combinator to build partial equivalence relations from a predicate and an equivalenc relation
--- a/NEWS Mon Jul 04 19:46:20 2016 +0200
+++ b/NEWS Mon Jul 04 19:46:20 2016 +0200
@@ -136,6 +136,9 @@
*** HOL ***
+* Theory Library/Combinator_PER.thy: combinator to build partial
+equivalence relations from a predicate and an equivalenc relation.
+
* Theory Library/Perm.thy: basic facts about almost everywhere fix
bijections.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Combine_PER.thy Mon Jul 04 19:46:20 2016 +0200
@@ -0,0 +1,60 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+section \<open>A combinator to build partial equivalence relations from a predicate and an equivalence relation\<close>
+
+theory Combine_PER
+imports Main "~~/src/HOL/Library/Lattice_Syntax"
+begin
+
+definition combine_per :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+ "combine_per P R = (\<lambda>x y. P x \<and> P y) \<sqinter> R"
+
+lemma combine_per_simp [simp]:
+ fixes R (infixl "\<approx>" 50)
+ shows "combine_per P R x y \<longleftrightarrow> P x \<and> P y \<and> x \<approx> y"
+ by (simp add: combine_per_def)
+
+lemma combine_per_top [simp]:
+ "combine_per \<top> R = R"
+ by (simp add: fun_eq_iff)
+
+lemma combine_per_eq [simp]:
+ "combine_per P HOL.eq = HOL.eq \<sqinter> (\<lambda>x y. P x)"
+ by (auto simp add: fun_eq_iff)
+
+lemma symp_combine_per:
+ "symp R \<Longrightarrow> symp (combine_per P R)"
+ by (auto simp add: symp_def sym_def combine_per_def)
+
+lemma transp_combine_per:
+ "transp R \<Longrightarrow> transp (combine_per P R)"
+ by (auto simp add: transp_def trans_def combine_per_def)
+
+lemma combine_perI:
+ fixes R (infixl "\<approx>" 50)
+ shows "P x \<Longrightarrow> P y \<Longrightarrow> x \<approx> y \<Longrightarrow> combine_per P R x y"
+ by (simp add: combine_per_def)
+
+lemma symp_combine_per_symp:
+ "symp R \<Longrightarrow> symp (combine_per P R)"
+ by (auto intro!: sympI elim: sympE)
+
+lemma transp_combine_per_transp:
+ "transp R \<Longrightarrow> transp (combine_per P R)"
+ by (auto intro!: transpI elim: transpE)
+
+lemma equivp_combine_per_part_equivp:
+ fixes R (infixl "\<approx>" 50)
+ assumes "\<exists>x. P x" and "equivp R"
+ shows "part_equivp (combine_per P R)"
+proof -
+ from \<open>\<exists>x. P x\<close> obtain x where "P x" ..
+ moreover from \<open>equivp R\<close> have "x \<approx> x" by (rule equivp_reflp)
+ ultimately have "\<exists>x. P x \<and> x \<approx> x" by blast
+ with \<open>equivp R\<close> show ?thesis
+ by (auto intro!: part_equivpI symp_combine_per_symp transp_combine_per_transp
+ elim: equivpE)
+qed
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Library.thy Mon Jul 04 19:46:20 2016 +0200
+++ b/src/HOL/Library/Library.thy Mon Jul 04 19:46:20 2016 +0200
@@ -12,6 +12,7 @@
Code_Test
ContNotDenum
Convex
+ Combine_PER
Complete_Partial_Order2
Countable
Countable_Complete_Lattices