--- a/src/HOL/Finite_Set.thy Thu Nov 03 21:09:37 2022 +0100
+++ b/src/HOL/Finite_Set.thy Fri Nov 04 13:19:52 2022 +0100
@@ -193,6 +193,35 @@
lemma finite_subset: "A \<subseteq> B \<Longrightarrow> finite B \<Longrightarrow> finite A"
by (rule rev_finite_subset)
+simproc_setup finite ("finite A") = \<open>fn _ =>
+let
+ val finite_subset = @{thm finite_subset}
+ val Eq_TrueI = @{thm Eq_TrueI}
+
+ fun is_subset A th = case Thm.prop_of th of
+ (_ $ (Const (\<^const_name>\<open>less_eq\<close>, Type (\<^type_name>\<open>fun\<close>, [Type (\<^type_name>\<open>set\<close>, _), _])) $ A' $ B))
+ => if A aconv A' then SOME(B,th) else NONE
+ | _ => NONE;
+
+ fun is_finite th = case Thm.prop_of th of
+ (_ $ (Const (\<^const_name>\<open>finite\<close>, _) $ A)) => SOME(A,th)
+ | _ => NONE;
+
+ fun comb (A,sub_th) (A',fin_th) ths = if A aconv A' then (sub_th,fin_th) :: ths else ths
+
+ fun proc ss ct =
+ (let
+ val _ $ A = Thm.term_of ct
+ val prems = Simplifier.prems_of ss
+ val fins = map_filter is_finite prems
+ val subsets = map_filter (is_subset A) prems
+ in case fold_product comb subsets fins [] of
+ (sub_th,fin_th) :: _ => SOME((fin_th RS (sub_th RS finite_subset)) RS Eq_TrueI)
+ | _ => NONE
+ end)
+in proc end
+\<close>
+
lemma finite_UnI:
assumes "finite F" and "finite G"
shows "finite (F \<union> G)"