
-      val thy = thy' |> Domain_Axioms.add_axioms comp_dnam eqs;
-      val ((rewss, take_rews), theorems_thy) =
-          thy |> fold_map (fn eq => Domain_Theorems.theorems (eq, eqs)) eqs
-              ||>> Domain_Theorems.comp_theorems (comp_dnam, eqs);
-    in
-      theorems_thy
-        |> Sign.add_path (Long_Name.base_name comp_dnam)
-        |> (snd o (PureThy.add_thmss [((Binding.name "rews", List.concat rewss @ take_rews), [])]))
-        |> Sign.parent_path
-    end;
-
-val add_domain = gen_add_domain Sign.certify_typ;
-val add_domain_cmd = gen_add_domain Syntax.read_typ_global;
-
-
-(** outer syntax **)
-
-local structure P = OuterParse and K = OuterKeyword in
-
-val _ = OuterKeyword.keyword "lazy";
-
-val dest_decl : (bool * binding option * string) parser =
-    P.$$$ "(" |-- Scan.optional (P.$$$ "lazy" >> K true) false --
-      (P.binding >> SOME) -- (P.$$$ "::" |-- P.typ)  --| P.$$$ ")" >> P.triple1
-      || P.$$$ "(" |-- P.$$$ "lazy" |-- P.typ --| P.$$$ ")"
-      >> (fn t => (true,NONE,t))
-      || P.typ >> (fn t => (false,NONE,t));
-
-val cons_decl =
-    P.binding -- Scan.repeat dest_decl -- P.opt_mixfix;
-
-val type_var' : (string * string option) parser =
-    (P.type_ident -- Scan.option (P.$$$ "::" |-- P.!!! P.sort));
-
-val type_args' : (string * string option) list parser =
-    type_var' >> single ||
-              P.$$$ "(" |-- P.!!! (P.list1 type_var' --| P.$$$ ")") ||
-              Scan.succeed [];
-
-val domain_decl =
-    (type_args' -- P.binding -- P.opt_infix) --
-                                             (P.$$$ "=" |-- P.enum1 "|" cons_decl);
-
-val domains_decl =
-    Scan.option (P.$$$ "(" |-- P.name --| P.$$$ ")") --
-                P.and_list1 domain_decl;
-
-fun mk_domain (opt_name : string option,
-               doms : ((((string * string option) list * binding) * mixfix) *
-                       ((binding * (bool * binding option * string) list) * mixfix) list) list ) =
-    let
-      val names = map (fn (((_, t), _), _) => Binding.name_of t) doms;
-      val specs : ((string * string option) list * binding * mixfix *
-                   (binding * (bool * binding option * string) list * mixfix) list) list =
-          map (fn (((vs, t), mx), cons) =>
-                  (vs, t, mx, map (fn ((c, ds), mx) => (c, ds, mx)) cons)) doms;
-      val comp_dnam =
-          case opt_name of NONE => space_implode "_" names | SOME s => s;
-    in add_domain_cmd comp_dnam specs end;
-
-val _ =
-    OuterSyntax.command "domain" "define recursive domains (HOLCF)" K.thy_decl
-                        (domains_decl >> (Toplevel.theory o mk_domain));
-
-end;
-
-end;
--- a/src/HOLCF/Tools/domain/domain_library.ML	Tue Jul 21 14:08:58 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,399 +0,0 @@
-(*  Title:      HOLCF/Tools/domain/domain_library.ML
-    Author:     David von Oheimb
-
-Library for domain command.
-*)
-
-
-(* ----- general support ---------------------------------------------------- *)
-
-fun mapn f n []      = []
-  | mapn f n (x::xs) = (f n x) :: mapn f (n+1) xs;
-
-fun foldr'' f (l,f2) =
-    let fun itr []  = raise Fail "foldr''" 
-          | itr [a] = f2 a
-          | itr (a::l) = f(a, itr l)
-    in  itr l  end;
-
-fun map_cumulr f start xs =
-    List.foldr (fn (x,(ys,res))=>case f(x,res) of (y,res2) =>
-                                                  (y::ys,res2)) ([],start) xs;
-
-fun first  (x,_,_) = x; fun second (_,x,_) = x; fun third  (_,_,x) = x;
-fun upd_first  f (x,y,z) = (f x,   y,   z);
-fun upd_second f (x,y,z) = (  x, f y,   z);
-fun upd_third  f (x,y,z) = (  x,   y, f z);
-
-fun atomize ctxt thm =
-    let
-      val r_inst = read_instantiate ctxt;
-      fun at thm =
-          case concl_of thm of
-            _$(Const("op &",_)$_$_)       => at(thm RS conjunct1)@at(thm RS conjunct2)
-          | _$(Const("All" ,_)$Abs(s,_,_))=> at(thm RS (r_inst [(("x", 0), "?" ^ s)] spec))
-          | _                             => [thm];
-    in map zero_var_indexes (at thm) end;
-
-(* infix syntax *)
-
-infixr 5 -->;
-infixr 6 ->>;
-infixr 0 ===>;
-infixr 0 ==>;
-infix 0 ==;
-infix 1 ===;
-infix 1 ~=;
-infix 1 <<;
-infix 1 ~<<;
-
-infix 9 `  ;
-infix 9 `% ;
-infix 9 `%%;
-
-
-(* ----- specific support for domain ---------------------------------------- *)
-
-signature DOMAIN_LIBRARY =
-sig
-  val Imposs : string -> 'a;
-  val cpo_type : theory -> typ -> bool;
-  val pcpo_type : theory -> typ -> bool;
-  val string_of_typ : theory -> typ -> string;
-
-  (* Creating HOLCF types *)
-  val mk_cfunT : typ * typ -> typ;
-  val ->> : typ * typ -> typ;
-  val mk_ssumT : typ * typ -> typ;
-  val mk_sprodT : typ * typ -> typ;
-  val mk_uT : typ -> typ;
-  val oneT : typ;
-  val trT : typ;
-  val mk_maybeT : typ -> typ;
-  val mk_ctupleT : typ list -> typ;
-  val mk_TFree : string -> typ;
-  val pcpoS : sort;
-
-  (* Creating HOLCF terms *)
-  val %: : string -> term;
-  val %%: : string -> term;
-  val ` : term * term -> term;
-  val `% : term * string -> term;
-  val /\ : string -> term -> term;
-  val UU : term;
-  val TT : term;
-  val FF : term;
-  val ID : term;
-  val oo : term * term -> term;
-  val mk_up : term -> term;
-  val mk_sinl : term -> term;
-  val mk_sinr : term -> term;
-  val mk_stuple : term list -> term;
-  val mk_ctuple : term list -> term;
-  val mk_fix : term -> term;
-  val mk_iterate : term * term * term -> term;
-  val mk_fail : term;
-  val mk_return : term -> term;
-  val cproj : term -> 'a list -> int -> term;
-  val list_ccomb : term * term list -> term;
-  (*
-   val con_app : string -> ('a * 'b * string) list -> term;
-   *)
-  val con_app2 : string -> ('a -> term) -> 'a list -> term;
-  val proj : term -> 'a list -> int -> term;
-  val prj : ('a -> 'b -> 'a) -> ('a -> 'b -> 'a) -> 'a -> 'b list -> int -> 'a;
-  val mk_ctuple_pat : term list -> term;
-  val mk_branch : term -> term;
-
-  (* Creating propositions *)
-  val mk_conj : term * term -> term;
-  val mk_disj : term * term -> term;
-  val mk_imp : term * term -> term;
-  val mk_lam : string * term -> term;
-  val mk_all : string * term -> term;
-  val mk_ex : string * term -> term;
-  val mk_constrain : typ * term -> term;
-  val mk_constrainall : string * typ * term -> term;
-  val === : term * term -> term;
-  val << : term * term -> term;
-  val ~<< : term * term -> term;
-  val strict : term -> term;
-  val defined : term -> term;
-  val mk_adm : term -> term;
-  val mk_compact : term -> term;
-  val lift : ('a -> term) -> 'a list * term -> term;
-  val lift_defined : ('a -> term) -> 'a list * term -> term;
-
-  (* Creating meta-propositions *)
-  val mk_trp : term -> term; (* HOLogic.mk_Trueprop *)
-  val == : term * term -> term;
-  val ===> : term * term -> term;
-  val ==> : term * term -> term;
-  val mk_All : string * term -> term;
-
-      (* Domain specifications *)
-      eqtype arg;
-  type cons = string * arg list;
-  type eq = (string * typ list) * cons list;
-  val mk_arg : (bool * Datatype.dtyp) * string option * string -> arg;
-  val is_lazy : arg -> bool;
-  val rec_of : arg -> int;
-  val dtyp_of : arg -> Datatype.dtyp;
-  val sel_of : arg -> string option;
-  val vname : arg -> string;
-  val upd_vname : (string -> string) -> arg -> arg;
-  val is_rec : arg -> bool;
-  val is_nonlazy_rec : arg -> bool;
-  val nonlazy : arg list -> string list;
-  val nonlazy_rec : arg list -> string list;
-  val %# : arg -> term;
-  val /\# : arg * term -> term;
-  val when_body : cons list -> (int * int -> term) -> term;
-  val when_funs : 'a list -> string list;
-  val bound_arg : ''a list -> ''a -> term; (* ''a = arg or string *)
-  val idx_name : 'a list -> string -> int -> string;
-  val app_rec_arg : (int -> term) -> arg -> term;
-  val con_app : string -> arg list -> term;
-  val dtyp_of_eq : eq -> Datatype.dtyp;
-
-
-  (* Name mangling *)
-  val strip_esc : string -> string;
-  val extern_name : string -> string;
-  val dis_name : string -> string;
-  val mat_name : string -> string;
-  val pat_name : string -> string;
-  val mk_var_names : string list -> string list;
-end;
-
-structure Domain_Library :> DOMAIN_LIBRARY =
-struct
-
-exception Impossible of string;
-fun Imposs msg = raise Impossible ("Domain:"^msg);
-
-(* ----- name handling ----- *)
-
-val strip_esc =
-    let fun strip ("'" :: c :: cs) = c :: strip cs
-          | strip ["'"] = []
-          | strip (c :: cs) = c :: strip cs
-          | strip [] = [];
-    in implode o strip o Symbol.explode end;
-
-fun extern_name con =
-    case Symbol.explode con of 
-      ("o"::"p"::" "::rest) => implode rest
-    | _ => con;
-fun dis_name  con = "is_"^ (extern_name con);
-fun dis_name_ con = "is_"^ (strip_esc   con);
-fun mat_name  con = "match_"^ (extern_name con);
-fun mat_name_ con = "match_"^ (strip_esc   con);
-fun pat_name  con = (extern_name con) ^ "_pat";
-fun pat_name_ con = (strip_esc   con) ^ "_pat";
-
-(* make distinct names out of the type list, 
-                                       forbidding "o","n..","x..","f..","P.." as names *)
-(* a number string is added if necessary *)
-fun mk_var_names ids : string list =
-    let
-      fun nonreserved s = if s mem ["n","x","f","P"] then s^"'" else s;
-      fun index_vnames(vn::vns,occupied) =
-          (case AList.lookup (op =) occupied vn of
-             NONE => if vn mem vns
-                     then (vn^"1") :: index_vnames(vns,(vn,1)  ::occupied)
-                     else  vn      :: index_vnames(vns,          occupied)
-           | SOME(i) => (vn^(string_of_int (i+1)))
-                        :: index_vnames(vns,(vn,i+1)::occupied))
-        | index_vnames([],occupied) = [];
-    in index_vnames(map nonreserved ids, [("O",0),("o",0)]) end;
-
-fun cpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort cpo});
-fun pcpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort pcpo});
-fun string_of_typ sg = Syntax.string_of_typ_global sg o Sign.certify_typ sg;
-
-(* ----- constructor list handling ----- *)
-
-type arg =
-     (bool * Datatype.dtyp) *   (*  (lazy, recursive element) *)
-     string option *               (*   selector name    *)
-     string;                       (*   argument name    *)
-
-type cons =
-     string *         (* operator name of constr *)
-     arg list;        (* argument list      *)
-
-type eq =
-     (string *        (* name      of abstracted type *)
-      typ list) *     (* arguments of abstracted type *)
-     cons list;       (* represented type, as a constructor list *)
-
-val mk_arg = I;
-
-fun rec_of ((_,dtyp),_,_) =
-    case dtyp of DatatypeAux.DtRec i => i | _ => ~1;
-(* FIXME: what about indirect recursion? *)
-
-fun is_lazy arg = fst (first arg);
-fun dtyp_of arg = snd (first arg);
-val sel_of    =       second;
-val     vname =       third;
-val upd_vname =   upd_third;
-fun is_rec         arg = rec_of arg >=0;
-fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
