combinator to build partial equivalence relations from a predicate and an equivalenc relation
authorhaftmann
Mon, 04 Jul 2016 19:46:20 +0200
changeset 63377 64adf4ba9526
parent 63376 4c0cc2b356f0
child 63378 161f3ce4bf45
combinator to build partial equivalence relations from a predicate and an equivalenc relation
NEWS
src/HOL/Library/Combine_PER.thy
src/HOL/Library/Library.thy
--- a/NEWS	Mon Jul 04 19:46:20 2016 +0200
+++ b/NEWS	Mon Jul 04 19:46:20 2016 +0200
@@ -136,6 +136,9 @@
 
 *** HOL ***
 
+* Theory Library/Combinator_PER.thy: combinator to build partial
+equivalence relations from a predicate and an equivalenc relation.
+
 * Theory Library/Perm.thy: basic facts about almost everywhere fix
 bijections.
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Combine_PER.thy	Mon Jul 04 19:46:20 2016 +0200
@@ -0,0 +1,60 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+section \<open>A combinator to build partial equivalence relations from a predicate and an equivalence relation\<close>
+
+theory Combine_PER
+imports Main "~~/src/HOL/Library/Lattice_Syntax"
+begin
+
+definition combine_per :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+  "combine_per P R = (\<lambda>x y. P x \<and> P y) \<sqinter> R"
+
+lemma combine_per_simp [simp]:
+  fixes R (infixl "\<approx>" 50)
+  shows "combine_per P R x y \<longleftrightarrow> P x \<and> P y \<and> x \<approx> y"
+  by (simp add: combine_per_def)
+
+lemma combine_per_top [simp]:
+  "combine_per \<top> R = R"
+  by (simp add: fun_eq_iff)
+
+lemma combine_per_eq [simp]:
+  "combine_per P HOL.eq = HOL.eq \<sqinter> (\<lambda>x y. P x)"
+  by (auto simp add: fun_eq_iff)
+
+lemma symp_combine_per:
+  "symp R \<Longrightarrow> symp (combine_per P R)"
+  by (auto simp add: symp_def sym_def combine_per_def)
+
+lemma transp_combine_per:
+  "transp R \<Longrightarrow> transp (combine_per P R)"
+  by (auto simp add: transp_def trans_def combine_per_def)
+
+lemma combine_perI:
+  fixes R (infixl "\<approx>" 50)
+  shows "P x \<Longrightarrow> P y \<Longrightarrow> x \<approx> y \<Longrightarrow> combine_per P R x y"
+  by (simp add: combine_per_def)
+
+lemma symp_combine_per_symp:
+  "symp R \<Longrightarrow> symp (combine_per P R)"
+  by (auto intro!: sympI elim: sympE)
+
+lemma transp_combine_per_transp:
+  "transp R \<Longrightarrow> transp (combine_per P R)"
+  by (auto intro!: transpI elim: transpE)
+
+lemma equivp_combine_per_part_equivp:
+  fixes R (infixl "\<approx>" 50)
+  assumes "\<exists>x. P x" and "equivp R"
+  shows "part_equivp (combine_per P R)"
+proof -
+  from \<open>\<exists>x. P x\<close> obtain x where "P x" ..
+  moreover from \<open>equivp R\<close> have "x \<approx> x" by (rule equivp_reflp)
+  ultimately have "\<exists>x. P x \<and> x \<approx> x" by blast
+  with \<open>equivp R\<close> show ?thesis
+    by (auto intro!: part_equivpI symp_combine_per_symp transp_combine_per_transp
+      elim: equivpE)
+qed
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Library.thy	Mon Jul 04 19:46:20 2016 +0200
+++ b/src/HOL/Library/Library.thy	Mon Jul 04 19:46:20 2016 +0200
@@ -12,6 +12,7 @@
   Code_Test
   ContNotDenum
   Convex
+  Combine_PER
   Complete_Partial_Order2
   Countable
   Countable_Complete_Lattices