-fun nonlazy     args   = map vname (filter_out is_lazy    args);
-fun nonlazy_rec args   = map vname (List.filter is_nonlazy_rec args);
-
-
-(* ----- combinators for making dtyps ----- *)
-
-fun mk_uD T = DatatypeAux.DtType(@{type_name "u"}, [T]);
-fun mk_sprodD (T, U) = DatatypeAux.DtType(@{type_name "**"}, [T, U]);
-fun mk_ssumD (T, U) = DatatypeAux.DtType(@{type_name "++"}, [T, U]);
-fun mk_liftD T = DatatypeAux.DtType(@{type_name "lift"}, [T]);
-val unitD = DatatypeAux.DtType(@{type_name "unit"}, []);
-val boolD = DatatypeAux.DtType(@{type_name "bool"}, []);
-val oneD = mk_liftD unitD;
-val trD = mk_liftD boolD;
-fun big_sprodD ds = case ds of [] => oneD | _ => foldr1 mk_sprodD ds;
-fun big_ssumD ds = case ds of [] => unitD | _ => foldr1 mk_ssumD ds;
-
-fun dtyp_of_arg ((lazy, D), _, _) = if lazy then mk_uD D else D;
-fun dtyp_of_cons (_, args) = big_sprodD (map dtyp_of_arg args);
-fun dtyp_of_eq (_, cons) = big_ssumD (map dtyp_of_cons cons);
-
-
-(* ----- support for type and mixfix expressions ----- *)
-
-fun mk_uT T = Type(@{type_name "u"}, [T]);
-fun mk_cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
-fun mk_sprodT (T, U) = Type(@{type_name "**"}, [T, U]);
-fun mk_ssumT (T, U) = Type(@{type_name "++"}, [T, U]);
-val oneT = @{typ one};
-val trT = @{typ tr};
-
-val op ->> = mk_cfunT;
-
-fun mk_TFree s = TFree ("'" ^ s, @{sort pcpo});
-
-(* ----- support for term expressions ----- *)
-
-fun %: s = Free(s,dummyT);
-fun %# arg = %:(vname arg);
-fun %%: s = Const(s,dummyT);
-
-local open HOLogic in
-val mk_trp = mk_Trueprop;
-fun mk_conj (S,T) = conj $ S $ T;
-fun mk_disj (S,T) = disj $ S $ T;
-fun mk_imp  (S,T) = imp  $ S $ T;
-fun mk_lam  (x,T) = Abs(x,dummyT,T);
-fun mk_all  (x,P) = HOLogic.mk_all (x,dummyT,P);
-fun mk_ex   (x,P) = mk_exists (x,dummyT,P);
-val mk_constrain = uncurry TypeInfer.constrain;
-fun mk_constrainall (x,typ,P) = %%:"All" $ (TypeInfer.constrain (typ --> boolT) (mk_lam(x,P)));
-end
-
-fun mk_All  (x,P) = %%:"all" $ mk_lam(x,P); (* meta universal quantification *)
-
-infixr 0 ===>;  fun S ===> T = %%:"==>" $ S $ T;
-infixr 0 ==>;   fun S ==> T = mk_trp S ===> mk_trp T;
-infix 0 ==;     fun S ==  T = %%:"==" $ S $ T;
-infix 1 ===;    fun S === T = %%:"op =" $ S $ T;
-infix 1 ~=;     fun S ~=  T = HOLogic.mk_not (S === T);
-infix 1 <<;     fun S <<  T = %%: @{const_name Porder.below} $ S $ T;
-infix 1 ~<<;    fun S ~<< T = HOLogic.mk_not (S << T);
-
-infix 9 `  ; fun f ` x = %%: @{const_name Rep_CFun} $ f $ x;
-infix 9 `% ; fun f`% s = f` %: s;
-infix 9 `%%; fun f`%%s = f` %%:s;
-
-fun mk_adm t = %%: @{const_name adm} $ t;
-fun mk_compact t = %%: @{const_name compact} $ t;
-val ID = %%: @{const_name ID};
-fun mk_strictify t = %%: @{const_name strictify}`t;
-fun mk_cfst t = %%: @{const_name cfst}`t;
-fun mk_csnd t = %%: @{const_name csnd}`t;
-(*val csplitN    = "Cprod.csplit";*)
-(*val sfstN      = "Sprod.sfst";*)
-(*val ssndN      = "Sprod.ssnd";*)
-fun mk_ssplit t = %%: @{const_name ssplit}`t;
-fun mk_sinl t = %%: @{const_name sinl}`t;
-fun mk_sinr t = %%: @{const_name sinr}`t;
-fun mk_sscase (x, y) = %%: @{const_name sscase}`x`y;
-fun mk_up t = %%: @{const_name up}`t;
-fun mk_fup (t,u) = %%: @{const_name fup} ` t ` u;
-val ONE = @{term ONE};
-val TT = @{term TT};
-val FF = @{term FF};
-fun mk_iterate (n,f,z) = %%: @{const_name iterate} $ n ` f ` z;
-fun mk_fix t = %%: @{const_name fix}`t;
-fun mk_return t = %%: @{const_name Fixrec.return}`t;
-val mk_fail = %%: @{const_name Fixrec.fail};
-
-fun mk_branch t = %%: @{const_name Fixrec.branch} $ t;
-
-val pcpoS = @{sort pcpo};
-
-val list_ccomb = Library.foldl (op `); (* continuous version of list_comb *)
-fun con_app2 con f args = list_ccomb(%%:con,map f args);
-fun con_app con = con_app2 con %#;
-fun if_rec  arg f y   = if is_rec arg then f (rec_of arg) else y;
-fun app_rec_arg p arg = if_rec arg (fn n => fn x => (p n)`x) I (%# arg);
-fun prj _  _  x (   _::[]) _ = x
-  | prj f1 _  x (_::y::ys) 0 = f1 x y
-  | prj f1 f2 x (y::   ys) j = prj f1 f2 (f2 x y) ys (j-1);
-fun  proj x      = prj (fn S => K(%%:"fst" $S)) (fn S => K(%%:"snd" $S)) x;
-fun cproj x      = prj (fn S => K(mk_cfst S)) (fn S => K(mk_csnd S)) x;
-fun lift tfn = Library.foldr (fn (x,t)=> (mk_trp(tfn x) ===> t));
-
-fun /\ v T = %%: @{const_name Abs_CFun} $ mk_lam(v,T);
-fun /\# (arg,T) = /\ (vname arg) T;
-infixr 9 oo; fun S oo T = %%: @{const_name cfcomp}`S`T;
-val UU = %%: @{const_name UU};
-fun strict f = f`UU === UU;
-fun defined t = t ~= UU;
-fun cpair (t,u) = %%: @{const_name cpair}`t`u;
-fun spair (t,u) = %%: @{const_name spair}`t`u;
-fun mk_ctuple [] = HOLogic.unit (* used in match_defs *)
-  | mk_ctuple ts = foldr1 cpair ts;
-fun mk_stuple [] = ONE
-  | mk_stuple ts = foldr1 spair ts;
-fun mk_ctupleT [] = HOLogic.unitT   (* used in match_defs *)
-  | mk_ctupleT Ts = foldr1 HOLogic.mk_prodT Ts;
-fun mk_maybeT T = Type ("Fixrec.maybe",[T]);
-fun cpair_pat (p1,p2) = %%: @{const_name cpair_pat} $ p1 $ p2;
-val mk_ctuple_pat = foldr1 cpair_pat;
-fun lift_defined f = lift (fn x => defined (f x));
-fun bound_arg vns v = Bound (length vns - find_index (fn v' => v' = v) vns - 1);
-
-fun cont_eta_contract (Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body)) = 
-    (case cont_eta_contract body  of
-       body' as (Const("Cfun.Rep_CFun",Ta) $ f $ Bound 0) => 
-       if not (0 mem loose_bnos f) then incr_boundvars ~1 f 
-       else   Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body')
-     | body' => Const("Cfun.Abs_CFun",TT) $ Abs(a,T,body'))
-  | cont_eta_contract(f$t) = cont_eta_contract f $ cont_eta_contract t
-  | cont_eta_contract t    = t;
-
-fun idx_name dnames s n = s^(if length dnames = 1 then "" else string_of_int n);
-fun when_funs cons = if length cons = 1 then ["f"] 
-                     else mapn (fn n => K("f"^(string_of_int n))) 1 cons;
-fun when_body cons funarg =
-    let
-      fun one_fun n (_,[]  ) = /\ "dummy" (funarg(1,n))
-        | one_fun n (_,args) = let
-            val l2 = length args;
-            fun idxs m arg = (if is_lazy arg then (fn t => mk_fup (ID, t))
-                              else I) (Bound(l2-m));
-          in cont_eta_contract
-               (foldr'' 
-                  (fn (a,t) => mk_ssplit (/\# (a,t)))
-                  (args,
-                fn a=> /\#(a,(list_ccomb(funarg(l2,n),mapn idxs 1 args))))
-               ) end;
-    in (if length cons = 1 andalso length(snd(hd cons)) <= 1
-        then mk_strictify else I)
-         (foldr1 mk_sscase (mapn one_fun 1 cons)) end;
-
-end; (* struct *)
--- a/src/HOLCF/Tools/domain/domain_syntax.ML	Tue Jul 21 14:08:58 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,181 +0,0 @@
-(*  Title:      HOLCF/Tools/domain/domain_syntax.ML
-    Author:     David von Oheimb
-
-Syntax generator for domain command.
-*)
-
-signature DOMAIN_SYNTAX =
-sig
-  val calc_syntax:
-      typ ->
-      (string * typ list) *
-      (binding * (bool * binding option * typ) list * mixfix) list ->
-      (binding * typ * mixfix) list * ast Syntax.trrule list
-
-  val add_syntax:
-      string ->
-      ((string * typ list) *
-       (binding * (bool * binding option * typ) list * mixfix) list) list ->
-      theory -> theory
-end;
-
-
-structure Domain_Syntax :> DOMAIN_SYNTAX =
-struct
-
-open Domain_Library;
-infixr 5 -->; infixr 6 ->>;
-
-fun calc_syntax
-      (dtypeprod : typ)
-      ((dname : string, typevars : typ list), 
-       (cons': (binding * (bool * binding option * typ) list * mixfix) list))
-    : (binding * typ * mixfix) list * ast Syntax.trrule list =
-    let
-      (* ----- constants concerning the isomorphism ------------------------------- *)
-
-      local
-        fun opt_lazy (lazy,_,t) = if lazy then mk_uT t else t
-        fun prod     (_,args,_) = case args of [] => oneT
-                                             | _ => foldr1 mk_sprodT (map opt_lazy args);
-        fun freetvar s = let val tvar = mk_TFree s in
-                           if tvar mem typevars then freetvar ("t"^s) else tvar end;
-        fun when_type (_,args,_) = List.foldr (op ->>) (freetvar "t") (map third args);
-      in
-      val dtype  = Type(dname,typevars);
-      val dtype2 = foldr1 mk_ssumT (map prod cons');
-      val dnam = Long_Name.base_name dname;
-      fun dbind s = Binding.name (dnam ^ s);
-      val const_rep  = (dbind "_rep" ,              dtype  ->> dtype2, NoSyn);
-      val const_abs  = (dbind "_abs" ,              dtype2 ->> dtype , NoSyn);
-      val const_when = (dbind "_when", List.foldr (op ->>) (dtype ->> freetvar "t") (map when_type cons'), NoSyn);
-      val const_copy = (dbind "_copy", dtypeprod ->> dtype  ->> dtype , NoSyn);
-      end;
-
-      (* ----- constants concerning constructors, discriminators, and selectors --- *)
-
-      local
-        val escape = let
-          fun esc (c::cs) = if c mem ["'","_","(",")","/"] then "'"::c::esc cs
-                            else      c::esc cs
-            |   esc []      = []
-        in implode o esc o Symbol.explode end;
-        fun dis_name_ con     = Binding.name ("is_" ^ strip_esc (Binding.name_of con));
-        fun mat_name_ con     = Binding.name ("match_" ^ strip_esc (Binding.name_of con));
-        fun pat_name_ con     = Binding.name (strip_esc (Binding.name_of con) ^ "_pat");
-        fun con (name,args,mx) = (name, List.foldr (op ->>) dtype (map third args), mx);
-        fun dis (con,args,mx) = (dis_name_ con, dtype->>trT,
-                                 Mixfix(escape ("is_" ^ Binding.name_of con), [], Syntax.max_pri));
-        (* strictly speaking, these constants have one argument,
-         but the mixfix (without arguments) is introduced only
-             to generate parse rules for non-alphanumeric names*)
-        fun freetvar s n      = let val tvar = mk_TFree (s ^ string_of_int n) in
-                                  if tvar mem typevars then freetvar ("t"^s) n else tvar end;
-        fun mk_matT (a,bs,c)  = a ->> foldr (op ->>) (mk_maybeT c) bs ->> mk_maybeT c;
-        fun mat (con,args,mx) = (mat_name_ con,
-                                 mk_matT(dtype, map third args, freetvar "t" 1),
-                                 Mixfix(escape ("match_" ^ Binding.name_of con), [], Syntax.max_pri));
-        fun sel1 (_,sel,typ)  = Option.map (fn s => (s,dtype ->> typ,NoSyn)) sel;
-        fun sel (con,args,mx) = List.mapPartial sel1 args;
-        fun mk_patT (a,b)     = a ->> mk_maybeT b;
-        fun pat_arg_typ n arg = mk_patT (third arg, freetvar "t" n);
-        fun pat (con,args,mx) = (pat_name_ con,
-                                 (mapn pat_arg_typ 1 args)
-                                   --->
-                                   mk_patT (dtype, mk_ctupleT (map (freetvar "t") (1 upto length args))),
-                                 Mixfix(escape (Binding.name_of con ^ "_pat"), [], Syntax.max_pri));
-
-      in
-      val consts_con = map con cons';
-      val consts_dis = map dis cons';
-      val consts_mat = map mat cons';
-      val consts_pat = map pat cons';
-      val consts_sel = List.concat(map sel cons');
-      end;
-
-      (* ----- constants concerning induction ------------------------------------- *)
-
-      val const_take   = (dbind "_take"  , HOLogic.natT-->dtype->>dtype, NoSyn);
-      val const_finite = (dbind "_finite", dtype-->HOLogic.boolT       , NoSyn);
-
-      (* ----- case translation --------------------------------------------------- *)
-
-      local open Syntax in
-      local
-        fun c_ast con mx = Constant (Syntax.const_name mx (Binding.name_of con));
-        fun expvar n     = Variable ("e"^(string_of_int n));
-        fun argvar n m _ = Variable ("a"^(string_of_int n)^"_"^
-                                     (string_of_int m));
-        fun argvars n args = mapn (argvar n) 1 args;
-        fun app s (l,r)  = mk_appl (Constant s) [l,r];
-        val cabs = app "_cabs";
-        val capp = app "Rep_CFun";
-        fun con1 n (con,args,mx) = Library.foldl capp (c_ast con mx, argvars n args);
-        fun case1 n (con,args,mx) = app "_case1" (con1 n (con,args,mx), expvar n);
-        fun arg1 n (con,args,_) = List.foldr cabs (expvar n) (argvars n args);
-        fun when1 n m = if n = m then arg1 n else K (Constant "UU");
-
-        fun app_var x = mk_appl (Constant "_variable") [x, Variable "rhs"];
-        fun app_pat x = mk_appl (Constant "_pat") [x];
-        fun args_list [] = Constant "_noargs"
-          |   args_list xs = foldr1 (app "_args") xs;
-      in
-      val case_trans =
-          ParsePrintRule
-            (app "_case_syntax" (Variable "x", foldr1 (app "_case2") (mapn case1 1 cons')),
-             capp (Library.foldl capp (Constant (dnam^"_when"), mapn arg1 1 cons'), Variable "x"));
-
-      fun one_abscon_trans n (con,mx,args) =
-          ParsePrintRule
-            (cabs (con1 n (con,mx,args), expvar n),
-             Library.foldl capp (Constant (dnam^"_when"), mapn (when1 n) 1 cons'));
-      val abscon_trans = mapn one_abscon_trans 1 cons';
-          
-      fun one_case_trans (con,args,mx) =
-          let
-            val cname = c_ast con mx;
-            val pname = Constant (strip_esc (Binding.name_of con) ^ "_pat");
-            val ns = 1 upto length args;
-            val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
-            val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
-            val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
-          in
-            [ParseRule (app_pat (Library.foldl capp (cname, xs)),
-                        mk_appl pname (map app_pat xs)),
-             ParseRule (app_var (Library.foldl capp (cname, xs)),
-                        app_var (args_list xs)),
-             PrintRule (Library.foldl capp (cname, ListPair.map (app "_match") (ps,vs)),
-                        app "_match" (mk_appl pname ps, args_list vs))]
-          end;
-      val Case_trans = List.concat (map one_case_trans cons');
-      end;
-      end;
-
-    in ([const_rep, const_abs, const_when, const_copy] @ 
-        consts_con @ consts_dis @ consts_mat @ consts_pat @ consts_sel @
-        [const_take, const_finite],
-        (case_trans::(abscon_trans @ Case_trans)))
-    end; (* let *)
-
-(* ----- putting all the syntax stuff together ------------------------------ *)
-
-fun add_syntax
-      (comp_dnam : string)
-      (eqs' : ((string * typ list) *
-               (binding * (bool * binding option * typ) list * mixfix) list) list)
-      (thy'' : theory) =
-    let
-      val dtypes  = map (Type o fst) eqs';
-      val boolT   = HOLogic.boolT;
-      val funprod = foldr1 HOLogic.mk_prodT (map (fn tp => tp ->> tp          ) dtypes);
-      val relprod = foldr1 HOLogic.mk_prodT (map (fn tp => tp --> tp --> boolT) dtypes);
-      val const_copy = (Binding.name (comp_dnam^"_copy"), funprod ->> funprod, NoSyn);
-      val const_bisim = (Binding.name (comp_dnam^"_bisim"), relprod --> boolT, NoSyn);
-      val ctt : ((binding * typ * mixfix) list * ast Syntax.trrule list) list = map (calc_syntax funprod) eqs';
-    in thy'' |> ContConsts.add_consts_i (List.concat (map fst ctt) @ 
-                                         (if length eqs'>1 then [const_copy] else[])@
-                                         [const_bisim])
-             |> Sign.add_trrules_i (List.concat(map snd ctt))
-    end; (* let *)
-
-end; (* struct *)
--- a/src/HOLCF/Tools/domain/domain_theorems.ML	Tue Jul 21 14:08:58 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1054 +0,0 @@
-(*  Title:      HOLCF/Tools/domain/domain_theorems.ML
-    ID:         $Id$
-    Author:     David von Oheimb
-                New proofs/tactics by Brian Huffman
-
-Proof generator for domain command.
-*)
-
-val HOLCF_ss = @{simpset};
-
-signature DOMAIN_THEOREMS =
-sig
-  val theorems: Domain_Library.eq * Domain_Library.eq list -> theory -> thm list * theory;
-  val comp_theorems: bstring * Domain_Library.eq list -> theory -> thm list * theory;
-  val quiet_mode: bool ref;
-  val trace_domain: bool ref;
-end;
-
-structure Domain_Theorems :> DOMAIN_THEOREMS =
-struct
-
-val quiet_mode = ref false;
-val trace_domain = ref false;
-
-fun message s = if !quiet_mode then () else writeln s;
-fun trace s = if !trace_domain then tracing s else ();
-
-local
-
-val adm_impl_admw = @{thm adm_impl_admw};
-val adm_all = @{thm adm_all};
-val adm_conj = @{thm adm_conj};
-val adm_subst = @{thm adm_subst};
-val antisym_less_inverse = @{thm below_antisym_inverse};
-val beta_cfun = @{thm beta_cfun};
-val cfun_arg_cong = @{thm cfun_arg_cong};
-val ch2ch_Rep_CFunL = @{thm ch2ch_Rep_CFunL};
-val ch2ch_Rep_CFunR = @{thm ch2ch_Rep_CFunR};
-val chain_iterate = @{thm chain_iterate};
-val compact_ONE = @{thm compact_ONE};
-val compact_sinl = @{thm compact_sinl};
-val compact_sinr = @{thm compact_sinr};
-val compact_spair = @{thm compact_spair};
-val compact_up = @{thm compact_up};
-val contlub_cfun_arg = @{thm contlub_cfun_arg};
-val contlub_cfun_fun = @{thm contlub_cfun_fun};
-val fix_def2 = @{thm fix_def2};
-val injection_eq = @{thm injection_eq};
-val injection_less = @{thm injection_below};
-val lub_equal = @{thm lub_equal};
-val monofun_cfun_arg = @{thm monofun_cfun_arg};
-val retraction_strict = @{thm retraction_strict};
-val spair_eq = @{thm spair_eq};
-val spair_less = @{thm spair_below};
-val sscase1 = @{thm sscase1};
-val ssplit1 = @{thm ssplit1};
-val strictify1 = @{thm strictify1};
-val wfix_ind = @{thm wfix_ind};
-
-val iso_intro       = @{thm iso.intro};
-val iso_abs_iso     = @{thm iso.abs_iso};
-val iso_rep_iso     = @{thm iso.rep_iso};
-val iso_abs_strict  = @{thm iso.abs_strict};
-val iso_rep_strict  = @{thm iso.rep_strict};
-val iso_abs_defin'  = @{thm iso.abs_defin'};
-val iso_rep_defin'  = @{thm iso.rep_defin'};
-val iso_abs_defined = @{thm iso.abs_defined};
-val iso_rep_defined = @{thm iso.rep_defined};
-val iso_compact_abs = @{thm iso.compact_abs};
-val iso_compact_rep = @{thm iso.compact_rep};
-val iso_iso_swap    = @{thm iso.iso_swap};
-
-val exh_start = @{thm exh_start};
-val ex_defined_iffs = @{thms ex_defined_iffs};
-val exh_casedist0 = @{thm exh_casedist0};
-val exh_casedists = @{thms exh_casedists};
-
-open Domain_Library;
-infixr 0 ===>;
-infixr 0 ==>;
-infix 0 == ; 
-infix 1 ===;
-infix 1 ~= ;
-infix 1 <<;
-infix 1 ~<<;
-infix 9 `   ;
-infix 9 `% ;
-infix 9 `%%;
-infixr 9 oo;
-
-(* ----- general proof facilities ------------------------------------------- *)
-
-fun legacy_infer_term thy t =
-  let val ctxt = ProofContext.set_mode ProofContext.mode_schematic (ProofContext.init thy)
-  in singleton (Syntax.check_terms ctxt) (Sign.intern_term thy t) end;
-
-fun pg'' thy defs t tacs =
-  let
-    val t' = legacy_infer_term thy t;
-    val asms = Logic.strip_imp_prems t';
-    val prop = Logic.strip_imp_concl t';
-    fun tac {prems, context} =
-      rewrite_goals_tac defs THEN
-      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
-  in Goal.prove_global thy [] asms prop tac end;
-
-fun pg' thy defs t tacsf =
-  let
-    fun tacs {prems, context} =
-      if null prems then tacsf context
-      else cut_facts_tac prems 1 :: tacsf context;
-  in pg'' thy defs t tacs end;
-
-fun case_UU_tac ctxt rews i v =
-  InductTacs.case_tac ctxt (v^"=UU") i THEN
-  asm_simp_tac (HOLCF_ss addsimps rews) i;
-
-val chain_tac =
-  REPEAT_DETERM o resolve_tac 
-    [chain_iterate, ch2ch_Rep_CFunR, ch2ch_Rep_CFunL];
-
-(* ----- general proofs ----------------------------------------------------- *)
-
-val all2E = @{lemma "!x y . P x y ==> (P x y ==> R) ==> R" by simp}
-
-val dist_eqI = @{lemma "!!x::'a::po. ~ x << y ==> x ~= y" by (blast dest!: below_antisym_inverse)}
-
-in
-
-fun theorems (((dname, _), cons) : eq, eqs : eq list) thy =
-let
-
-val _ = message ("Proving isomorphism properties of domain "^dname^" ...");
-val pg = pg' thy;
-
-(* ----- getting the axioms and definitions --------------------------------- *)
-
-local
-  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
-in
-  val ax_abs_iso  = ga "abs_iso"  dname;
-  val ax_rep_iso  = ga "rep_iso"  dname;
-  val ax_when_def = ga "when_def" dname;
-  fun get_def mk_name (con,_) = ga (mk_name con^"_def") dname;
-  val axs_con_def = map (get_def extern_name) cons;
-  val axs_dis_def = map (get_def dis_name) cons;
-  val axs_mat_def = map (get_def mat_name) cons;
-  val axs_pat_def = map (get_def pat_name) cons;
-  val axs_sel_def =
-    let
-      fun def_of_sel sel = ga (sel^"_def") dname;
-      fun def_of_arg arg = Option.map def_of_sel (sel_of arg);
-      fun defs_of_con (_, args) = List.mapPartial def_of_arg args;
-    in
-      maps defs_of_con cons
-    end;
-  val ax_copy_def = ga "copy_def" dname;
-end; (* local *)
-
-(* ----- theorems concerning the isomorphism -------------------------------- *)
-
-val dc_abs  = %%:(dname^"_abs");
-val dc_rep  = %%:(dname^"_rep");
-val dc_copy = %%:(dname^"_copy");
-val x_name = "x";
-
-val iso_locale = iso_intro OF [ax_abs_iso, ax_rep_iso];
-val abs_strict = ax_rep_iso RS (allI RS retraction_strict);
-val rep_strict = ax_abs_iso RS (allI RS retraction_strict);
-val abs_defin' = iso_locale RS iso_abs_defin';
-val rep_defin' = iso_locale RS iso_rep_defin';
-val iso_rews = map standard [ax_abs_iso,ax_rep_iso,abs_strict,rep_strict];
-
-(* ----- generating beta reduction rules from definitions-------------------- *)
-
-val _ = trace " Proving beta reduction rules...";
-
-local
-  fun arglist (Const _ $ Abs (s, _, t)) =
-    let
-      val (vars,body) = arglist t;
-    in (s :: vars, body) end
-    | arglist t = ([], t);
-  fun bind_fun vars t = Library.foldr mk_All (vars, t);
-  fun bound_vars 0 = []
-    | bound_vars i = Bound (i-1) :: bound_vars (i - 1);
-in
-  fun appl_of_def def =
-    let
-      val (_ $ con $ lam) = concl_of def;
-      val (vars, rhs) = arglist lam;
-      val lhs = list_ccomb (con, bound_vars (length vars));
-      val appl = bind_fun vars (lhs == rhs);
-      val cs = ContProc.cont_thms lam;
-      val betas = map (fn c => mk_meta_eq (c RS beta_cfun)) cs;
-    in pg (def::betas) appl (K [rtac reflexive_thm 1]) end;
-end;
-
-val _ = trace "Proving when_appl...";
-val when_appl = appl_of_def ax_when_def;
-val _ = trace "Proving con_appls...";
-val con_appls = map appl_of_def axs_con_def;
-
-local
-  fun arg2typ n arg =
-    let val t = TVar (("'a", n), pcpoS)
-    in (n + 1, if is_lazy arg then mk_uT t else t) end;
-
-  fun args2typ n [] = (n, oneT)
-    | args2typ n [arg] = arg2typ n arg
-    | args2typ n (arg::args) =
-    let
-      val (n1, t1) = arg2typ n arg;
-      val (n2, t2) = args2typ n1 args
-    in (n2, mk_sprodT (t1, t2)) end;
-
-  fun cons2typ n [] = (n,oneT)
-    | cons2typ n [con] = args2typ n (snd con)
-    | cons2typ n (con::cons) =
-    let
-      val (n1, t1) = args2typ n (snd con);
-      val (n2, t2) = cons2typ n1 cons
-    in (n2, mk_ssumT (t1, t2)) end;
-in
-  fun cons2ctyp cons = ctyp_of thy (snd (cons2typ 1 cons));
-end;
-
-local 
-  val iso_swap = iso_locale RS iso_iso_swap;
-  fun one_con (con, args) =
-    let
-      val vns = map vname args;
-      val eqn = %:x_name === con_app2 con %: vns;
-      val conj = foldr1 mk_conj (eqn :: map (defined o %:) (nonlazy args));
-    in Library.foldr mk_ex (vns, conj) end;
-
-  val conj_assoc = @{thm conj_assoc};
-  val exh = foldr1 mk_disj ((%:x_name === UU) :: map one_con cons);
-  val thm1 = instantiate' [SOME (cons2ctyp cons)] [] exh_start;
-  val thm2 = rewrite_rule (map mk_meta_eq ex_defined_iffs) thm1;
-  val thm3 = rewrite_rule [mk_meta_eq @{thm conj_assoc}] thm2;
-
-  (* first 3 rules replace "x = UU \/ P" with "rep$x = UU \/ P" *)
-  val tacs = [
-    rtac disjE 1,
-    etac (rep_defin' RS disjI1) 2,
-    etac disjI2 2,
-    rewrite_goals_tac [mk_meta_eq iso_swap],
-    rtac thm3 1];
-in
-  val _ = trace " Proving exhaust...";
-  val exhaust = pg con_appls (mk_trp exh) (K tacs);
-  val _ = trace " Proving casedist...";
-  val casedist =
-    standard (rewrite_rule exh_casedists (exhaust RS exh_casedist0));
-end;
-
-local 
-  fun bind_fun t = Library.foldr mk_All (when_funs cons, t);
-  fun bound_fun i _ = Bound (length cons - i);
-  val when_app = list_ccomb (%%:(dname^"_when"), mapn bound_fun 1 cons);
-in
-  val _ = trace " Proving when_strict...";
-  val when_strict =
-    let
-      val axs = [when_appl, mk_meta_eq rep_strict];
-      val goal = bind_fun (mk_trp (strict when_app));
-      val tacs = [resolve_tac [sscase1, ssplit1, strictify1] 1];
-    in pg axs goal (K tacs) end;
-
-  val _ = trace " Proving when_apps...";
-  val when_apps =
-    let
-      fun one_when n (con,args) =
-        let
-          val axs = when_appl :: con_appls;
-          val goal = bind_fun (lift_defined %: (nonlazy args, 
-                mk_trp (when_app`(con_app con args) ===
-                       list_ccomb (bound_fun n 0, map %# args))));
-          val tacs = [asm_simp_tac (HOLCF_ss addsimps [ax_abs_iso]) 1];
-        in pg axs goal (K tacs) end;
-    in mapn one_when 1 cons end;
-end;
-val when_rews = when_strict :: when_apps;
-
-(* ----- theorems concerning the constructors, discriminators and selectors - *)
-
-local
-  fun dis_strict (con, _) =
-    let
-      val goal = mk_trp (strict (%%:(dis_name con)));
-    in pg axs_dis_def goal (K [rtac when_strict 1]) end;
-
-  fun dis_app c (con, args) =
-    let
-      val lhs = %%:(dis_name c) ` con_app con args;
-      val rhs = if con = c then TT else FF;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_dis_def goal (K tacs) end;
-
-  val _ = trace " Proving dis_apps...";
-  val dis_apps = maps (fn (c,_) => map (dis_app c) cons) cons;
-
-  fun dis_defin (con, args) =
-    let
-      val goal = defined (%:x_name) ==> defined (%%:(dis_name con) `% x_name);
-      val tacs =
-        [rtac casedist 1,
-         contr_tac 1,
-         DETERM_UNTIL_SOLVED (CHANGED
-          (asm_simp_tac (HOLCF_ss addsimps dis_apps) 1))];
-    in pg [] goal (K tacs) end;
-
-  val _ = trace " Proving dis_stricts...";
-  val dis_stricts = map dis_strict cons;
-  val _ = trace " Proving dis_defins...";
-  val dis_defins = map dis_defin cons;
-in
-  val dis_rews = dis_stricts @ dis_defins @ dis_apps;
-end;
-
-local
-  fun mat_strict (con, _) =
-    let
-      val goal = mk_trp (%%:(mat_name con) ` UU ` %:"rhs" === UU);
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps [when_strict]) 1];
-    in pg axs_mat_def goal (K tacs) end;
-
-  val _ = trace " Proving mat_stricts...";
-  val mat_stricts = map mat_strict cons;
-
-  fun one_mat c (con, args) =
-    let
-      val lhs = %%:(mat_name c) ` con_app con args ` %:"rhs";
-      val rhs =
-        if con = c
-        then list_ccomb (%:"rhs", map %# args)
-        else mk_fail;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_mat_def goal (K tacs) end;
-
-  val _ = trace " Proving mat_apps...";
-  val mat_apps =
-    maps (fn (c,_) => map (one_mat c) cons) cons;
-in
-  val mat_rews = mat_stricts @ mat_apps;
-end;
-
-local
-  fun ps args = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
-
-  fun pat_lhs (con,args) = mk_branch (list_comb (%%:(pat_name con), ps args));
-
-  fun pat_rhs (con,[]) = mk_return ((%:"rhs") ` HOLogic.unit)
-    | pat_rhs (con,args) =
-        (mk_branch (mk_ctuple_pat (ps args)))
-          `(%:"rhs")`(mk_ctuple (map %# args));
-
-  fun pat_strict c =
-    let
-      val axs = @{thm branch_def} :: axs_pat_def;
-      val goal = mk_trp (strict (pat_lhs c ` (%:"rhs")));
-      val tacs = [simp_tac (HOLCF_ss addsimps [when_strict]) 1];
-    in pg axs goal (K tacs) end;
-
-  fun pat_app c (con, args) =
-    let
-      val axs = @{thm branch_def} :: axs_pat_def;
-      val lhs = (pat_lhs c)`(%:"rhs")`(con_app con args);
-      val rhs = if con = fst c then pat_rhs c else mk_fail;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs goal (K tacs) end;
-
-  val _ = trace " Proving pat_stricts...";
-  val pat_stricts = map pat_strict cons;
-  val _ = trace " Proving pat_apps...";
-  val pat_apps = maps (fn c => map (pat_app c) cons) cons;
-in
-  val pat_rews = pat_stricts @ pat_apps;
-end;
-
-local
-  fun con_strict (con, args) = 
-    let
-      val rules = abs_strict :: @{thms con_strict_rules};
-      fun one_strict vn =
-        let
-          fun f arg = if vname arg = vn then UU else %# arg;
-          val goal = mk_trp (con_app2 con f args === UU);
-          val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
-        in pg con_appls goal (K tacs) end;
-    in map one_strict (nonlazy args) end;
-
-  fun con_defin (con, args) =
-    let
-      fun iff_disj (t, []) = HOLogic.mk_not t
-        | iff_disj (t, ts) = t === foldr1 HOLogic.mk_disj ts;
-      val lhs = con_app con args === UU;
-      val rhss = map (fn x => %:x === UU) (nonlazy args);
-      val goal = mk_trp (iff_disj (lhs, rhss));
-      val rule1 = iso_locale RS @{thm iso.abs_defined_iff};
-      val rules = rule1 :: @{thms con_defined_iff_rules};
-      val tacs = [simp_tac (HOL_ss addsimps rules) 1];
-    in pg con_appls goal (K tacs) end;
-in
-  val _ = trace " Proving con_stricts...";
-  val con_stricts = maps con_strict cons;
-  val _ = trace " Proving con_defins...";
-  val con_defins = map con_defin cons;
-  val con_rews = con_stricts @ con_defins;
-end;
-
-local
-  val rules =
-    [compact_sinl, compact_sinr, compact_spair, compact_up, compact_ONE];
-  fun con_compact (con, args) =
-    let
-      val concl = mk_trp (mk_compact (con_app con args));
-      val goal = lift (fn x => mk_compact (%#x)) (args, concl);
-      val tacs = [
-        rtac (iso_locale RS iso_compact_abs) 1,
-        REPEAT (resolve_tac rules 1 ORELSE atac 1)];
-    in pg con_appls goal (K tacs) end;
-in
-  val _ = trace " Proving con_compacts...";
-  val con_compacts = map con_compact cons;
-end;
-
-local
-  fun one_sel sel =
-    pg axs_sel_def (mk_trp (strict (%%:sel)))
-      (K [simp_tac (HOLCF_ss addsimps when_rews) 1]);
-
-  fun sel_strict (_, args) =
-    List.mapPartial (Option.map one_sel o sel_of) args;
-in
-  val _ = trace " Proving sel_stricts...";
-  val sel_stricts = maps sel_strict cons;
-end;
-
-local
-  fun sel_app_same c n sel (con, args) =
-    let
-      val nlas = nonlazy args;
-      val vns = map vname args;
-      val vnn = List.nth (vns, n);
-      val nlas' = List.filter (fn v => v <> vnn) nlas;
-      val lhs = (%%:sel)`(con_app con args);
-      val goal = lift_defined %: (nlas', mk_trp (lhs === %:vnn));
-      fun tacs1 ctxt =
-        if vnn mem nlas
-        then [case_UU_tac ctxt (when_rews @ con_stricts) 1 vnn]
-        else [];
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
-
-  fun sel_app_diff c n sel (con, args) =
-    let
-      val nlas = nonlazy args;
-      val goal = mk_trp (%%:sel ` con_app con args === UU);
-      fun tacs1 ctxt = map (case_UU_tac ctxt (when_rews @ con_stricts) 1) nlas;
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
-
-  fun sel_app c n sel (con, args) =
-    if con = c
-    then sel_app_same c n sel (con, args)
-    else sel_app_diff c n sel (con, args);
-
-  fun one_sel c n sel = map (sel_app c n sel) cons;
-  fun one_sel' c n arg = Option.map (one_sel c n) (sel_of arg);
-  fun one_con (c, args) =
-    flat (map_filter I (mapn (one_sel' c) 0 args));
-in
-  val _ = trace " Proving sel_apps...";
-  val sel_apps = maps one_con cons;
-end;
-
-local
-  fun sel_defin sel =
-    let
-      val goal = defined (%:x_name) ==> defined (%%:sel`%x_name);
-      val tacs = [
-        rtac casedist 1,
-        contr_tac 1,
-        DETERM_UNTIL_SOLVED (CHANGED
-          (asm_simp_tac (HOLCF_ss addsimps sel_apps) 1))];
-    in pg [] goal (K tacs) end;
-in
-  val _ = trace " Proving sel_defins...";
-  val sel_defins =
-    if length cons = 1
-    then List.mapPartial (fn arg => Option.map sel_defin (sel_of arg))
-                 (filter_out is_lazy (snd (hd cons)))
-    else [];
-end;
-
-val sel_rews = sel_stricts @ sel_defins @ sel_apps;
-
-val _ = trace " Proving dist_les...";
-val distincts_le =
-  let
-    fun dist (con1, args1) (con2, args2) =
-      let
-        val goal = lift_defined %: (nonlazy args1,
-                        mk_trp (con_app con1 args1 ~<< con_app con2 args2));
-        fun tacs ctxt = [
-          rtac @{thm rev_contrapos} 1,
-          eres_inst_tac ctxt [(("f", 0), dis_name con1)] monofun_cfun_arg 1]
-          @ map (case_UU_tac ctxt (con_stricts @ dis_rews) 1) (nonlazy args2)
-          @ [asm_simp_tac (HOLCF_ss addsimps dis_rews) 1];
-      in pg [] goal tacs end;
-
-    fun distinct (con1, args1) (con2, args2) =
-        let
-          val arg1 = (con1, args1);
-          val arg2 =
-            (con2, ListPair.map (fn (arg,vn) => upd_vname (K vn) arg)
-              (args2, Name.variant_list (map vname args1) (map vname args2)));
-        in [dist arg1 arg2, dist arg2 arg1] end;
-    fun distincts []      = []
-      | distincts (c::cs) = (map (distinct c) cs) :: distincts cs;
-  in distincts cons end;
-val dist_les = flat (flat distincts_le);
-
-val _ = trace " Proving dist_eqs...";
-val dist_eqs =
-  let
-    fun distinct (_,args1) ((_,args2), leqs) =
-      let
-        val (le1,le2) = (hd leqs, hd(tl leqs));
-        val (eq1,eq2) = (le1 RS dist_eqI, le2 RS dist_eqI)
-      in
-        if nonlazy args1 = [] then [eq1, eq1 RS not_sym] else
-        if nonlazy args2 = [] then [eq2, eq2 RS not_sym] else
-          [eq1, eq2]
-      end;
-    fun distincts []      = []
-      | distincts ((c,leqs)::cs) =
-        flat
-          (ListPair.map (distinct c) ((map #1 cs),leqs)) @
-        distincts cs;
-  in map standard (distincts (cons ~~ distincts_le)) end;
-
-local 
-  fun pgterm rel con args =
-    let
-      fun append s = upd_vname (fn v => v^s);
-      val (largs, rargs) = (args, map (append "'") args);
-      val concl =
-        foldr1 mk_conj (ListPair.map rel (map %# largs, map %# rargs));
-      val prem = rel (con_app con largs, con_app con rargs);
-      val sargs = case largs of [_] => [] | _ => nonlazy args;
-      val prop = lift_defined %: (sargs, mk_trp (prem === concl));
-    in pg con_appls prop end;
-  val cons' = List.filter (fn (_,args) => args<>[]) cons;
-in
-  val _ = trace " Proving inverts...";
-  val inverts =
-    let
-      val abs_less = ax_abs_iso RS (allI RS injection_less);
-      val tacs =
-        [asm_full_simp_tac (HOLCF_ss addsimps [abs_less, spair_less]) 1];
-    in map (fn (con, args) => pgterm (op <<) con args (K tacs)) cons' end;
-
-  val _ = trace " Proving injects...";
-  val injects =
-    let
-      val abs_eq = ax_abs_iso RS (allI RS injection_eq);
-      val tacs = [asm_full_simp_tac (HOLCF_ss addsimps [abs_eq, spair_eq]) 1];
-    in map (fn (con, args) => pgterm (op ===) con args (K tacs)) cons' end;
-end;
-
-(* ----- theorems concerning one induction step ----------------------------- *)
-
-val copy_strict =
-  let
-    val _ = trace " Proving copy_strict...";
-    val goal = mk_trp (strict (dc_copy `% "f"));
-    val rules = [abs_strict, rep_strict] @ @{thms domain_fun_stricts};
-    val tacs = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
-  in pg [ax_copy_def] goal (K tacs) end;
-
-local
-  fun copy_app (con, args) =
-    let
-      val lhs = dc_copy`%"f"`(con_app con args);
-      fun one_rhs arg =
-          if DatatypeAux.is_rec_type (dtyp_of arg)
-          then Domain_Axioms.copy_of_dtyp (cproj (%:"f") eqs) (dtyp_of arg) ` (%# arg)
-          else (%# arg);
-      val rhs = con_app2 con one_rhs args;
-      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
-      val args' = List.filter (fn a => not (is_rec a orelse is_lazy a)) args;
-      val stricts = abs_strict :: rep_strict :: @{thms domain_fun_stricts};
-      fun tacs1 ctxt = map (case_UU_tac ctxt stricts 1 o vname) args';
-      val rules = [ax_abs_iso] @ @{thms domain_fun_simps};
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
-    in pg (ax_copy_def::con_appls) goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
-in
-  val _ = trace " Proving copy_apps...";
-  val copy_apps = map copy_app cons;
-end;
-
-local
-  fun one_strict (con, args) = 
-    let
-      val goal = mk_trp (dc_copy`UU`(con_app con args) === UU);
-      val rews = copy_strict :: copy_apps @ con_rews;
-      fun tacs ctxt = map (case_UU_tac ctxt rews 1) (nonlazy args) @
-        [asm_simp_tac (HOLCF_ss addsimps rews) 1];
-    in pg [] goal tacs end;
-
-  fun has_nonlazy_rec (_, args) = exists is_nonlazy_rec args;
-in
-  val _ = trace " Proving copy_stricts...";
-  val copy_stricts = map one_strict (List.filter has_nonlazy_rec cons);
-end;
-
-val copy_rews = copy_strict :: copy_apps @ copy_stricts;
-
-in
-  thy
-    |> Sign.add_path (Long_Name.base_name dname)
-    |> snd o PureThy.add_thmss [
-        ((Binding.name "iso_rews"  , iso_rews    ), [Simplifier.simp_add]),
-        ((Binding.name "exhaust"   , [exhaust]   ), []),
-        ((Binding.name "casedist"  , [casedist]  ), [Induct.cases_type dname]),
-        ((Binding.name "when_rews" , when_rews   ), [Simplifier.simp_add]),
-        ((Binding.name "compacts"  , con_compacts), [Simplifier.simp_add]),
-        ((Binding.name "con_rews"  , con_rews    ), [Simplifier.simp_add]),
-        ((Binding.name "sel_rews"  , sel_rews    ), [Simplifier.simp_add]),
-        ((Binding.name "dis_rews"  , dis_rews    ), [Simplifier.simp_add]),
-        ((Binding.name "pat_rews"  , pat_rews    ), [Simplifier.simp_add]),
-        ((Binding.name "dist_les"  , dist_les    ), [Simplifier.simp_add]),
-        ((Binding.name "dist_eqs"  , dist_eqs    ), [Simplifier.simp_add]),
-        ((Binding.name "inverts"   , inverts     ), [Simplifier.simp_add]),
-        ((Binding.name "injects"   , injects     ), [Simplifier.simp_add]),
-        ((Binding.name "copy_rews" , copy_rews   ), [Simplifier.simp_add]),
-        ((Binding.name "match_rews", mat_rews    ), [Simplifier.simp_add])]
-    |> Sign.parent_path
-    |> pair (iso_rews @ when_rews @ con_rews @ sel_rews @ dis_rews @
-        pat_rews @ dist_les @ dist_eqs @ copy_rews)
-end; (* let *)
-
-fun comp_theorems (comp_dnam, eqs: eq list) thy =
-let
-val global_ctxt = ProofContext.init thy;
-
-val dnames = map (fst o fst) eqs;
-val conss  = map  snd        eqs;
-val comp_dname = Sign.full_bname thy comp_dnam;
-
-val _ = message ("Proving induction properties of domain "^comp_dname^" ...");
-val pg = pg' thy;
-
-(* ----- getting the composite axiom and definitions ------------------------ *)
-
-local
-  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
-in
-  val axs_reach      = map (ga "reach"     ) dnames;
-  val axs_take_def   = map (ga "take_def"  ) dnames;
-  val axs_finite_def = map (ga "finite_def") dnames;
-  val ax_copy2_def   =      ga "copy_def"  comp_dnam;
-  val ax_bisim_def   =      ga "bisim_def" comp_dnam;
-end;
-
-local
-  fun gt  s dn = PureThy.get_thm  thy (dn ^ "." ^ s);
-  fun gts s dn = PureThy.get_thms thy (dn ^ "." ^ s);
-in
-  val cases = map (gt  "casedist" ) dnames;
-  val con_rews  = maps (gts "con_rews" ) dnames;
-  val copy_rews = maps (gts "copy_rews") dnames;
-end;
-
-fun dc_take dn = %%:(dn^"_take");
-val x_name = idx_name dnames "x"; 
-val P_name = idx_name dnames "P";
-val n_eqs = length eqs;
-
-(* ----- theorems concerning finite approximation and finite induction ------ *)
-
-local
-  val iterate_Cprod_ss = simpset_of @{theory Fix};
-  val copy_con_rews  = copy_rews @ con_rews;
-  val copy_take_defs =
-    (if n_eqs = 1 then [] else [ax_copy2_def]) @ axs_take_def;
-  val _ = trace " Proving take_stricts...";
-  val take_stricts =
-    let
-      fun one_eq ((dn, args), _) = strict (dc_take dn $ %:"n");
-      val goal = mk_trp (foldr1 mk_conj (map one_eq eqs));
-      fun tacs ctxt = [
-        InductTacs.induct_tac ctxt [[SOME "n"]] 1,
-        simp_tac iterate_Cprod_ss 1,
-        asm_simp_tac (iterate_Cprod_ss addsimps copy_rews) 1];
-    in pg copy_take_defs goal tacs end;
-
-  val take_stricts' = rewrite_rule copy_take_defs take_stricts;
-  fun take_0 n dn =
-    let
-      val goal = mk_trp ((dc_take dn $ %%:"HOL.zero") `% x_name n === UU);
-    in pg axs_take_def goal (K [simp_tac iterate_Cprod_ss 1]) end;
-  val take_0s = mapn take_0 1 dnames;
-  fun c_UU_tac ctxt = case_UU_tac ctxt (take_stricts'::copy_con_rews) 1;
-  val _ = trace " Proving take_apps...";
-  val take_apps =
-    let
-      fun mk_eqn dn (con, args) =
-        let
-          fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
-          fun one_rhs arg =
-              if DatatypeAux.is_rec_type (dtyp_of arg)
-              then Domain_Axioms.copy_of_dtyp mk_take (dtyp_of arg) ` (%# arg)
-              else (%# arg);
-          val lhs = (dc_take dn $ (%%:"Suc" $ %:"n"))`(con_app con args);
-          val rhs = con_app2 con one_rhs args;
-        in Library.foldr mk_all (map vname args, lhs === rhs) end;
-      fun mk_eqns ((dn, _), cons) = map (mk_eqn dn) cons;
-      val goal = mk_trp (foldr1 mk_conj (maps mk_eqns eqs));
-      val simps = List.filter (has_fewer_prems 1) copy_rews;
-      fun con_tac ctxt (con, args) =
-        if nonlazy_rec args = []
-        then all_tac
-        else EVERY (map (c_UU_tac ctxt) (nonlazy_rec args)) THEN
-          asm_full_simp_tac (HOLCF_ss addsimps copy_rews) 1;
-      fun eq_tacs ctxt ((dn, _), cons) = map (con_tac ctxt) cons;
-      fun tacs ctxt =
-        simp_tac iterate_Cprod_ss 1 ::
-        InductTacs.induct_tac ctxt [[SOME "n"]] 1 ::
-        simp_tac (iterate_Cprod_ss addsimps copy_con_rews) 1 ::
-        asm_full_simp_tac (HOLCF_ss addsimps simps) 1 ::
-        TRY (safe_tac HOL_cs) ::
-        maps (eq_tacs ctxt) eqs;
-    in pg copy_take_defs goal tacs end;
-in
-  val take_rews = map standard
-    (atomize global_ctxt take_stricts @ take_0s @ atomize global_ctxt take_apps);
-end; (* local *)
-
-local
-  fun one_con p (con,args) =
-    let
-      fun ind_hyp arg = %:(P_name (1 + rec_of arg)) $ bound_arg args arg;
-      val t1 = mk_trp (%:p $ con_app2 con (bound_arg args) args);
-      val t2 = lift ind_hyp (List.filter is_rec args, t1);
-      val t3 = lift_defined (bound_arg (map vname args)) (nonlazy args, t2);
-    in Library.foldr mk_All (map vname args, t3) end;
-
-  fun one_eq ((p, cons), concl) =
-    mk_trp (%:p $ UU) ===> Logic.list_implies (map (one_con p) cons, concl);
-
-  fun ind_term concf = Library.foldr one_eq
-    (mapn (fn n => fn x => (P_name n, x)) 1 conss,
-     mk_trp (foldr1 mk_conj (mapn concf 1 dnames)));
-  val take_ss = HOL_ss addsimps take_rews;
-  fun quant_tac ctxt i = EVERY
-    (mapn (fn n => fn _ => res_inst_tac ctxt [(("x", 0), x_name n)] spec i) 1 dnames);
-
-  fun ind_prems_tac prems = EVERY
-    (maps (fn cons =>
-      (resolve_tac prems 1 ::
-        maps (fn (_,args) => 
-          resolve_tac prems 1 ::
-          map (K(atac 1)) (nonlazy args) @
-          map (K(atac 1)) (List.filter is_rec args))
-        cons))
-      conss);
-  local 
-    (* check whether every/exists constructor of the n-th part of the equation:
-       it has a possibly indirectly recursive argument that isn't/is possibly 
-       indirectly lazy *)
-    fun rec_to quant nfn rfn ns lazy_rec (n,cons) = quant (exists (fn arg => 
-          is_rec arg andalso not(rec_of arg mem ns) andalso
-          ((rec_of arg =  n andalso nfn(lazy_rec orelse is_lazy arg)) orelse 
-            rec_of arg <> n andalso rec_to quant nfn rfn (rec_of arg::ns) 
-              (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
-          ) o snd) cons;
-    fun all_rec_to ns  = rec_to forall not all_rec_to  ns;
-    fun warn (n,cons) =
-      if all_rec_to [] false (n,cons)
-      then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
-      else false;
-    fun lazy_rec_to ns = rec_to exists I  lazy_rec_to ns;
-
-  in
-    val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
-    val is_emptys = map warn n__eqs;
-    val is_finite = forall (not o lazy_rec_to [] false) n__eqs;
-  end;
-in (* local *)
-  val _ = trace " Proving finite_ind...";
-  val finite_ind =
-    let
-      fun concf n dn = %:(P_name n) $ (dc_take dn $ %:"n" `%(x_name n));
-      val goal = ind_term concf;
-
-      fun tacf {prems, context} =
-        let
-          val tacs1 = [
-            quant_tac context 1,
-            simp_tac HOL_ss 1,
-            InductTacs.induct_tac context [[SOME "n"]] 1,
-            simp_tac (take_ss addsimps prems) 1,
-            TRY (safe_tac HOL_cs)];
-          fun arg_tac arg =
-            case_UU_tac context (prems @ con_rews) 1
-              (List.nth (dnames, rec_of arg) ^ "_take n$" ^ vname arg);
-          fun con_tacs (con, args) = 
-            asm_simp_tac take_ss 1 ::
-            map arg_tac (List.filter is_nonlazy_rec args) @
-            [resolve_tac prems 1] @
-            map (K (atac 1))      (nonlazy args) @
-            map (K (etac spec 1)) (List.filter is_rec args);
-          fun cases_tacs (cons, cases) =
-            res_inst_tac context [(("x", 0), "x")] cases 1 ::
-            asm_simp_tac (take_ss addsimps prems) 1 ::
-            maps con_tacs cons;
-        in
-          tacs1 @ maps cases_tacs (conss ~~ cases)
-        end;
-    in pg'' thy [] goal tacf
-       handle ERROR _ => (warning "Proof of finite_ind failed."; TrueI)
-    end;
-
-  val _ = trace " Proving take_lemmas...";
-  val take_lemmas =
-    let
-      fun take_lemma n (dn, ax_reach) =
-        let
-          val lhs = dc_take dn $ Bound 0 `%(x_name n);
-          val rhs = dc_take dn $ Bound 0 `%(x_name n^"'");
-          val concl = mk_trp (%:(x_name n) === %:(x_name n^"'"));
-          val goal = mk_All ("n", mk_trp (lhs === rhs)) ===> concl;
-          fun tacf {prems, context} = [
-            res_inst_tac context [(("t", 0), x_name n    )] (ax_reach RS subst) 1,
-            res_inst_tac context [(("t", 0), x_name n^"'")] (ax_reach RS subst) 1,
-            stac fix_def2 1,
-            REPEAT (CHANGED
-              (rtac (contlub_cfun_arg RS ssubst) 1 THEN chain_tac 1)),
-            stac contlub_cfun_fun 1,
-            stac contlub_cfun_fun 2,
-            rtac lub_equal 3,
-            chain_tac 1,
-            rtac allI 1,
-            resolve_tac prems 1];
-        in pg'' thy axs_take_def goal tacf end;
-    in mapn take_lemma 1 (dnames ~~ axs_reach) end;
-
-(* ----- theorems concerning finiteness and induction ----------------------- *)
-
-  val _ = trace " Proving finites, ind...";
-  val (finites, ind) =
-  (
-    if is_finite
-    then (* finite case *)
-      let 
-        fun take_enough dn = mk_ex ("n",dc_take dn $ Bound 0 ` %:"x" === %:"x");
-        fun dname_lemma dn =
-          let
-            val prem1 = mk_trp (defined (%:"x"));
-            val disj1 = mk_all ("n", dc_take dn $ Bound 0 ` %:"x" === UU);
-            val prem2 = mk_trp (mk_disj (disj1, take_enough dn));
-            val concl = mk_trp (take_enough dn);
-            val goal = prem1 ===> prem2 ===> concl;
-            val tacs = [
-              etac disjE 1,
-              etac notE 1,
-              resolve_tac take_lemmas 1,
-              asm_simp_tac take_ss 1,
-              atac 1];
-          in pg [] goal (K tacs) end;
-        val _ = trace " Proving finite_lemmas1a";
-        val finite_lemmas1a = map dname_lemma dnames;
- 
-        val _ = trace " Proving finite_lemma1b";
-        val finite_lemma1b =
-          let
-            fun mk_eqn n ((dn, args), _) =
-              let
-                val disj1 = dc_take dn $ Bound 1 ` Bound 0 === UU;
-                val disj2 = dc_take dn $ Bound 1 ` Bound 0 === Bound 0;
-              in
-                mk_constrainall
-                  (x_name n, Type (dn,args), mk_disj (disj1, disj2))
-              end;
-            val goal =
-              mk_trp (mk_all ("n", foldr1 mk_conj (mapn mk_eqn 1 eqs)));
-            fun arg_tacs ctxt vn = [
-              eres_inst_tac ctxt [(("x", 0), vn)] all_dupE 1,
-              etac disjE 1,
-              asm_simp_tac (HOL_ss addsimps con_rews) 1,
-              asm_simp_tac take_ss 1];
-            fun con_tacs ctxt (con, args) =
-              asm_simp_tac take_ss 1 ::
-              maps (arg_tacs ctxt) (nonlazy_rec args);
-            fun foo_tacs ctxt n (cons, cases) =
-              simp_tac take_ss 1 ::
-              rtac allI 1 ::
-              res_inst_tac ctxt [(("x", 0), x_name n)] cases 1 ::
-              asm_simp_tac take_ss 1 ::
-              maps (con_tacs ctxt) cons;
-            fun tacs ctxt =
-              rtac allI 1 ::
-              InductTacs.induct_tac ctxt [[SOME "n"]] 1 ::
-              simp_tac take_ss 1 ::
-              TRY (safe_tac (empty_cs addSEs [conjE] addSIs [conjI])) ::
-              flat (mapn (foo_tacs ctxt) 1 (conss ~~ cases));
-          in pg [] goal tacs end;
-
-        fun one_finite (dn, l1b) =
-          let
-            val goal = mk_trp (%%:(dn^"_finite") $ %:"x");
-            fun tacs ctxt = [
-              case_UU_tac ctxt take_rews 1 "x",
-              eresolve_tac finite_lemmas1a 1,
-              step_tac HOL_cs 1,
-              step_tac HOL_cs 1,
-              cut_facts_tac [l1b] 1,
-              fast_tac HOL_cs 1];
-          in pg axs_finite_def goal tacs end;
-
-        val _ = trace " Proving finites";
-        val finites = map one_finite (dnames ~~ atomize global_ctxt finite_lemma1b);
-        val _ = trace " Proving ind";
-        val ind =
-          let
-            fun concf n dn = %:(P_name n) $ %:(x_name n);
-            fun tacf {prems, context} =
-              let
-                fun finite_tacs (finite, fin_ind) = [
-                  rtac(rewrite_rule axs_finite_def finite RS exE)1,
-                  etac subst 1,
-                  rtac fin_ind 1,
-                  ind_prems_tac prems];
-              in
-                TRY (safe_tac HOL_cs) ::
-                maps finite_tacs (finites ~~ atomize global_ctxt finite_ind)
-              end;
-          in pg'' thy [] (ind_term concf) tacf end;
-      in (finites, ind) end (* let *)
-
-    else (* infinite case *)
-      let
-        fun one_finite n dn =
-          read_instantiate global_ctxt [(("P", 0), dn ^ "_finite " ^ x_name n)] excluded_middle;
-        val finites = mapn one_finite 1 dnames;
-
-        val goal =
-          let
-            fun one_adm n _ = mk_trp (mk_adm (%:(P_name n)));
-            fun concf n dn = %:(P_name n) $ %:(x_name n);
-          in Logic.list_implies (mapn one_adm 1 dnames, ind_term concf) end;
-        fun tacf {prems, context} =
-          map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
-          quant_tac context 1,
-          rtac (adm_impl_admw RS wfix_ind) 1,
-          REPEAT_DETERM (rtac adm_all 1),
-          REPEAT_DETERM (
-            TRY (rtac adm_conj 1) THEN 
-            rtac adm_subst 1 THEN 
-            cont_tacR 1 THEN resolve_tac prems 1),
-          strip_tac 1,
-          rtac (rewrite_rule axs_take_def finite_ind) 1,
-          ind_prems_tac prems];
-        val ind = (pg'' thy [] goal tacf
-          handle ERROR _ =>
-            (warning "Cannot prove infinite induction rule"; refl));
-      in (finites, ind) end
-  )
-      handle THM _ =>
-             (warning "Induction proofs failed (THM raised)."; ([], TrueI))
-           | ERROR _ =>
-             (warning "Induction proofs failed (ERROR raised)."; ([], TrueI));
-
-
-end; (* local *)
-
-(* ----- theorem concerning coinduction ------------------------------------- *)
-
-local
-  val xs = mapn (fn n => K (x_name n)) 1 dnames;
-  fun bnd_arg n i = Bound(2*(n_eqs - n)-i-1);
-  val take_ss = HOL_ss addsimps take_rews;
-  val sproj = prj (fn s => K("fst("^s^")")) (fn s => K("snd("^s^")"));
-  val _ = trace " Proving coind_lemma...";
-  val coind_lemma =
-    let
-      fun mk_prj n _ = proj (%:"R") eqs n $ bnd_arg n 0 $ bnd_arg n 1;
-      fun mk_eqn n dn =
-        (dc_take dn $ %:"n" ` bnd_arg n 0) ===
-        (dc_take dn $ %:"n" ` bnd_arg n 1);
-      fun mk_all2 (x,t) = mk_all (x, mk_all (x^"'", t));
-      val goal =
-        mk_trp (mk_imp (%%:(comp_dname^"_bisim") $ %:"R",
-          Library.foldr mk_all2 (xs,
-            Library.foldr mk_imp (mapn mk_prj 0 dnames,
-              foldr1 mk_conj (mapn mk_eqn 0 dnames)))));
-      fun x_tacs ctxt n x = [
-        rotate_tac (n+1) 1,
-        etac all2E 1,
-        eres_inst_tac ctxt [(("P", 1), sproj "R" eqs n^" "^x^" "^x^"'")] (mp RS disjE) 1,
-        TRY (safe_tac HOL_cs),
-        REPEAT (CHANGED (asm_simp_tac take_ss 1))];
-      fun tacs ctxt = [
-        rtac impI 1,
-        InductTacs.induct_tac ctxt [[SOME "n"]] 1,
-        simp_tac take_ss 1,
-        safe_tac HOL_cs] @
-        flat (mapn (x_tacs ctxt) 0 xs);
-    in pg [ax_bisim_def] goal tacs end;
-in
-  val _ = trace " Proving coind...";
-  val coind = 
-    let
-      fun mk_prj n x = mk_trp (proj (%:"R") eqs n $ %:x $ %:(x^"'"));
-      fun mk_eqn x = %:x === %:(x^"'");
-      val goal =
-        mk_trp (%%:(comp_dname^"_bisim") $ %:"R") ===>
-          Logic.list_implies (mapn mk_prj 0 xs,
-            mk_trp (foldr1 mk_conj (map mk_eqn xs)));
-      val tacs =
-        TRY (safe_tac HOL_cs) ::
-        maps (fn take_lemma => [
-          rtac take_lemma 1,
-          cut_facts_tac [coind_lemma] 1,
-          fast_tac HOL_cs 1])
-        take_lemmas;
-    in pg [] goal (K tacs) end;
-end; (* local *)
-
-val inducts = ProjectRule.projections (ProofContext.init thy) ind;
-fun ind_rule (dname, rule) = ((Binding.empty, [rule]), [Induct.induct_type dname]);
-val induct_failed = (Thm.prop_of ind = Thm.prop_of TrueI);
-
-in thy |> Sign.add_path comp_dnam
-       |> snd o PureThy.add_thmss [
-           ((Binding.name "take_rews"  , take_rews   ), [Simplifier.simp_add]),
-           ((Binding.name "take_lemmas", take_lemmas ), []),
-           ((Binding.name "finites"    , finites     ), []),
-           ((Binding.name "finite_ind" , [finite_ind]), []),
-           ((Binding.name "ind"        , [ind]       ), []),
-           ((Binding.name "coind"      , [coind]     ), [])]
-       |> (if induct_failed then I
-           else snd o PureThy.add_thmss (map ind_rule (dnames ~~ inducts)))
-       |> Sign.parent_path |> pair take_rews
-end; (* let *)
-end; (* local *)
-end; (* struct *)
--- a/src/Pure/Isar/class.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Pure/Isar/class.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -68,9 +68,8 @@
     val base_morph = inst_morph
       $> Morphism.binding_morphism (Binding.prefix false (class_prefix class))
       $> Element.satisfy_morphism (the_list wit);
-    val defs = these_defs thy sups;
-    val eq_morph = Element.eq_morphism thy defs;
-    val morph = base_morph $> eq_morph;
+    val eqs = these_defs thy sups;
+    val eq_morph = Element.eq_morphism thy eqs;
 
     (* assm_intro *)
     fun prove_assm_intro thm =
@@ -97,7 +96,7 @@
            ORELSE' Tactic.assume_tac));
     val of_class = SkipProof.prove_global thy [] [] of_class_prop (K tac);
 
-  in (base_morph, morph, export_morph, axiom, assm_intro, of_class) end;
+  in (base_morph, eqs, export_morph, axiom, assm_intro, of_class) end;
 
 
 (* reading and processing class specifications *)
@@ -284,9 +283,8 @@
     ||> Theory.checkpoint
     |-> (fn (param_map, params, assm_axiom) =>
        `(fn thy => calculate thy class sups base_sort param_map assm_axiom)
-    #-> (fn (base_morph, morph, export_morph, axiom, assm_intro, of_class) =>
-       Locale.add_registration (class, (morph, export_morph))
-    #> Context.theory_map (Locale.activate_facts (class, morph $> export_morph))
+    #-> (fn (base_morph, eqs, export_morph, axiom, assm_intro, of_class) =>
+       Locale.add_registration_eqs (class, base_morph) eqs export_morph
     #> register class sups params base_sort base_morph axiom assm_intro of_class))
     |> TheoryTarget.init (SOME class)
     |> pair class
--- a/src/Pure/Isar/code.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Pure/Isar/code.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -801,7 +801,9 @@
      of SOME T_class => T_class
       | _ => error ("Bad certificate: " ^ Display.string_of_thm thm);
     val tvar = case try Term.dest_TVar T
-     of SOME tvar => tvar
+     of SOME (tvar as (_, sort)) => if null (filter (can (AxClass.get_info thy)) sort)
+          then tvar
+          else error ("Bad sort: " ^ Display.string_of_thm thm)
       | _ => error ("Bad type: " ^ Display.string_of_thm thm);
     val _ = if Term.add_tvars eqn [] = [tvar] then ()
       else error ("Inconsistent type: " ^ Display.string_of_thm thm);
--- a/src/Pure/Isar/locale.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Pure/Isar/locale.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -68,9 +68,8 @@
   val intro_locales_tac: bool -> Proof.context -> thm list -> tactic
 
   (* Registrations and dependencies *)
-  val add_registration: string * (morphism * morphism) -> theory -> theory
+  val add_registration_eqs: string * morphism -> thm list -> morphism -> theory -> theory
   val amend_registration: morphism -> string * morphism -> theory -> theory
-  val add_registration_eqs: string * morphism -> thm list -> morphism -> theory -> theory
   val add_dependency: string -> string * morphism -> morphism -> theory -> theory
 
   (* Diagnostic *)
@@ -295,8 +294,7 @@
 fun activate_declarations dep = Context.proof_map (fn context =>
   let
     val thy = Context.theory_of context;
-    val context' = roundup thy activate_decls dep (get_idents context, context) |-> put_idents;
-  in context' end);
+  in roundup thy activate_decls dep (get_idents context, context) |-> put_idents end);
 
 fun activate_facts dep context =
   let
@@ -346,11 +344,6 @@
 fun all_registrations thy = Registrations.get thy
   |> map reg_morph;
 
-fun add_registration (name, (base_morph, export)) thy =
-  roundup thy (fn (name', morph') => Registrations.map (cons ((name', (morph', export)), stamp ())))
-    (name, base_morph) (get_idents (Context.Theory thy), thy)
-  (* FIXME |-> (Context.theory_map o put_idents_diag)*) |> snd;
-
 fun amend_registration morph (name, base_morph) thy =
   let
     val regs = map #1 (Registrations.get thy);
@@ -373,8 +366,10 @@
     val morph = if null eqns then proto_morph
       else proto_morph $> Element.eq_morphism thy eqns;
   in
-    thy
-    |> add_registration (dep, (morph, export))
+    (get_idents (Context.Theory thy), thy)
+    |> roundup thy (fn (dep', morph') =>
+        Registrations.map (cons ((dep', (morph', export)), stamp ()))) (dep, morph)
+    |> snd
     |> Context.theory_map (activate_facts (dep, morph $> export))
   end;
 
--- a/src/Pure/Syntax/syn_trans.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Pure/Syntax/syn_trans.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -8,6 +8,8 @@
 sig
   val eta_contract: bool ref
   val atomic_abs_tr': string * typ * term -> term * term
+  val preserve_binder_abs_tr': string -> string -> string * (term list -> term)
+  val preserve_binder_abs2_tr': string -> string -> string * (term list -> term)
   val mk_binder_tr: string * string -> string * (term list -> term)
   val mk_binder_tr': string * string -> string * (term list -> term)
   val dependent_tr': string * string -> term list -> term
@@ -309,6 +311,14 @@
     ([], _) => raise Ast.AST ("abs_ast_tr'", asts)
   | (xs, body) => Ast.Appl [Ast.Constant "_lambda", Ast.fold_ast "_pttrns" xs, body]);
 
+fun preserve_binder_abs_tr' name syn = (name, fn (Abs abs :: ts) =>
+  let val (x, t) = atomic_abs_tr' abs
+  in list_comb (Lexicon.const syn $ x $ t, ts) end);
+
+fun preserve_binder_abs2_tr' name syn = (name, fn (A :: Abs abs :: ts) =>
+  let val (x, t) = atomic_abs_tr' abs
+  in list_comb (Lexicon.const syn $ x $ A $ t, ts) end);
+
 
 (* binder *)
 
--- a/src/Tools/Code/code_ml.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Tools/Code/code_ml.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -966,7 +966,7 @@
         val sml_code = "let\n" ^ value_code ^ "\nin " ^ value_name'
           ^ space_implode " " (map (enclose "(" ")") args) ^ " end";
       in ML_Context.evaluate ctxt false reff sml_code end;
-  in Code_Thingol.eval thy I postproc evaluator t end;
+  in Code_Thingol.eval thy postproc evaluator t end;
 
 
 (* instrumentalization by antiquotation *)
--- a/src/Tools/Code/code_preproc.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Tools/Code/code_preproc.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -23,9 +23,10 @@
   val all: code_graph -> string list
   val pretty: theory -> code_graph -> Pretty.T
   val obtain: theory -> string list -> term list -> code_algebra * code_graph
-  val eval_conv: theory -> (sort -> sort)
+  val resubst_triv_consts: theory -> term -> term
+  val eval_conv: theory
     -> (code_algebra -> code_graph -> (string * sort) list -> term -> cterm -> thm) -> cterm -> thm
-  val eval: theory -> (sort -> sort) -> ((term -> term) -> 'a -> 'a)
+  val eval: theory -> ((term -> term) -> 'a -> 'a)
     -> (code_algebra -> code_graph -> (string * sort) list -> term -> 'a) -> term -> 'a
 
   val setup: theory -> theory
@@ -161,7 +162,10 @@
     |> rhs_conv (Simplifier.rewrite post)
   end;
 
-fun postprocess_term thy = term_of_conv thy (postprocess_conv thy);
+fun resubst_triv_consts thy = map_aterms (fn t as Const (c, ty) => Const (Code.resubst_alias thy c, ty)
+  | t => t);
+
+fun postprocess_term thy = term_of_conv thy (postprocess_conv thy) #> resubst_triv_consts thy;
 
 fun print_codeproc thy =
   let
@@ -495,7 +499,7 @@
       Abs (v, prepare_sorts_typ prep_sort ty, prepare_sorts prep_sort t)
   | prepare_sorts _ (t as Bound _) = t;
 
-fun gen_eval thy cterm_of conclude_evaluation prep_sort evaluator proto_ct =
+fun gen_eval thy cterm_of conclude_evaluation evaluator proto_ct =
   let
     val pp = Syntax.pp_global thy;
     val ct = cterm_of proto_ct;
@@ -507,8 +511,10 @@
     val vs = Term.add_tfrees t' [];
     val consts = fold_aterms
       (fn Const (c, _) => insert (op =) c | _ => I) t' [];
- 
-    val t'' = prepare_sorts prep_sort t';
+
+    val add_triv_classes = curry (Sorts.inter_sort (Sign.classes_of thy))
+      (Code.triv_classes thy);
+    val t'' = prepare_sorts add_triv_classes t';
     val (algebra', eqngr') = obtain thy consts [t''];
   in conclude_evaluation (evaluator algebra' eqngr' vs t'' ct') thm end;
 
@@ -527,8 +533,8 @@
       end;
   in gen_eval thy I conclude_evaluation end;
 
-fun eval thy prep_sort postproc evaluator = gen_eval thy (Thm.cterm_of thy)
-  (K o postproc (postprocess_term thy)) prep_sort (simple_evaluator evaluator);
+fun eval thy postproc evaluator = gen_eval thy (Thm.cterm_of thy)
+  (K o postproc (postprocess_term thy)) (simple_evaluator evaluator);
 
 
 (** setup **)
--- a/src/Tools/Code/code_thingol.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Tools/Code/code_thingol.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -82,10 +82,10 @@
   val read_const_exprs: theory -> string list -> string list * string list
   val consts_program: theory -> string list -> string list * (naming * program)
   val cached_program: theory -> naming * program
-  val eval_conv: theory -> (sort -> sort)
+  val eval_conv: theory
     -> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> cterm -> thm)
     -> cterm -> thm
-  val eval: theory -> (sort -> sort) -> ((term -> term) -> 'a -> 'a)
+  val eval: theory -> ((term -> term) -> 'a -> 'a)
     -> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
     -> term -> 'a
 end;
@@ -803,8 +803,8 @@
     val vs'' = map (fn (v, _) => (v, (the o AList.lookup (op =) vs o prefix "'") v)) vs';
   in evaluator naming program ((vs'', (vs', ty')), t') deps end;
 
-fun eval_conv thy prep_sort = Code_Preproc.eval_conv thy prep_sort o base_evaluator thy;
-fun eval thy prep_sort postproc = Code_Preproc.eval thy prep_sort postproc o base_evaluator thy;
+fun eval_conv thy = Code_Preproc.eval_conv thy o base_evaluator thy;
+fun eval thy postproc = Code_Preproc.eval thy postproc o base_evaluator thy;
 
 
 (** diagnostic commands **)
--- a/src/Tools/nbe.ML	Tue Jul 21 14:08:58 2009 +0200
+++ b/src/Tools/nbe.ML	Tue Jul 21 17:02:18 2009 +0200
@@ -439,9 +439,6 @@
 
 fun normalize thy naming program ((vs0, (vs, ty)), t) deps =
   let
-    fun subst_const f = map_aterms (fn t as Term.Const (c, ty) => Term.Const (f c, ty)
-      | t => t);
-    val resubst_triv_consts = subst_const (Code.resubst_alias thy);
     val ty' = typ_of_itype program vs0 ty;
     fun type_infer t =
       singleton (TypeInfer.infer_types (Syntax.pp_global thy) (Sign.tsig_of thy) I
@@ -453,8 +450,8 @@
     val string_of_term = setmp show_types true (Syntax.string_of_term_global thy);
   in
     compile_eval thy naming program (vs, t) deps
+    |> Code_Preproc.resubst_triv_consts thy
     |> tracing (fn t => "Normalized:\n" ^ string_of_term t)
-    |> resubst_triv_consts
     |> type_infer
     |> tracing (fn t => "Types inferred:\n" ^ string_of_term t)
     |> check_tvars
@@ -463,9 +460,6 @@
 
 (* evaluation oracle *)
 
-fun add_triv_classes thy = curry (Sorts.inter_sort (Sign.classes_of thy))
-  (Code.triv_classes thy);
-
 fun mk_equals thy lhs raw_rhs =
   let
     val ty = Thm.typ_of (Thm.ctyp_of_term lhs);
@@ -506,9 +500,9 @@
 val norm_conv = no_frees_conv (fn ct =>
   let
     val thy = Thm.theory_of_cterm ct;
-  in Code_Thingol.eval_conv thy (add_triv_classes thy) (norm_oracle thy) ct end);
+  in Code_Thingol.eval_conv thy (norm_oracle thy) ct end);
 
-fun norm thy = no_frees_rew (Code_Thingol.eval thy (add_triv_classes thy) I (normalize thy));
+fun norm thy = no_frees_rew (Code_Thingol.eval thy I (normalize thy));
 
 (* evaluation command *)